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Abstract: Economic efficient Autonomous Road Vehicles (ARVs) are invariably subjected to uncer-
tainties and perturbations. Therefore, control of vehicle systems requires stability to withstand the
effect of variations in the nominal performance. Lateral path-tracking is a substantial task of ARVs,
especially in critical maneuvering and cornering with variable speed. In this study, a new controller
on the basis of interval type-3 (T3) fuzzy logic system (FLSs) is designed. The main novelties and
advantages are as follows. (1) The uncertainty is a main challenge in the path-following problem of
ARVs. However, in the fuzzy-based approaches, the bounds of uncertainty are assumed to be known.
However, in the our suggested approach, the bounds of uncertainties are also fuzzy sets and type-3
FLSs with online adaptation rules are suggested to handle the uncertainties. (2) The approximation
errors (AEs) and perturbations are investigated and tackled by the compensators. (3) The bounds
of estimation errors are also uncertain and are estimated by the suggested adaptation laws. (4) The
stability is ensured under unknown dynamics, perturbations and critical maneuvers. (5) Comparison
with the benchmarking techniques and conventional fuzzy approaches verifies that the suggested
path-following scheme results in better maneuver performance.

Keywords: fuzzy system; autonomous vehicles; machine learning; path-following; stability

1. Introduction

New technologies are surrounding the lives of many people in the world day by
day. Meanwhile, the global automotive industry is also trying to keep pace with the latest
technology in the world and surpass its competitors. Driverless vehicles are a kind of
automatic vehicle that can move people or vehicles like conventional cars today. Driverless
cars have a new technology that a prominent feature of this type of technology is that a
significant part of the car control is out of human hands and computers actually control
the car. These types of vehicles include a complex set of sensors, radars and scanners that
can communicate all environmental and internal conditions in the most vital detail to their
powerful processors, so that those processors can control the vehicle [1–4].
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The path-following problem of ARVs is a challengeable control problem, because
of various dynamic perturbations such as variation of longitudinal speed, smoothness
and roughness of road, road adhesion, critical maneuver and so on [5]. This problem has
got a remarkable attention and some controllers have been designed. For example, in [6],
the undershoot response of conventional path-following control approaches is analyzed
and the effect of initial values of control parameters is investigated. The estimation of
unmeasurable states of ARV is studied in [7] and an observer-based scheme is designed
for path-following. The dynamic surface controller is developed in [8] by the use of
event-triggered scheme and the accuracy of the path tracking is compared with other
controllers. In [9], the velocities are estimated, an adaptive control strategy is schemed and
the boundedness of signals are proved. In [10], by the use of Lotka–Volterra equations, a
dynamic model is extracted and an optimal controller is designed for parking management
problem. In [11], the problem of lane-change motion is studied and the reduction of control
effort and improvement of ride quality are ensured by a predictive controller. The actuator
faults are investigated in [12], and by the use of composite energy function, the stability is
analyzed. In [13], by Barrier function an optimal controller is suggested, and the problem
of energy consumption and passenger safety are investigated. The global course constraint
is considered in [14], and by the use of gain shaping approach a feedback controller is
designed. In [15], a fault-tolerant controller is developed by the use of H∞ criteria, and
the stability is analyzed under actuator faults. In [16], the problem of obstacle avoidance
is taken into account, and a path-following scheme is designed by the predictive control
approach. In [17], the problem of energy consumption is investigated, and an energy-
efficient controller is designed for path-following. The yaw-moment control strategy is
suggested in [18], and by the simulations the accuracy improvement is evaluated.

One of the main challenging in path-following problem is the existence of noisy
information and high level of uncertainties [19,20]. To improve the robustness of the
conventional controllers against uncertainties, the fuzzy-based controllers have also been
developed [21–24]. For example, in [25], a type-2 (T2) FLS-based path-following system is
suggested, and it is shown that the maximum of tracking error of desired path is ~0.04 m.
In [26], the velocity is modeled by a FLS, and it is managed by the fuzzy model. In [27],
the effect of uncertainties are analyzed, and it is shown that FLSs improve the lane-change
maneuver performance. In [28], the FLSs are used to estimate the states, and it is combined
with the sliding mode approach to construct a path-following scheme. In [29], the FLSs are
used to adjust the gains of PID controller, and the handling stability is investigated. In [30],
the reinforcement learning approach is presented to optimize the a FLS-based controller,
and the problem of overtaking is studied. The Takagi–Sugeno FLSs are used in [31] to
cope with uncertainties, and by designing the sliding mode controller, the yaw stability is
analyzed. The FLS-based predictive controller is presented in [32] to determine the best
front wheel angle. In [33], a FLS-based path-following approach is constructed, and the
stability is analyzed in the presence of various disturbances. The steering angle controller
is designed in [34] using optimized FLSs, and the convergence problem is analyzed.

Recently, the interval type-3 FLSs have been developed to increase the estimation
ability of type-2 FLSs. In various studies, it has been shown that the IT3FLSs have better
performance in the presence of high noisy and uncertain environments such as power con-
trol problem [35], energy management [36], solving equations [37], gyroscope systems [38],
forecasting problem [39] and so on. However, type-3 FLS-based controllers have not been
developed for ARVs with high uncertain dynamics.

Regarding above discussion, we propose a new controller based on IT3FLSs. The
dynamics of ARV are online modeled by IT3FLSs. The IT3FLSs are tuned by adaptive
learning algorithm. The adaptive supervisors are also compensate the estimation errors and
perturbations. The stability and robustness are analyzed and ensured by the designed adap-
tation laws and compensators. The well path tracking performance of designed controller
is verified for double-lane-change (DLC) maneuver under variable disturbances, unknown
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dynamics and various speed. The comparison with other basic controllers and type-2
FLS-based controllers show that the designed scheme well improves the maneuver quality.

2. Problem Formulation

As depicted in Figure 1, the bicycle model of ARV is considered. The objective is to
design a controller for the heading angle (yaw angle) such that the yaw stability to be
guaranteed and the rotating of vehicle to be prevented. Furthermore, the yaw velocity
should be approached to the desired value. As given in Figure 1, the lateral error represents
the nearest interspace between ARV and favorable path, φ denotes the yaw rate, φd is the
desired level of φ, φe is the error between φ and φd and η is the ARV heading angle. The
error dynamics can be written as

φe = φ− φd = φ− ϑχ
/
R(ρ)

ẏ = ϑχsin(η) + ϑycos(η)

η̇ = φ

(1)

where R(ρ) is the curvature radius as depicted in Figure 1, and ρ is the arc length. To follow
the desired trajectory, the variables φe and ẏ should be converged to zero by the designed
controller. The dynamics of yaw plane ARV can be written as ϑ̇y = 1

m

(
Fy f + Fyr

)
− ϑχφ

φ̇ = 1
Iz

(
Fy f l f − Fyrlr + ∆T

) (2)

where ϑχ-ϑy are the longitudinal-lateral velocities, y-ẏ are the displacement/velocity, η-η̇
are the heading angle-yaw rates, ∆T denotes yaw moment, Fy f -Fyr are the lateral tire force,
l f -lr denote the distance between the central gravity and front-rear wheels, m and Iz are
the mass and mass-moment of inertia. The external yaw moment is written as

∆T = ∑
i

2

∑
j=1

(−1)jFxij
lb
2

i = f , r (3)

The lateral forces ω f and ωr are written as follows:

Fy f = ω f ξ f , Fyr = ωrξr (4)

The cornering characteristics can be considered as

ω f = ω̃ f + ∆ω f , ωr = ω̃r + ∆ωr (5)

where ω̃ f /ω̃r are the cornering stiffness for front/rear tires. ∆ω f and ∆ωr denote the
uncertainties. The side slip angles of front/rear tires are described as ξ f = tan−1

[
ϑχ sin(ζ)+l f φ

ϑχ cos(ζ)

]
− δ f

ξr = tan−1
[

ϑχsin(ζ)−lrφ
ϑχ cos(ζ)

] (6)

where δ f /ζ denote the steering/sideslip angle (ζ ≈ ϑy
/
ϑχ

). From (3)–(6) and (1)–(2), we
can derive



Mathematics 2021, 9, 2742 4 of 17



ẏ = ϑχsin(η) + ϑycos(η)

ϑ̇y =
ω f
m

{
tan−1

[
ϑχ sin(ζ)+l f φ

ϑχ cos(ζ)

]
− δ f

}
+ωr

m

{
tan−1

[
ϑχsin(ζ)−lrφ

ϑχ cos(ζ)

]}
− ϑχφ

φ̇ = 1
Iz

({
l f ω f tan−1

[
ϑχ sin(ζ)+l f φ

ϑχ cos(ζ)

]
− δ f

}
+
{

lrωrtan−1
[

ϑχsin(ζ)−lrφ
ϑχ cos(ζ)

]}
+ ∆T

)
(7)

Figure 1. The yaw-plane model.

The dynamics are rewritten as follows:

χ̇1 = g1

(
χ
)
+ κ1

(
χ
)

u1

χ̇2 = g2

(
χ
)
+ κ2

(
χ
)

u2

(8)

where χ1 = ϑy, χ2 = φ, u1 = δ f , u2 = ∆T, κ1 = 1
Iz

, κ2 =
ω f
m and

g1

(
χ
)
=

ω f
m

{
tan−1

[
ϑχ sin(ζ)+l f φ

ϑχ cos(ζ)

]}
+ωr

m

{
tan−1

[
ϑχsin(ζ)−lrφ

ϑχ cos(ζ)

]}
− ϑχφ

(9)

g2

(
χ
)
= 1

Iz

{
l f ω f tan−1

[
ϑχ sin(ζ)+l f φ

ϑχ cos(ζ)

]
− δ f

}
+
{

lrωrtan−1
[

ϑχsin(ζ)−lrφ
ϑχ cos(ζ)

]} (10)

The general diagram of the suggested control approach is shown in Figure 2.
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Figure 2. The general diagram of the suggested control scheme.

3. Type-3 FLS

The IT3FLSs have been developed to improve the estimation ability of conventional
type-2 FLSs [40]. In this paper, new tuning rules are suggested for online learning. As
shown in Figure 2, IT3FLSs are used to estimate the nonlinear functions, g1, g2, κ1 and κ2.
The structure of ĝ1 and κ̂1 are shown in Figure 3. The structure of ĝ2 and κ̂2 are similar
to ĝ1 and κ̂1 with difference that in ĝ2 and κ̂2 the inputs variables are φ, ϑ and u1. The
computations are illustrated in below:

(1) The inputs of ĝ1 and κ̂1 are φ and ϑ and the inputs of ĝ2 and κ̂2 are φ, ϑ and u1.
(2) The suggested membership functions (MFs) are shown in Figure 4. Two MFs are

considered for inputs φ, ϑ and u1. The centers of Gaussian MFs correspond to the
upper bound (UB) and lower bound (LB) of inputs. The upper MF is denoted by Λ̄
and the lower MF is denoted by Λ. For φ, the upper memberships of Λ̄φ and Λφ for
the upper slice Āi and lower slices Ai are

µ̄Λφ|Āi
(φ) = exp

−
(

φ− CΛφ

)2

σ̄2
Λφ|Āi

 (11)

µ̄Λφ|Ai
(φ) = exp

−
(

φ− CΛφ

)2

σ̄2
Λφ|Ai

 (12)

µ̄Λ̄φ|Āi
(φ) = exp

−
(

φ− CΛ̄φ

)2

σ̄2
Λ̄φ|Āi

 (13)
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µ̄Λ̄φ|Ai
(φ) = exp

−
(

φ− CΛ̄φ

)2

σ̄2
Λ̄φ|Ai

 (14)

Similarly, the lower memberships are obtained as

µ
Λφ|Āi

(φ) = exp

−
(

φ− CΛφ

)2

σ2
Λφ|Āi

 (15)

µ
Λφ|Ai

(φ) = exp

−
(

φ− CΛφ

)2

σ2
Λφ|Ai

 (16)

µ
Λ̄φ|Āi

(φ) = exp

−
(

φ− CΛ̄φ

)2

σ2
Λ̄φ|Āi

 (17)

µ
Λ̄φ|Ai

(φ) = exp

−
(

φ− CΛ̄φ

)2

σ2
Λ̄φ|Ai

 (18)

where CΛφ
and CΛ̄φ

are the centers of Λφ and Λ̄φ, respectively. σ̄Λφ|Ai
and σ̄2

Λφ|Āi
are

the upper width of Λφ at upper slice Āi and lower slices Ai. For input ϑ, we have

µ̄Λϑ|Āi
(ϑ) = exp

− (ϑ− CΛϑ

)2

σ̄2
Λϑ|Āi

 (19)

µ̄Λϑ|Ai
(ϑ) = exp

− (ϑ− CΛϑ

)2

σ̄2
Λϑ|Ai

 (20)

µ̄Λ̄ϑ|Āi
(ϑ) = exp

−
(

ϑ− CΛ̄ϑ

)2

σ̄2
Λ̄ϑ|Āi

 (21)

µ̄Λ̄ϑ|Ai
(ϑ) = exp

−
(

ϑ− CΛ̄ϑ

)2

σ̄2
Λ̄ϑ|Ai

 (22)

Similarly, the lower memberships are obtained as

µ
Λϑ|Āi

(ϑ) = exp

− (ϑ− CΛϑ

)2

σ2
Λϑ|Āi

 (23)

µ
Λϑ|Ai

(ϑ) = exp

− (ϑ− CΛϑ

)2

σ2
Λϑ|Ai

 (24)

µ
Λ̄ϑ|Āi

(ϑ) = exp

−
(

ϑ− CΛ̄ϑ

)2

σ2
Λ̄ϑ|Āi

 (25)
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µ
Λ̄ϑ|Ai

(ϑ) = exp

−
(

ϑ− CΛ̄ϑ

)2

σ2
Λ̄ϑ|Ai

 (26)

where CΛϑ
and CΛ̄ϑ

are the centers of Λϑ and Λ̄ϑ, respectively. σ̄Λϑ|Ai
and σ̄2

Λϑ|Āi
are

the upper width of Λϑ at upper slice Āi and lower slices Ai.
(3) The output of ĝ is written as

ĝi = αT
i ϕi (27)

where αi and ϕi are
αi = [vi1, ..., viR, v̄i1, ..., v̄iR]

T

ϕi =
[

ϕ
i1

, ..., ϕ
iR

, ϕ̄i1, ..., ϕ̄iR

]T (28)

where R is the rule numbers, v̄il and vil represent the l − th rule parameters. ϕ
il

and
ϕ̄il are

ϕ̄l =

nA
∑

j=1
Āj

θ̄l
µs=Āj

R
∑

l=1

(
θ̄l
µs=Āj

+θl
µs=Āj

)
nA
∑

j=1
(Āj+Aj)

+

nA
∑

j=1
Aj

θ̄l
µs=Aj

R
∑

l=1

(
θ̄l
µs=Aj

+θl
µs=Aj

)
nA
∑

j=1
(Āj+Aj)

, l = 1, ..., R

(29)

ϕ
l
=

nA
∑

j=1
Āj

θl
µs=Āj

R
∑

l=1

(
θ̄l
µs=Āj

+θl
µs=Āj

)
nA
∑

j=1
(Āj+Aj)

+

nA
∑

j=1
Aj

θl
µs=Aj

R
∑

l=1

(
θ̄l
µs=Aj

+θl
µs=Aj

)
nA
∑

j=1
(Āj+Aj)

, l = 1, ..., R

(30)

where nA denotes slices numbers and

ϕ
l
=

nA
∑

j=1
Āj

θl
µs=Āj

R
∑

l=1

(
θ̄l
µs=Āj

+θl
µs=Āj

)
nA
∑

j=1
(Āj+Aj)

+

nA
∑

j=1
Aj

θl
µs=Aj

R
∑

l=1

(
θ̄l
µs=Aj

+θl
µs=Aj

)
nA
∑

j=1
(Āj+Aj)

, l = 1, ..., R

(31)

θl
µs=Āj

= µ
Λφ |Āj

(φ)µ
Λϑ |Āj

(ϑ)µ
Λu1 |Āj

(u1)

θl
µs=Aj

= µ
Λφ |Aj

(φ)µ
Λϑ |Aj

(ϑ)µ
Λu1 |Aj

(u1)

θ̄l
µs=Āj

= µ̄Λφ |Āj
(φ)µ̄Λϑ |Āj

(ϑ)µ̄Λu1 |Āj
(u1)

θ̄l
µs=Aj

= µ̄Λφ |Aj
(φ)µ̄Λϑ |Aj

(ϑ)µ̄Λu1 |Aj
(u1)

(32)
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where the l − th rule is given as

Rule#l : If φ is Λϕ|Aj
and ϑ is Λϑ|Aj

and u1 is Λu1|Aj
Then ĝ ∈ [vl , v̄l ]

(33)

Figure 3. Structure of IT3-FLS.

0

1

0.8

1

0.6

0.4

0.2 1
00

-1

Figure 4. The type-3 MF.

4. Main Reults

The dynamics of ARV (8) are approximated as

˙̂χ1 = ĝ1(w1|α1) + κ̂1

(
w1|β1

)
u1

˙̂χ2 = ĝ2(w2|α2) + κ̂2

(
w1|β2

)
u2

(34)
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where χ̂1/χ̂2 are the estimations of χ1/χ2, ĝ1/ĝ2 and κ̂1/κ̂2 are the suggested IT3FLSs.
α 1/α 2 and β

1
/β

2
are the tunable parameters of ĝ1/ĝ2 and κ1/κ2, respectively. w1 and

w2 are
w1 = [χ1, χ2]

T

w2 = [χ1, χ2, u1]
T (35)

From (8) and (34), the errors χ̃1 = χ1 − χ̂1 and χ̃2 = χ2 − χ̂2 are written as

˙̃χ1 = g1

(
χ
)
− ĝ1(w1|α1)

+
(

κ1 − κ̂1

(
w1|β1

))
u1

˙̃χ2 = g2

(
χ
)
− ĝ2(w2|α2)

+
(

κ2 − κ̂2

(
w1|β2

))
u2

(36)

Considering the optimal values as α∗i and β∗
i

from (36), we have

˙̃χ1 = ĝ1
(
w1|α∗1

)
− ĝ1(w1|α1)

+
(

κ̂1

(
w1|β∗1

)
− κ̂1

(
w1|β1

))
u1

+g1

(
χ
)
− ĝ1

(
w1|α∗1

)
+
(

κ1 − κ̂1

(
w1|β∗1

))
u1

(37)

˙̃χ2 = ĝ2(w2|α∗2)− ĝ2(w2|α2)

+
(

κ̂2

(
w2|β∗2

)
− κ̂1

(
w2|β2

))
u2

+g2

(
χ
)
− ĝ2(w2|α∗2)

+
(

κ2 − κ̂2

(
w2|β∗2

))
u2

(38)

The approximation errors Q1 and Q2 are defined as follows:

Q1 = g1

(
χ
)
− ĝ1

(
w1|α∗1

)
+
(

κ1 − κ̂1

(
w1|β∗1

))
u1

(39)

Q2 = g2

(
χ
)
− ĝ2(w2|α∗2)

+
(

κ2 − κ̂2

(
w2|β∗2

))
u2

(40)

From (39) and (40), we obtain

˙̃χ1 = ĝ1
(
w1|α∗1

)
− ĝ1(w1|α1)

+
(

κ̂1

(
w1|β∗1

)
− κ̂1

(
w1|β1

))
u1

+Q1

(41)

˙̃χ2 = ĝ2(w2|α∗2)− ĝ2(w2|α2)

+
(

κ̂2

(
w2|β∗2

)
− κ̂2

(
w2|β2

))
u2

+Q2

(42)

Considering vector form (27), we have

˙̃χ1 = α̃T
1 ϕ1 + Q1 + β̃

T
1

ϕ1u1 (43)

˙̃χ2 = α̃T
2 ϕ2 + Q2 + β̃

T
2

ϕ2u2 (44)

where
α̃i = α̃∗i − α̃i, i = 1, 2 (45)



Mathematics 2021, 9, 2742 10 of 17

β̃
i
= β̃

∗
i
− β̃

i
, i = 1, 2 (46)

The errors Qi, i = 1, 2 are written as Qi = qiei. qi, i = 1, 2 are estimated as q̂i, i = 1, 2.

Theorem 1. By control signals (47), the compensator (48) and adaptation rules (49) and (50), the
asymptotic stability of system (8) is ensured.

u1 = 1
κ1
(−ĝ1(w1|α1) + ṙ1 − ι1e1 + uc1)

u2 = 1
κ2
(−ĝ2(w2|α2) + ṙ2 − ι2e2 + uc2)

(47)

uc1 = −χ̃1q̂1

uc2 = −χ̃2q̂2

(48)

α̇1 = γχ̃1 ϕ1

α̇2 = γχ̃2 ϕ2

β̇
1
= γχ̃1 ϕ1u1

β̇
2
= γχ̃2 ϕ2u2

(49)

˙̂q1 = γχ̃1e1

˙̂q2 = γχ̃2e2
(50)

where ri, i = 1, 2 are reference signals. ι1 and ι2 denote constants. uc1 and uc2 denote the
compensators. e1 = χ̂1 − r1 and e2 = χ̂2 − r2 represent tracking errors, χ̃1 and χ̃2 are defined as
χ̃1 = χ1 − χ̂1, χ̃2 = χ2 − χ̂2 and γ is a constant between 0 and 1.

Proof. From (34) and (47), we can write

ė1 = −ι1e1 + uc1

ė2 = −ι2e2 + uc2
(51)

Consider the Lyapunov function as

ϑ = 1
2 e2

1 +
1
2 e2

2

+ 1
2 χ̃2

1 +
1
2 χ̃2

2
+ 1

2γ α̃T
1 α̃1 +

1
2γ α̃T

2 α̃2

+ 1
2γ β̃

T
1

β̃
1
+ 1

2γ β̃
T
2

β̃
2

+ 1
2γ q̃2

1 +
1

2γ q̃2
2

(52)

where
q̃i = qi − q̂i (53)

By taking the time derivative of ϑ in (52), we obtain

ϑ̇ = e1 ė1 + e2 ė2

+χ̃1 ˙̃χ1 + χ̃2 ˙̃χ2
− 1

γ α̃T
1 α̇1 − 1

γ α̃T
2 α̇2

− 1
γ β̃

T
1

β̇
1
− 1

γ β̃
T
2

β̇
2

− 1
γ q̃1

˙̂q1 − 1
γ q̃2

˙̂q2

(54)

Considering ėi and χ̃i, i = 1, 2, from (44) and (51), ϑ̇ becomes
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ϑ̇ = e1(−ι1e1 + uc1) + e2(−ι2e2 + uc2)

+χ̃1

(
α̃T

1 ϕ1 + Q1 + β̃
T
1

ϕ1u1

)
+χ̃2

(
α̃T

2 ϕ2 + Q2 + β̃
T
2

ϕ2u2

)
− 1

γ α̃T
1 α̇1 − 1

γ α̃T
2 α̇2

− 1
γ β̃

T
1

β̇
1
− 1

γ β̃
T
2

β̇
2

− 1
γ q̃1

˙̂q1 − 1
γ q̃2

˙̂q2

(55)

Simplifications of (55), yields

ϑ̇ = −ι1e2
1 + e1uc1 − ι2e2

2 + e2uc2

+α̃T
1

(
χ̃1 ϕ1 − 1

γ α̇1

)
+ χ̃1Q1

+α̃T
2

(
χ̃2 ϕ2 − 1

γ α̇2

)
+ χ̃2Q2

+β̃
T
1

(
χ̃1 ϕ1u1 − 1

γ β̇
1

)
+β̃

T
2

(
χ̃2 ϕ2u2 − 1

γ β̇
2

)
− 1

γ q̃1
˙̂q1 − 1

γ q̃2
˙̂q2

(56)

Considering the tuning rules as (49) and (50), we obtain

ϑ̇ = −ι1e2
1 − ι2e2

2

+χ̃1Q1 + e1uc1

+χ̃2Q2 + e2uc2

− 1
γ q̃1

˙̂q1 − 1
γ q̃2

˙̂q2

(57)

Considering Qi as Qi = qiei, i = 1, 2 and by some simplifications, we have

ϑ̇ = −ι1e2
1 − ι2e2

2

+χ̃1q̃1e1 + e1uc1 + χ̃1q̂1e1

+χ̃2q̃2e2 + e2uc2 + χ̃2q̂2e2

− 1
γ q̃1

˙̂q1 − 1
γ q̃2

˙̂q2

(58)

Equation (58) can be rewritten as

ϑ̇ = −ι1e2
1 − ι2e2

2

+q̃1

(
χ̃1e1 − 1

γ
˙̂q1

)
+ e1uc1 + χ̃1q̂1e1

+q̃2

(
χ̃2e2 − 1

γ
˙̂q2

)
+ e2uc2 + χ̃2q̂2e2

(59)

Then, from the tuning laws as ˙̂q1 = γχ̃1e1 and ˙̂q2 = γχ̃2e2, we can write

ϑ̇ = −ι1e2
1 − ι2e2

2
+e1uc1 + χ̃1q̂1e1
+e2uc2 + χ̃2q̂2e2

(60)

Then if uc1 and uc2 are considered as uc1 = −χ̃1q̂1 and uc2 = −χ̃2q̂2, ϑ̇, is written as:

ϑ̇ = −ι1e2
1 − ι2e2

2 (61)

By the use of Barbalat’s lemma, it can be shown that lim
t→∞

e1(t) → 0 and lim
t→∞

e2(t) → 0.

From Barbalat’s lemma, it should be proved that e1 ∈ `2 and e2 ∈ `2. From (61), we have
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−
∫ t

0 ϑ̇(υ)dυ =ϑ(0)− ϑ(t)
≤ ϑ(0) < ∞

(62)

From (62), it can be written as

ι1

∫ t

0
e2

1(υ)dυ + ι2

∫ t

0
e2

2(υ)dυ < ∞ (63)

and ∫ t
0 e2

1(υ)dυ < ∞∫ t
0 e2

2(υ)dυ < ∞
(64)

Then, e1 ∈ `2 and e2 ∈ `2, and the asymptotically stability is proved.

5. Simulations

The capability of the suggested controller is examined under various conditions. The
parameters of the case study system are given in Table 1. The reference are considered
as [41]

r1 = d
dt tan−1

{
4.05

(
1

cosh( p̄)

)2 1.2
25

−5.7
(

1
cosh(q̄)

)2( 1.2
21.95

)}
r2 = d

dt

{
4.02

2 (1 + tanh( p̄))−
5.7
2 (1 + tanh(q̄))

}
(65)

where p̄ = 2.40(vt− 27.29)/26− 1.20, q̄ = 2.5(vt− 56.47)/22.95− 1.20 and ϑx = 10 m/s.
The performance of changing of heading angle and lateral displacement are depicted

in Figure 5. We see that the ARV track the desired path with good accuracy. The ARV
heading angle is changed between t = 3–9 s, and we see a desired lateral displacement. The
tracking error performance is shown in Figure 6. We observe that in the lane changing,
the biggest error is less than 0.07 m. The heading error is also less than ±0.006 rad that
show the stability. The control signals are shown in Figure 7. We observe that, the designed
controller results in the good control signals such that the biggest magnitude is less 2 rad
and 5000 N·m and they are stabilized in a finite time. It should be noted that in the onset
of motion the suggested IT3FLSs have not been tuned. After fast learning of IT3FLSs, the
trajectories are quickly converged to the desired range.

The accuracy is numerically investigated in contrast to the methods such as active
disturbance-rejection controller (ADRC) [42], T2 fuzzy controller (T2FLC) [33], FLS-based
predictive controller (FLS-MPC) [43] and linear-quadratic tracking (LQT). The values of
the RMS and error peaks are given in Table 2. We see that the results for the suggested
controller is better than T2FLC and other benchmarking controllers.

Table 1. Simulation parameters.

Parameter Value Unit

ω f 67,600 N/rad
Iz 2352 kg·m2

lr 1.64 m
l f 1.04 m
ωr 47,600 N/rad
m 1481 kg
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Figure 5. Lateral displacement and Yaw angle.
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Figure 6. Tracking error.
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Figure 7. Control signals.
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Table 2. Comparison of RMS and tracking error peak values.

ADRC [42] LQT [42] T2FLC [33] FLS-MPC [43] Proposed

y 0.2207 1.1049 0.0268 0.0250 0.0241
Maximum of ey 0.5592 1.7757 0.0451 0.0432 0.0317

ψ 0.0178 0.0592 0.0014 0.0015 1.2 × 10−4

Maximum of eψ 0.0363 0.1456 0.0017 0.0015 1.2 × 10−4

5.1. Effect of Longitudinal Velocity

In this section, the effect of longitudinal velocity is investigated. The longitudinal
velocity has a strong effect on the stability and lateral displacement. ϑx is changed from
20 m/s to 30 m/s. Similarly, the performance of lane changing maneuver is investigated.
The results are depicted in Figures 8 and 9. We see that the maneuver is well completed
within the desired time.

A similar comparison is done with other controllers in Table 3. The effect of various
velocities on RMS and maximum of errors are described in Table 3. We see that the
suggested controller well tackle the effect of changes of longitudinal velocity.

5.2. Effect of Disturbances

In this section, the effect of cornering stiffness is investigated. The cornering stiffness
for front/rear tires is changed form its nominal value. Based on (4), the uncertainties can
also include the other disturbances such as icy or dry road with different adhesion. The
various disturbances are taken into account in Table 4, such as random, pulse-shaped and
sinusoidal variation of cornering stiffness. The comparison is described in Table 5. We see
that the suggested control approach well resist against changes of cornering stiffness.

Table 3. Comparison under different velocities.

10 m/s 20 m/s 30 m/s

y 0.0241 0.0338 0.0413
Maximum of ey 0.0317 0.0498 0.0531

ψ 1.2 × 10−4 1.3 × 10−4 1.3 × 10−4

Maximum of eψ 1.1 × 10−4 1.5 × 10−4 1.7 × 10−4

Table 4. Different external disturbances.

case 1: Changes of c f /cr as c f = c f + 5000 sin(2t)
case 2: Changes of c f /cr as c f = c f + 10, 000 exp(1− 2t)
case 3: A pulse signal at time 2.5 s with width 0.25

Table 5. Comparison under various disturbances.

Normal Case 1 Case 2 Case 3

y 0.0338 0.0339 0.0341 0.0343
Maximum of ey 0.0317 0.0401 0.0451 0.0527

ψ 1.30 × 10−4 1.32 × 10−4 1.41 × 10−4 1.47 × 10−4

Maximum of eψ 1.50 × 10−4 1.53 × 10−4 1.61 × 10−4 1.66 × 10−4
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Figure 8. Lateral displacement and Yaw angle, with ϑx = 20 m/s.
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Figure 9. Lateral displacement and Yaw angle, with ϑx = 30 m/s.

6. Conclusions

In this study, a new T3FLS-based controller is developed for ARVs. Unlike most
studies, the suggested controller does not depend on the mathematical model of ARV, but
it is optimized online through the adaptation rules with guaranteed stability. Furthermore,
the robustness against perturbations such as variable speed and critical driving maneuvers
is ensured by the designed compensators. In various conditions the maneuver capability is
examined. For the first examination, the longitudinal velocity is considered to be 10 m/s
and the performance of changing of heading angle and lateral displacement is investigated.
It is shown that the ARV track the desired path with an acceptable lateral displacement.
For the second examination, the longitudinal velocity is changed from 20 m/s to 30 m/s.
Similarly, the performance of lane changing maneuver is investigated. It is shown that,
the suggested controller well resist against changing of longitudinal velocity. For the third
scenario, the effect of cornering stiffness is studied. The cornering stiffness for front/rear
tires is changed form its nominal value and the better accuracy and robustness of the
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designed controller is demonstrated. In all examinations the accuracy is compared with
T2FLC, LQT and ADRC methods and the superiority of designed scheme is shown.
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