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Abstract: This paper proposes a robust tracking control method for swing-up and stabilization of a
rotational inverted pendulum system by applying equivalent input disturbance (EID) rejection. The
mathematical model of the system was developed by using a Lagrangian equation. Then, the EID,
including external disturbances and parameter uncertainties, was defined; and the EID observer was
designed to estimate EID using the state observer dynamics and a low-pass filter. For robustness,
the linear-quadratic regulator method is used with EID rejection. The closed-loop stability is proven
herein using the Lyapunov theory and input-to-state stability. The performance of the proposed
method is validated and verified via experimental results.

Keywords: balancing control; equivalent input disturbance; linear-quadratic regulator; position
tracking; desired state dynamics

1. Introduction

The rotational inverted pendulum (RIP) is a typical underactuated system in which
the number of actuators is less than the system’s degrees of freedom [1]. The inverted
pendulum system consists of a translating base and an attached pendulum without an
actuator. The RIP has a motor as the rotational actuator, which provides torque to the
motor’s rod [2]. Generally, the control objectives of the RIP are as follows: swing-up control,
stabilizing control, and trajectory tracking control [3–5]. Currently, control methods for the
RIPs are being extensively used in various fields, such as spacecraft attitude control [6],
biped robot balance control [7,8], vehicle and vessel self-balanced control [9,10], and flight
control [11,12]. However, it is difficult to control the RIP because of limitations such as the
unstable equilibrium point, and nonlinearities, including the state couple terms of the arm
angle, velocity, the pole angle and velocity, and sine functions.

Various control methods have been proposed to overcome these issues. Proportional-
integral-derivative (PID) control has been widely used owing to its simple design, low
maintenance cost, and effectiveness in various systems [13]. However, its control perfor-
mance may degrade under the disturbances. Linear-quadratic regulator (LQR) control
methods have been applied to RIP control to improve the robustness and optimal perfor-
mance [14,15]. A fuzzy-based control method was also developed for the RIP [16]. The
aforementioned methods may be unstable and degraded owing to parameter uncertain-
ties and/or external disturbance, because the parameter uncertainties and/or external
disturbance were not considered in the controller design.

Sliding mode control (SMC) methods for RIP were designed for robustness [17,18].
However, the chattering phenomenon caused by SMC may degrade the control perfor-
mance. To reduce the chattering, the adaptive sliding mode based disturbance attenuation
tracking control method and extended state observer based adaptive sliding mode tracking
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control were proposed for wheeled mobile robots [19,20]. However, these methods cannot
be applied to the RIP due to the differences between wheeled mobile robots and the RIP.
Adaptive control methods have been used to overcome parameter uncertainties [21,22].
However, the parameters may be poorly estimated for the rapidly varying parameters.
Furthermore, the disturbance can affect the stability. Disturbance observer (DOB) methods
can be used to compensate for the effects of disturbances [23,24]. In the DOB design, the
main concern is that the DOB is available when the system satisfies the matching condition.
However, the disturbance in the RIP does not satisfy the matching condition. Furthermore,
it is difficult to reject the disturbances caused by the single control input in the RIP; thus,
the DOB cannot be applied to the RIP. To overcome this problem, equivalent input distur-
bance (EID) was proposed in [25]. In this paper, only external disturbance was considered.
Furthermore, to the best of our knowledge, the EID was not designed for the arm angle
tracking control with pole balancing in the RIP.

In this paper, we propose an arm angle tracking control method with pole balancing
using the EID rejection for the RIP. The proposed method consists of a state observer, an
EID observer, and a state feedback controller. The EID rejection method is proposed to
reject the disturbances that do not satisfy the matching condition because the RIP is the
underactuated system. The state observer and EID observer were developed to estimate
the EID, which is equivalent to the disturbances. The states are estimated using the state
observer. Then, the EID observer generates the estimated EID using the estimated state.
The desired state dynamics are derived using the system model. For arm angle tracking
control and pole balancing with disturbance compensation, a state feedback controller was
designed using the desired state dynamics. The control gains are selected using the LQR
method to obtain the optimal control performance. Consequently, the proposed method
is robust against the disturbance not satisfying the matching condition, although the RIP
is the underactuated system. The closed-loop stability is proven via Lyapunov theory
and input-to-state stability (ISS). The performance of the proposed method was validated
experimentally.

2. System Modeling

Figure 1 shows a simplified schematic model of the RIP. θ is the arm angle, α is the
pendulum pole angle, ω is the arm angular velocity, and β is the pendulum pole angular
velocity. The system model can be obtained by solving the Euler–Lagrange Equation [3,26].
The Lagrangian L is defined as the difference between the kinetic energy (KE) and potential
energy (PE). For the RIP, L can be defined as

L = KE− PE =
1
2

Jrω2 +
1
2

Jpβ2 +
1
2

mpvT
cmvcm −

1
2

mpgLp cos α (1)

where vcm is a velocity of the center of the mass of the pendulum, Jr is the rotary arm (motor
rod) inertia, Jp is the pendulum inertia, mp is the pendulum mass, Lp is the pendulum
length, and g is the gravitational acceleration. vcm can be obtained by time-differentiating
the pendulum center position [xcm, ycm, zcm]. The pendulum center position is calculated
as follows: xcm

ycm
zcm

 =

Lr cos θ − 1
2 Lp sin θ sin α

Lr sin θ + 1
2 Lp cos θ sin α

1
2 Lp cos α

 (2)
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Then, vcm and vT
cmvcm is calculated as follows:

vcm =

ẋcm
ẏcm
żcm

 =

−ωLr sin θ − 1
2 βLp sin θ cos α− 1

2 ωLp cos θ sin α

ωLr cos θ + 1
2 βLp cos θ cos α− 1

2 ωLp sin θ sin α

− 1
2 βLp sin α


vT

cmvcm =(L2
r +

1
4

L2
p sin2 α)ω2 +

1
4

L2
pβ2 + (LrLp cos α)ωβ

(3)

where Lr is the rotary arm length.

Figure 1. Simplified schematic model of the RIP.

For the RIP, the Euler–Lagrange equation is formulated as

∂L
∂θ

+
d
dt
(

∂L
∂ω

) = τ

∂L
∂α

+
d
dt
(

∂L
∂β

) = 0
(4)

For DC motor torque τ, it can be replaced as km(Vm−km θ̇)
R . Thus, the Euler–Lagrange

Equation (4) can be rewritten as:

(mpL2
r +

1
4

mpL2
p sin2 α + Jr)ω̇ + (

1
2

mpLpLr cos α)β̇ + (
1
2

mpL2
p sin α cos α)ωβ− (

1
2

mpLpLr sin α)β2

=
km(Vm − kmω)

R

(
1
2

mpLpLr cos α)ω̇ + (Jp +
1
4

mpL2
p)β̇− (

1
2

mpLrLp sin α)ωβ +
1
2

mpLpg sin α = 0

(5)

where km is the DC motor torque constant, R is the DC motor terminal resistance, and Vm
is the motor input voltage. In this paper, the main goal of the controller design is arm angle
tracking control with the balancing control (α = 0◦). Thus, at the operating point α = 0, the
RIP model (5) can be linearized as[

mpL2
r + Jr

1
2 mpLpLr

1
2 mpLpLr Jp +

1
4 mpL2

p

][
θ̈
α̈

]
+

[
k2

m
R 0
0 0

][
θ̇
α̇

]
+

[
0 0
0 1

2 mpLpg

][
θ
α

]
=

[ kmVm
R
0

]
(6)
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The state-space equation is derived from (6), and rewritten as follows:
θ̇
α̇
ω̇
β̇

 =


0 0 1 0
0 0 0 1
0 a32 a33 0
0 a42 a43 0


︸ ︷︷ ︸

A


θ
α
ω
β


︸ ︷︷ ︸

x

+


0
0
b3
b4


︸ ︷︷ ︸

B

Vm︸︷︷︸
u

y =

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C

x

(7)

where JT = JpmpL2
r + Jr Jp +

1
4 JrmpL2

p, a32 = 1
4JT

m2
pL2

pLrg, a33 = −kmb3, a42 = −1
2JT

mpLpg

(Jr + mpL2
r ), a43 = −kmb4, b3 = km

JT R (Jp +
1
4 mpL2

p), and b4 = km
JT R (−

1
2 mpLpLr).

3. EID Estimator Design

In the system model described in (7), disturbances, such as friction, are not considered.
Considering the external disturbances, the system model becomes

ẋ = Ax + Bu + ∆

y = Cx
(8)

where ∆ =
[
0 0 dω dβ

]T , dω, and dβ are the disturbances in the dynamics of ω and β,
respectively. In practice, it is difficult to determine the disturbances, dω and dβ, because
these disturbances may include friction, modeling uncertainties, and/or parameter uncer-
tainties. Furthermore, these disturbances cannot be rejected by a single input because dω

and dβ are in the dynamics of ω and β. To resolve this issue, an EID rejection method is
proposed for the RIP. The equivalent system model from (8) is defined as

ẋ = Ax + B(u + deid) (9)

where deid is defined as the EID which induces the same effect as dω and dβ on the system.
We assume that the control input is u = 0. yo is defined as the output of the plant (8) for the
zero input (u = 0) and the disturbances dω, dβ. Furthermore, yeid is defined as the output
of the plant (9) for the zero input and the disturbance deid. The disturbance deid is called
the EID of the disturbances dω and dβ if yo(t) = yeid(t) for all t ≥ 0.

First, a state observer is designed to estimate the EID. The estimation for x is defined
as x̂. The state observer is designed as

˙̂x = Ax̂ + Bu f + L(y− cx̂) (10)

where L is the observer gain matrix, and u f is the control input without the EID rejection.
The estimation error of the state is defined as x̃ = x− x̂. From (9) and (10), the dynamics of
x̃ can be expressed as

˙̃x = Ax̃ + B(u + deid − u f )− LCx̃. (11)

The dynamics of x̃ in (11) can be rewritten as

Bdeid = B(u f − u) + LCx̃ + ˙̃x− Ax̃. (12)

We assume that there exists a control input ed such that

Bed = Ax̃− ˙̃x. (13)
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The estimated EID d̂eid is defined as

d̂eid = deid + ed. (14)

Then, (10) becomes

˙̂x = Ax̂ + B(u + d̂eid). (15)

Applying (13) and (14) to (12), the estimated EID can be obtained using the EID observer
as follows:

d̂eid = B+LCx̃ + u f − u

= B+L(y− Cx̂) + u f − u
(16)

where B+ = BT

BT B is the pseudo-inverse matrix of B. To avoid the algebraic error in (15) and
(16), the estimated EID is filtered using a first-order low-pass filter as follows:

τ ˙̂deid f
+ d̂eid f

= d̂eid (17)

Thus, the actual control input is

u = u f + d̂eid f
. (18)

The dynamics of deid is defined as

ḋeid = δ. (19)

In (19), we assume that δmax exists such that δmax = supt δ(t). The estimation error of the
EID is defined as

d̃eid = deid − d̂eid f
(20)

Then the state and the EID estimation error dynamics are obtained as

˙̃x = (A− LC)︸ ︷︷ ︸
Ao

x̃ + Bd̃eid

˙̃deid = − 1
τ

B+LCx̃ + δ.

(21)

Observer and EID estimation error dynamics (21) can be rewritten as[
˙̃x

˙̃deid

]
︸ ︷︷ ︸

˙̃xd

=

[
Ao B

− 1
τ B+LC 0

]
︸ ︷︷ ︸

Ad

[
x̃

d̃eid

]
︸ ︷︷ ︸

x̃d

+

[
0
1

]
︸︷︷︸

Bd

δ. (22)

Theorem 1. Consider the observer and EID estimation error dynamics in (22). If the observer gain
matrix L is chosen such that Ad is Hurwitz, then x̃d is globally uniformly ultimately bounded.

Proof. We define the Lyapunov candidate function Vd as

Vd = x̃T
d Pd x̃d. (23)
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The derivative of Vd with respect to time is

V̇d =x̃T
d [A

T
d Pd + Pd Ad]x̃d + 2x̃T

d PdBdδ

≤− ‖x̃d‖2
2 + 2δmax‖Pd‖2‖x̃d‖2

≤− ‖x̃d‖2(‖x̃d‖2 − 2λmax(Pd)δmax)

(24)

For ‖x̃d‖2 ≥ 2λmax(Pd)δmax

V̇d ≤ −‖x̃d‖2
2 for ‖x̃d‖2 ≥ 2λmax(Pd)δmax. (25)

Thus x̃d is globally uniformly ultimately bounded.

4. LQR Based Tracking Controller Design

In this section, an arm position tracking controller with pivot balancing is designed.
The desired state xd is defined as

xd =
[
θd αd ωd βd]T (26)

where θd, αd, ωd, and βd are the desired values (or trajectories) of θ, α, ω, and β, respectively.
From (7), the dynamics of xd are given by

θ̇d = ωd

α̇d = βd

ω̇d = a32αd + a33ωd + b3ud

β̇d = a42αd + a43ωd + b4ud

(27)

where ud is the desired input for xd. In xd, θd, and αd can be arbitrarily chosen. From (27),
we obtain

ωd = θ̇d

βd = α̇d.
(28)

In (27), the dynamics of ωd and βd can be rewritten as[
ω̇d

β̇d

]
︸ ︷︷ ︸

ẋs

=

[
a32 a33
a42 a43

]
︸ ︷︷ ︸

As

[
αd

ωd

]
︸ ︷︷ ︸

xt

+

[
b3
b4

]
︸︷︷︸

Bs

ud. (29)

Thus, from (29), the desired input ud is calculated as

ud = B+
s (ẋs − Asxt) (30)

where B+
s = BT

s
BT

s Bs
is the pseudo-inverse matrix of Bs. The tracking error e is defined

as follows.

e =


eθ

eα

eω

eβ

 =


θd − θ

αd − α

ωd −ω

βd − β

. (31)
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From (7) and (27) the error dynamics are obtained as

ėθ = eω

ėα = eβ

˙eω = a32eα + a33eω + b3(ud − u− deid)

ėβ = a42eα + a43eω + b4(ud − u− deid).

(32)

The error dynamics in (32) can be rewritten as

ė = Ae + B(ud − u− deid) (33)

The state feedback controller is designed as

u = ud + Ke︸ ︷︷ ︸
u f

−d̂eid f
(34)

where K is the control gain matrix. The control gain matrix K is chosen using the LQR. The
objective function J is defined as

J =
∫ ∞

0
(eTQe + uT

e Rue)dt (35)

where ue = ud − u − d̂eid f
, Q is the diagonal weighting matrix of state e, and R is the

weighting factor of ue. From the algebraic Riccati equation:

PA + AT P− PBR−1BT P + Q = 0, (36)

where P is positive definite symmetric matrix. The LQR control gain vector K is obtained as

K = R−1BT P (37)

where K =
[
k1, k2, k3, k4

]
. Using the controller in (34), the error dynamics in (32) become

ė = (A− BK)︸ ︷︷ ︸
Ae

e− Bd̃eid. (38)

From now on, we study the stability of the closed-loop system, including the error dynamics
in (38) and estimation error dynamics in (21). In the controller described in (34), the
estimated state x̂ is used instead of x. Thus, from the error dynamics in (38) and estimation
error dynamics in (21), the closed-loop system is obtained as

ė = Aee− BKx̃− Bd̃eid

˙̃x = Ao x̃ + Bd̃eid

˙̃deid = − 1
τ

B+LCx̃ + δ.

(39)

Theorem 2. Consider the closed-loop system from (39). If the control gain matrix K and observer
gain L are chosen such that Ae and Ad are Hurwitz, respectively, then e, x̃, and d̃eid are globally
uniformly ultimately bounded.
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Proof. The closed-loop system from (39) can be rewritten as

ė = Aee +
[
−BK
−B

]
︸ ︷︷ ︸

Be

x̃d

[
˙̃x

˙̃deid

]
︸ ︷︷ ︸

˙̃xd

=

[
Ao B

− 1
τ B+LC 0

]
︸ ︷︷ ︸

Ad

[
x̃

d̃eid

]
︸ ︷︷ ︸

x̃d

+

[
0
1

]
︸︷︷︸

Bd

δ.
(40)

In Theorem 1, it was shown that x̃d =
[
x̃ d̃eid

]T is globally uniformly ultimately bounded
if the observer gain L is selected such that Ad is Hurwitz. In (40), if the control gain matrix
K is chosen such that Ae is Hurwitz, the dynamics of e are input-to-state stable. Thus, e is
also globally uniformly ultimately bounded. Consequently, we conclude that e, x̃, and d̃eid
are globally uniformly ultimately bounded.

Figure 2 shows a block diagram of the proposed method. The desired state xd and
desired input ud are calculated using the reference generator from (26) and (27). The state
observer from (8) estimates the state; then, the EID observer from (14) generates d̂eid. d̂eid f

is obtained via the filter from (15), and u f is obtained using the controller from (32) and
(35). Finally, the control input u was generated using u f and d̂eid f

.

Reference
generator
(26), (27)

Controller
(32), (35)

RIP
System

State observer
(8)

Filter
(15)

EID
observer

(14)

d



ˆ
eidd

ˆ
feidd

fu u y

x̂

,d dx u

x̂
fu

ˆ
eidd

yufu

Figure 2. Block diagram of the proposed method.

5. Experimental Results

Experiments were conducted to validate the performance of the proposed method.
For the experiments, Quanser QUBE-Servo 2 with a pendulum [27] was used. Two optical
incremental encoders with a resolution of 2048 pulses/rev were used to measure θ and α.
The sampling rate was set to 1 kHz.

The parameters considered in the experiments have been listed in Table 1. In the
experiments, first, the proportional feedback swing-up control method [28] was used. Then
when |α| ≤ 0.349 rad, the application of the proposed method for balancing started at t = t0.
The motor arm position reference was used as θd(t) = 0.3 sin(t− t0) (∀t ≥ t0). For balanc-
ing control, the desired pole angle was αd(t) = 0 (∀t ≥ t0). The controller and observer
gains used in the experiments were as follows: k1 = 3.1623, k2 = −46.9945, k3 = 3.5453,
k4 = −2.8729, l11 = 45.9653, l12 = 6.8001, l21 = 10.3129, l22 = 46.9461, l31 = 453.4104,
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l32 = 280.8011, l41 = 275.6734, and l42 = 278.1654. For the low pass filter, τ = 1/60
was used.

Table 1. System parameters.

Symbol Description Value

km DC motor torque constant 0.042 N·m/A
R Terminal resistance 8.4 Ω
Jm Rotor inertia 4.0 × 10−6 kg·m2

mr Rotary arm mass 0.095 kg
Lr Rotary arm length 0.085 m
mp Pendulum mass 0.024 kg
Lp Pendulum length 0.129 m
Jr Rotary arm inertia 5.72 × 10−5 kg·m2

Jp Pendulum inertia 5.72 × 10−5 kg·m2

g Gravitational acceleration 9.81 m/s2

5.1. Performances of Arm Angle Tracking Control and Pole Balancing

In the experiments, three cases were tested to validate the control performance and
the EID compensation performance as follows:

Case 1: Conventional proportional-derivative (PD) controller, u = kpθeθ + kdθ ėθ +
kpαeα + kdα ėα

Case 2: Proposed method without EID compensation, u = ud + Ke
Case 3: Proposed method with EID compensation, u = ud + Ke− d̂eid f

.

Case 3: Proposed method with EID compensation under the parameter uncertainties
(at most, ±20%), u = ud + Ke− d̂eid f

.

Case 1 was tested to validate the performances of the arm angle tracking control and
the pole balancing of the proposed method. Case 2 was tested to validate the performance
of the EID compensation. Cases 3 and 4 were tested to validate the robustness of the
proposed method.

Tracking control for the arm angle and balance control for the pole angle were per-
formed. The control performances in all cases are shown in Figures 3–6. The oscillations
in all cases were the results of the swing-up control at the outset. After |α| ≤ 0.349 rad
was attained, the proposed method was applied to achieve the tracking control for the arm
angle and balance control for the pole angle. The unavoidable ripple appeared owing to the
quantization effect, physical coupling effect, mechanical vibration, and model uncertainty.
The offset errors in the arm position tracking existed owing to the physically connected
encoder wire. In case 1, relatively large errors in the arm angle and pole angle appeared
because of the disturbances. In case 2, the errors were reduced by the proposed control
method compared to the PD controller. In case 3, the EID compensation resulted in reduced
errors compared to case 2. In case 4, the parameter uncertainties (at most, ±20%) were
applied in the proposed method. Although the parameter uncertainties were applied in
case 4, the control performances of cases 3 and 4 were similar.

For the comparison of the control performances of all cases, the average squared error
(ASE) [29] was used as follows:

µ =
1
N

N

∑
i=1

(eθ(i)
2 + α(i)2) (41)

where N is the number of samples. The ASE for all cases are listed in Table 2. We see that
the proposed method improved the performances of the tracking control for the arm angle
and balance control for the pole angle.
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Figure 3. Control performance in case 1. (a) Arm position (case 1). (b) Pendulum pole position
(case 1). (c) Arm position error (case 1).
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Figure 4. Control performance in case 2. (a) Arm position (case 2). (b) Pendulum pole position (case
2). (c) Arm position error (case 2).
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Figure 5. Control performance in case 3. (a) Arm position (case 3). (b) Pendulum pole position
(case 3). (c) Arm position error (case 3). (d) Estimated EID (case 3).
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Figure 6. Control performance in case 4. (a) Arm position (case 4). (b) Pendulum pole position (case
4). (c) Arm position error (case 4). (d) Estimated EID (case 4).

Table 2. ASE for all cases.

Case ASE

Case 1 0.0817
Case 2 0.0122
Case 3 0.061
Case 4 0.062

5.2. Robustness against External Disturbance

The experiments under external disturbance were tested to validate the robustness
performance of the proposed method against the external disturbance. The impulse external
disturbance as shown in Figure 7 was injected by hand twice times at 9 s and 15 s in the
RIP. The control performance of the proposed method under the external disturbance is
shown in Figure 8. Due to the impulse external disturbance injections at 9 s and 15 s,
the oscillations appeared. After the impulse external disturbance injections, the errors
converged to zeros by the proposed method rapidly.

externald

Figure 7. External disturbance in the experiments.
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Figure 8. Control performance of the proposed method under the external disturbance. (a) Arm
position (case 4). (b) Pendulum pole position (case 4). (c) Arm position error (case 4). (d) Estimated
EID (case 4).
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6. Conclusions

In this study, we developed a position tracking control method with EID rejection for
RIP. The system model was developed by using Lagrangian equation and was linearized
at the operation point. Additionally, the EID was defined and designed. It contains the
external disturbances and parameter uncertainties. The EID was estimated using a state
observer, and filtered via a low-pass filter. The state error was defined with state feedback,
and for position reference tracking, desired state dynamics were obtained. The tracking
controller was designed using the LQR method. The stability of EID dynamics was proven
by the Lyapunov theory, and the tracking error dynamics satisfied the ISS. The proposed
method was validated through experiments. The main drawbacks of the proposed method
are the filtering error and input saturation problems. Thus, in the future works, we will
design the RIP control method to resolve these problems [29–31].
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