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Abstract: Segal introduce the Fourier–Wiener transform for the class of polynomial cylinder functions
on Hilbert space, and Hida then develop this concept. Negrin define the extended Wiener transform
with Hayker et al. In recent papers, Hayker et al. establish the existence, the composition formula,
the inversion formula, and the Parseval relation for the Wiener transform. But, they do not establish
homomorphism properties for the Wiener transform. In this paper, the author establishes some
basic fundamental formulas for the Wiener transform via some concepts and motivations introduced
by Segal and used by Hayker et al. We then state the usefulness of basic fundamental formulas as
some applications.
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1. Introduction

Let X be a normed space and let T be a operator on X. In functional analysis theory
and algebraic structures, the homomorphism properties

T( f ∗ g) = T( f )T(g) (1)

and
(T( f ) ∗ T(g)) = T( f g) (2)

are very important subjects to various fields of mathematics for f , g ∈ X, where ∗ denotes
a corresponding convolution product of T.

In [1–3], Segal introduce the Fourier–Wiener transform for the class of polynomial
cylinder functions on Hilbert space. Hida then develop this concept via the Fourier analysis
on the dual space of nuclear spaces [4,5]. In addition, Negrin obtain an explicit integral
representation of the second quantization by use of an integral operator and hence the
Wiener transform [6] is extended. Later, Hayker et al. analyze and study some results and
formulas of them via the matrix expressions [7].

In [8,9], the authors establish the existence, the composition formula, the inversion
formula and the parseval relationship for the Wiener transform. But, they do not establish
homomorphism properties (1) and (2) for the Wiener transform.

In this paper, we shall establish homomorphism properties for the Wiener transform.
In addition, we obtain an integration by parts formula, and give some applications of it
with respect to the Wiener transform. Our integration by parts formula takes a different
form than in the Euclidean space. The reason is that the measure used in this paper is a
probability measure, unlike the Lebesgue measure.

2. Definitions and Preliminaries

In this section, we first state some definitions and notations to understand the paper.
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Let H′ be a real Hilbert space and H be a complexification of H′. The inner product
on H is given by the formula

〈x + iy, x′ + iy′〉H = 〈x, x′〉H′ + 〈y, y′〉H′ + i〈y, x′〉H′ − i〈x, y′〉H′ .

Let A and B be operators defined on H such that there exists an orthonormal basis
B = {eα}α∈A of H (A being some index set) consisting of elements of H with

Aeα = µαeα, Beα = λαeα (3)

for some complex numbers µα and λα. Then we note that for each x ∈ H,

x = ∑
α∈A
〈x, eα〉Heα

and so
Ax = ∑

α∈A
〈x, eα〉Hµαeα

and
Bx = ∑

α∈A
〈x, eα〉Hλαeα.

We now state a class of functions used in this paper.

Definition 1. Let f be a polynomial function on H′ defined by the formula

f (x) = 〈x, eα1〉
n1
H 〈x, eα2〉

n2
H · · · 〈x, eαr 〉

nr
H (4)

where n1, · · · , nr ∈ N∪ {0}. Let P be the space of all complex-valued polynomial on H′.

We are ready to state definitions of the Wiener transform, the convolution product
and the first variation for functions in P .

Definition 2. For each pair of operators A and B on H, we define the Wiener transform Fc,A,B( f )
of f by the formula

Fc,A,B( f )(y) =
∫

H′
f (Ax + By)dgc(x) (5)

where f is in P and the integration on H′ is performed with respect to the normalized distribution
gc of the variance parameter c > 0. In addition, we define the convolution product ( f1 ∗ f2)A of f1
and f2 by the formula

( f1 ∗ f2)A(y) =
∫

H′
f1

(
y + Ax√

2

)
f2

(
y− Ax√

2

)
dgc(x) (6)

and the first variation δB f of f is defined by the formula

δB f (x|u) = ∂

∂k
f (x + kBu)

∣∣∣∣
k=0

(7)

where f , f1, f2 ∈ P if they exist.

3. Existence

In this section, we establish the existence of the convolution product and the first vari-
ation for function f of the form (4). Before doing this, we give a theorem for some formulas
with respect to the Wiener transform Fc,A,B which are established by Hayker et al. [9].
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Theorem 1. Let A, B, A′, B′, A′′ and B′′ be operators on H given by

Aeα = µαeα, Beα = λαeα, A′eα = µ′αeα, B′eα = λ′αeα

A′′eα = µ′′α eα, B′′eα = λ′′α eα

where µα, µ′α, µ′′α , λα, λ′α and λ′′α are complex numbers. Then we have the following assertions.

(a) (Existence): for any f ∈ P ,

Fc,A,B( f )(y) =
r

∏
j=1

([nj/2]

∑
p=0

nj Cpµ
2p
αj λ

nj−2p
αj 〈y, eαj〉

nj−2p
H

(2p)!
p!

(
c
2

)p)
(8)

and Fc,A,B( f ) ∈ P .
(b) (Composition formula [9], Theorem 1):

Fc,A′ ,B′(Fc,A,B( f ))(y) = Fc,A′′ ,B′′( f )(y)

if and only if
µ2

α + (µ′αλα)
2 = (µ′′α )

2 and λαλ′α = λ′′α

for α ∈ A.
(c) (Inversion formula [9], Corollary 2):

Fc,A′ ,B′(Fc,A,B( f ))(y) = f (y) (9)

if and only if
µ2

α + (µ′αλα)
2 = 0 and λαλ′α = 1

for α ∈ A.
(d) (Parseval relation [9], Theorem 2):∫

H′
Fc,A,B( f1)(y) f2(y)dgc(y) =

∫
H′
Fc,A,B( f2)(y) f1(y)dgc(y)

if and only if
µ2

α + λ2
α = 1

for α ∈ A. Furthermore, they show that it can be extended to the Unitary extension.

We shall obtain the existence of the convolution product and the first variation. To do
this, we need an observation as below.

Remark 1. For any f1 and f2 in P , we can always express f1 by Equation (4) and f2 by

f2(x) = 〈x, eα1〉
m1
H 〈x, eα2〉

m2
H · · · 〈x, eαr 〉

mr
H (10)

using the same nonnegative integer r and αj’s. Because, if f1(x) = 〈x, eα1〉
n1
H 〈x, eα3〉

n3
H and

f2(x) = 〈x, eα1〉
n1
H 〈x, eα2〉

n2
H , then we can set

f1(x) = 〈x, eα1〉
n1
H 〈x, eα2〉0H〈x, eα3〉

n3
H

and
f2(x) = 〈x, eα1〉

m1
H 〈x, eα2〉

m2
H 〈x, eα3〉0H.

In addition, if f1(x) = 〈x, eα〉nH and f2(x) = 〈x, eβ〉mH for n 6= m, then we can set

f1(x) = 〈x, eγ1〉
n1
H 〈x, eγ2〉0H
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and
f2(x) = 〈x, eγ1〉

m1
H 〈x, eγ2〉0H

where γ1 = α, γ2 = β, n1 = n, n2 = 0, m1 = 0 and m2 = m.

In Theorem 1, we obtain the existence of the convolution product and the first variation
for functions in P .

Theorem 2. Let f1 and f2 be elements of P and A as in Theorem 1. Then the convolution product
( f1 ∗ f2)A of f1 and f2 exists, belongs to P and is given by the formula

( f1 ∗ f2)A(y)

=

(
1

2πc

) r
2 r

∏
j=1

[∫
R

(
1√
2
〈y, eαj〉H +

λαj√
2

uj

)nj

×
(

1√
2
〈y, eαj〉H −

λαj√
2

uj

)mj

exp
{
−

u2
j

2c

}
duj

]
.

(11)

Furthermore, the first variation δA f of f exists, belongs to P and is given by the formula

δA f (x|u) =
r

∑
j=1

njλαj〈u, eαj〉H f j(x) (12)

where
f j(x) = 〈x, eα1〉

n1
H × · · · × 〈x, eαj〉

nj−1
H × · · · × 〈x, eαr 〉

nr
H . (13)

Proof. Using Equations (5) and (6), we have

( f1 ∗ f2)A(y)

=
∫

H′

r

∏
j=1

(
1√
2
〈y, eαj〉H +

λαj√
2
〈x, eαj〉H

)nj( 1√
2
〈y, eαj〉H −

λαj√
2
〈x, eαj〉H

)mj

dgc(x)

=

(
1

2πc

) r
2 r

∏
j=1

[∫
R

(
1√
2

vj +
λαj√

2
uj

)nj( 1√
2

vj −
λαj√

2
uj

)mj

exp
{
−

u2
j

2c

}
duj

]

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. The last integral always exists because

∫
R

p(u) exp
{
−

u2
j

2c

}
du < ∞

for any polynomial function p. In addition, it is a polynomial in the variables

〈y, eα1〉H, · · · , 〈y, eαr 〉H.

We next establish Equation (12). From Equation (7), we have

δA f (x|u) = ∂

∂k

r

∏
j=1

(〈x, eαj〉H + kλαj〈u, eαj〉H)nj

∣∣∣∣
k=0

=
r

∑
j=1

njλαj〈u, eαj〉H f j(x).

Finally, δA f is in P since f j ∈ P for all j = 1, 2 · · · , r.
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4. Homomorphism Properties and Basic Relationships

In this section, we establish some basic relationships among the Wiener transform, the
convolution product and the first variation.

Theorem 3 tells us that the Wiener transform of the convolution product is the product
of their Wiener transforms.

Theorem 3. Let f1, f2, A, B and A′ be as in Theorem 1. Then

Fc,A,B( f1 ∗ f2)A(y) = Fc,A,B( f1)

(
y√
2

)
Fc,A,B( f2)

(
y√
2

)
. (14)

Furthermore, under the hypothesis of Theorem 1, we have

(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y) = Fc,A,B

(
f1(
·√
2
) f2(

·√
2
)

)
(y). (15)

Proof. Using Equations (2), (6) and (11), we have

Fc,A,B( f1 ∗ f2)A(y)

=
∫

H′

∫
H′

f1

(
Ax + By + Az√

2

)
f2

(
Ax + By− Az√

2

)
dgc(x)dgc(z)

=
∫

H′

∫
H′

r

∏
j=1

(
λαj√

2
〈x, eαj〉H +

µαj√
2
〈y, eαj〉H +

λαj√
2
〈z, eαj〉H

)nj

×
r

∏
j=1

(
λαj√

2
〈x, eαj〉H +

µαj√
2
〈y, eαj〉H −

λαj√
2
〈z, eαj〉H

)mj

dgc(x)dgc(z)

=

(
1

2πc

)r ∫
Rr

∫
Rr

r

∏
j=1

(
λαj√

2
uj +

µαj√
2

vj +
λαj√

2
wj

)nj

×
r

∏
j=1

(
λαj√

2
uj +

µαj√
2

vj −
λαj√

2
wj

)mj

exp
{
−

r

∑
j=1

u2
j + w2

j

2c

}
d~ud~w

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. Now let u′j =
uj+wj√

2
and w′j =

uj−wj√
2

for j =

1, 2, · · · , r. Then we have

Fc,A,B( f1 ∗ f2)A(y)

=

(
1

2πc

)r ∫
Rr

∫
Rr

r

∏
j=1

(
λαj u

′
j +

µαj√
2

vj

)nj

×
r

∏
j=1

(
λαj w

′
j +

µαj√
2

vj

)mj

exp
{
−

r

∑
j=1

(u′j)
2 + (w′j)

2

2c

}
d~u′d~w′

=

(
1

2πc

) r
2 ∫

Rr

r

∏
j=1

(
λαj u

′
j +

µαj√
2

vj

)nj

exp
{
−

r

∑
j=1

(u′j)
2

2c

}
d~u′

×
(

1
2πc

) r
2 ∫

Rr

r

∏
j=1

(
λαj w

′
j +

µαj√
2

vj

)mj

exp
{
−

r

∑
j=1

(w′j)
2

2c

}
d~w′

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. Hence, using Equation (8), we can conclude that

Fc,A,B( f1 ∗ f2)A(y) = Fc,A,B( f1)

(
y√
2

)
Fc,A,B( f2)

(
y√
2

)
.
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In addition, using Equation (9), we have

Fc,A′ ,B′(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y)

= Fc,A′ ,B′(Fc,A,B( f1))

(
y√
2

)
Fc,A′ ,B′(Fc,A,B( f2))

(
y√
2

)
= f1

(
y√
2

)
f2

(
y√
2

)
,

which yields Equation (15) as desired, where Fc,A′ ,B′ is as in Theorem 1.

In our next theorem, we show that the Wiener transform and the first variation
are commutable.

Theorem 4. Let f be as in Theorem 1 and let A and B be as in Theorem 1. Let S be an operator on
H with Seα = γαeα for α ∈ A. Then

δSFc,A,B( f )(y|u) = Fc,A,B(δBS f (·|u))(y). (16)

Proof. Using Equations (5) and (7), we have

δSFc,A,B( f )(y|u)

=
∂

∂k
Fc,A,B( f )(u + kSu)

∣∣∣∣
k=0

=
∂

∂k

∫
H′

f (Ax + By + kBSu)dgc(x)
∣∣∣∣
k=0

=
∂

∂k

∫
H′

r

∏
j=1

(λαj〈x, eαj〉H + µαj〈y, eαj〉H + kµαj γαj〈u, eαj〉H)nj dgc(x)
∣∣∣∣
k=0

=
r

∑
j=1

njµαj γαj〈u, eαj〉HFc,A,B( f j)(y)

where f j is as in Equation (13). We next use Equations (5) and (7) again to get

Fc,A,B(δS f (·|u))(y)

=
∫

H′

∂

∂k
f (Ax + By + kSu)

∣∣∣∣
k=0

dgc(x)

=
∂

∂k

∫
H′

r

∏
j=1

(λαj〈x, eαj〉H + µαj〈y, eαj〉H + kγαj〈u, eαj〉H)nj dgc(x)
∣∣∣∣
k=0

=
r

∑
j=1

njγαj〈u, eαj〉HFc,A,B( f j)(y)

where f j is as in Equation (13). Comparing two expressions, we obtain Equation (16)
as desired.

From Equations (14) and (16) in Theorems 3 and 4, we have the following basic rela-
tionships.

Theorem 5. Let f1 and f2 be as in Theorem 3. Let A and B as in Theorem 1 and let S as in
Theorem 4. Then we have

δ( f1 ∗ f2)S(y|u) = (δ f1(·|u/
√

2) ∗ f2)S(y) + ( f1 ∗ δ f2(·|u/
√

2))S(y), (17)
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Fc,A,B(δBS f1(·|u) ∗ δBS f2(·|u))A(y)

= δSFc,A,B f1(y/
√

2|u)δSFc,A,B f2(y/
√

2|u),
(18)

Fc,A,B(δBS( f1 ∗ f2)A(·|u))(y)
= δS(Fc,A,B f1(·/

√
2)Fc,A,B f2(·/

√
2))(y|u)

= δSFc,A,B( f1 ∗ f2)A(y|u)
(19)

and

(Fc,A,BδBS f1(·|u) ∗ Fc,A,BδBS f2(·|u))A(z) = (δSFc,A,B f1(·|u) ∗ δSFc,A,B f2(·|u))A(y). (20)

Proof. We first note that Equation (17) follows directly from the definition of the first varia-
tion given by (7). Next we note that Equations (18) and (19) follow from Equations (14)–(16).
Finally we note that Equation (20) follows immediately from Equations (14) and (16).

5. Integration by Parts Formula with an Application

In this section, we obtain an integration by part formula, and give an application with
respect to the Wiener transform.

Since the Lebesgue measure mL on Rr is an uniform measure and so we see that∫
Rr

h(~u +~v)dmL(~u) =
∫
Rr

h(~w)dmL(~w)

by substitution for wj = uj + vj for j = 1, 2, · · · , r if the integrals exist. It is called the
translation theorem for the Lebesgue integrals. However, the distribution measure gc used
in this paper is the Gaussian measure and hence, in generally,∫

H′
h(x + y)dgc(x) 6=

∫
H′

h(z)dgc(z)

even if the integrals exist, see [10–14]. For this reason, a different form of formula is
obtained in this paper.

Lemma 1. Let s be a non-negative integer and let p be a function on H defined by the formula

p(x) = 〈x, eα〉sH (21)

for some eα ∈ B. Then for all x0 ∈ H′,∫
H′

p(x + x0)dgc(x)

= exp
{
− 1

2c
〈x0, eα〉2H

} ∫
H

p(x) exp
{

1
c
〈x, eα〉H〈x0, eα〉H′

}
dgc(x).

(22)
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Proof. We set v = 〈x0, eα〉H. Using Equations (8) and (21), we have∫
H′

p(x + x0)dgc(x)

=

(
1

2πc

) 1
2 ∫

R
(u + v)s exp

{
−u2

2c

}
du

=

(
1

2πc

) 1
2 ∫

R
ws exp

{
− (w− v)2

2c

}
dw

= exp
{
− 1

2c
v2
}(

1
2πc

) 1
2 ∫

R
ws exp

{
−w2

2c
+

1
c

vw
}

dw

= exp
{
− 1

2c
〈x0, eα〉2H

} ∫
H′

p(x) exp
{

1
c
〈x, eα〉H〈x0, eα〉H

}
dgc(x).

Hence, we have the desired result.

In Theorem 6, we obtain a translation theorem for H-integrals.

Theorem 6 (Translation theorem for H-integrals). Let f be as in Equation (4) and let x0 ∈ H′.
Then ∫

H′
f (x + x0)dgc(x)

= exp
{
− 1

2c

r

∑
j=1
〈x0, eα〉2H

} ∫
H′

f (x) exp
{

1
c

r

∑
j=1
〈x, eαj〉H〈x0, eαj〉H

}
dgc(x).

(23)

Proof. First, by using fact that∫
H′

f (x)dgc(x) =
∫

H′
〈x, eα1〉

n1
H dgc(x) · · ·

∫
H′
〈x, eαr 〉

nr
H dgc(x),

and Equation (22) in Lemma 1 we can establish Equation (23) as desired.

The following theorem is one of main results in this paper.

Theorem 7 (Integration by parts formula). Let f be as in Theorem 6 and let S be as in Theorem 4.
Then

c
∫

H′
δS f (x|u)dgc(x)

= c
∫

H′
f (x)dgc(x) +

∫
H′

f (x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).
(24)

Proof. Using Equations (1) and (7), we have∫
H′

δS f (x|u)dgc(x)

=
∂

∂k

∫
H′

f (x + kSu)dgc(x)
∣∣∣∣
k=0

=
∂

∂k

[
exp

{
− k2

2c

r

∑
j=1

γ2
αj
〈u, eα〉2H

}

×
∫

H′
f (x) exp

{
k
c

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉H
}

dgc(x)
]∣∣∣∣

k=0

=
∫

H′
f (x)dgc(x) +

1
c

∫
H′

f (x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x),
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which yields Equation (24) as desired.

Finally, we give an application of Theorem 7.

Theorem 8 (Application of Theorem 7). Let f and S be as in Theorem 7. Let A and B as in
Theorem 5. Then

cFc,A,B(δA f (·|u))(y)

= cFc,A,B( f )(y) +
∫

H′
f (Ax + By)

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).
(25)

Proof. Using Equations (5) and (7), we have

Fc,A,B(δA f (·|u))(y) = ∂

∂k

∫
H′

f (Ax + By + kAu)dgc(x)
∣∣∣∣
k=0

.

Now, let fy(x) = f (x + y) and f A(x) = f (Ax). Then

f (Ax + By + kAu) = ( fBy)
A(x + ku)

and, hence, using Equation (24) by replacing f with ( fBy)
A, we have

Fc,A,B(δA f (·|u))(y)

=
∂

∂k

∫
H′
( fBy)

A(x + ku)dgc(x)
∣∣∣∣
k=0

=
∫

H′
( fBy)

A(x)dgc(x) +
1
c

∫
H′
( fBy)

A(x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= Fc,A,B( f )(y) +
1
c

∫
H′

f (Ax + By)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).

Hence, we have the desired results.

6. Applications

In this section, we give some applications to apply our fundamental formulas obtained
in previous sections.

6.1. Application of Theorem 3

We first give an application to illustrate the usefulness of Equations (14) and (15) in
Theorem 3.

Example 1. Let r = 2. Let f1(x) = 〈x, eα2〉2 and let f2(x) = 〈x, eα1〉2〈x, eα2〉. Let A and B be
as in Theorem 3. From Equation (8) we have

Fc,A,B( f1)(y) = λ2
α2
〈y, eα2〉2H + 2cµ2

α2

and
Fc,A,B( f2)(y) = [λ2

α1
〈y, eα1〉

2
H + 2cµ2

α1
][µα2〈y, eα2〉H].

Hence, using Equation (14), we have

Fc,A,B( f1 ∗ f2)A(y)

=

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
.

(26)
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Furthermore, we note that
f1(x) f2(x) = 〈x, eα1〉

2〈x, eα2〉3

and so

Fc,A,B

(
f1(
·√
2
) f2(

·√
2
)

)
(y)

=

[
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
λ3

α2

2
〈y, eα2〉3H +

3c(µ2
α2
+ λα2)√
2

〈y, eα2〉H
]

.

Hence, using Equation (15), we have

(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y)

=

[
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
λ3

α2

2
〈y, eα2〉3H +

3c(µ2
α2
+ λα2)√
2

〈y, eα2〉H
]

.

These tell us that the Wiener transform of convolution product and the convolution product of
Wiener transforms can be calculated without concept of convolution product very easily.

6.2. Application of Theorem 5

We next give an application of Equation (19) in Theorem 5.

Example 2. Let f1, f2, A and B be as in Example 1. Using Equation (26), we have

δSFc,A,B( f1 ∗ f2)A(y|u)

=
∂

∂k
Fc,A,B( f1 ∗ f2)A(y + kSu)

∣∣∣∣
k=0

=
∂

∂k

([
λ2

α2

2
(〈y, eα2〉H + kγα2〈u, eα2〉H)2 + 2cµ2

α2

]
×
[

λ2
α1

2
(〈y, eα1〉H + kγα1〈u, eα1〉H)2 + 2cµ2

α1

]
×
[

µα2√
2
(〈y, eα2〉H + kγα2〈u, eα2〉H)

])∣∣∣∣
k=0

= λ2
α2
〈u, eα2〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
+ λ2

α1
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
+

µα2√
2
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
.

Using this, we obtain that

Fc,A,B(δBS( f1 ∗ f2)A(·|u))(y)

= λ2
α2
〈u, eα2〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
+ λ2

α1
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
+

µα2√
2
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2H + 2cµ2

α2

][
λ2

α1

2
〈y, eα1〉

2
H + 2cµ2

α1

][
µα2√

2
〈y, eα2〉H

]
=

(
λ2

α2
〈u, eα2〉H + λ2

α1
〈u, eα1〉H +

µα2√
2
〈u, eα1〉H

)
Fc,A,B( f1 ∗ f2)A(y).
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6.3. Application of Theorem 7

We finish this paper by giving an application of Equation (25) in Theorem 7. Equation (25)
tells us that ∫

H′
f (Ax + By)

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= cFc,A,B(δA f (·|u))(y)− cFc,A,B( f )(y).

(27)

The left-hand side of Equation (27) contains some polynomial-weight and so it is not easy
to calculate. However, by using Equation (27), we can calculate it very easy via the Wiener
transform and the first variation. We shall explain this as example.

Example 3. Let f1, f2, A and B be as in Example 1. Then we have

Fc,A,B(δA f1(·|u))(y) = 2µα2 λα2〈y, eα2〉H

and
Fc,A,B( f1)(y) = λ2

α2
〈y, eα2〉2H + 2cµ2

α2
.

Hence, using Equation (27), we obtain that∫
H′
[µα2〈x, eα2〉H + λα2〈y, eα2〉H]2µα2〈x, eα2〉H〈u, eα2〉Hdgc(x)

= 2cµα2 λα2〈y, eα2〉H − cλ2
α2
〈y, eα2〉2H + 2c2µ2

α2
.

In addition, we have

Fc,A,B(δA f2(·|u))(y) = 2cµ3
α1

λα2〈u, eα1〉H〈y, eα2〉H + 2µ3
α1

λ2
α1
〈u, eα1〉H〈y, eα1〉H

+ µα2〈u, eα2〉H(cµ2
α1
+ λ2

α1
〈y, eα1〉

2
H).

and
Fc,A,B( f2)(y) = [λ2

α1
〈y, eα1〉

2
H + 2cµ2

α1
][µα2〈y, eα2〉H].

Thus, from Equation (27) we conclude that∫
H′
[µα1〈x, eα1〉H + λα1〈y, eα1〉H]2

× [µα2〈x, eα2〉H + λα2〈y, eα2〉H]
2

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= 2c2µ3
α1

λα2〈u, eα1〉H〈y, eα2〉H + 2cµ3
α1

λ2
α1
〈u, eα1〉H〈y, eα1〉H

+ cµα2〈u, eα2〉H(cµ2
α1
+ λ2

α1
〈y, eα1〉

2
H)

− c[λ2
α1
〈y, eα1〉

2
H + 2cµ2

α1
][µα2〈y, eα2〉H].

7. Conclusions

According to some results and formula in previous papers [1–3,7–9,15] and our results
and formulas in previous Sections 3–5, we note that all results can be explained by the
eigenvalue of operators on Hilbert space. As you can see from the results of the previous
Sections 3–5, we are able to obtain various relationships that are not found in the previous
research results. We also see in Section 6 that our results can be applied to various functions
in the application of various fields. Therefore, it can be seen that the results in this paper
are structured in a generalized form.
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