
mathematics

Article

On PSO-Based Simulations of Fuzzy Dynamical Systems
Induced by One-Dimensional Ones

Jiří Kupka * and Nicole Škorupová

����������
�������

Citation: Kupka, J.; Škorupová, N.

On PSO-Based Simulations of Fuzzy

Dynamical Systems Induced by

One-Dimensional Ones. Mathematics

2021, 9, 2737. https://doi.org/

10.3390/math9212737

Academic Editor: Apostolos

Syropoulos

Received: 16 September 2021

Accepted: 23 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Centre of Excellence IT4Innovations (CE IT4I), Institute for Research and Applications of Fuzzy Modeling
(IRAFM), University of Ostrava, 70103 Ostrava, Czech Republic; nicole.skorupova@osu.cz
* Correspondence: jiri.kupka@osu.cz

Abstract: Zadeh’s extension principle is one of the elementary tools in fuzzy set theory, and among
other things, it provides a natural extension of a real-valued continuous self-map to a self-map
having fuzzy sets as its arguments. The purpose of this paper is to introduce a new algorithm that
can be used for simulations of fuzzy dynamical systems induced by interval maps. The core of the
proposed algorithm is based on calculations including piecewise linear maps, and consequently,
an implementation of an optimization algorithm (in our case, particle swarm optimization) was
prepared to obtain necessary piecewise linear approximations. For all parts of this algorithm, we
provide detailed testing and numerous examples.

Keywords: Zadeh’s extension principle; particle swarm optimization; fuzzy dynamical systems;
piecewise linearization; simulations; approximation

1. Introduction

Zadeh’s extension principle (known as Zadeh’s extension or an extension principle) is one
of the most elementary tools in fuzzy theory. Roughly speaking, this principle says that
a map f : X → Y induces another map z f : F(X) → F(Y), where F(X) (resp.F(Y)) is the
family of fuzzy sets defined on X (resp. Y). This principle is naturally used in many areas
of fuzzy mathematics such as fuzzy arithmetics, approximation reasoning, simulations,
and even recently with the notion of interactivity incorporated [1,2]. To point out one
particular application, we need to introduce the so-called discrete dynamical system. It
is defined as a pair (X, f), where X is a (usually topological) space and f : X → X is a
continuous self-map. Then, Zadeh’s extension considered over a given discrete dynamical
system (X, f) induces a fuzzy (discrete) dynamical system (for details, we refer to the
definitions in Section 1.3), which naturally incorporates and deals with the uncertainty of
input states of x. There are theoretical results (e.g., [3] or recently [4] and the references
therein) studying the mutual properties of the discrete dynamical system given by Zadeh’s
extension principle.

1.1. Motivation of This Study

However, in practice and in full generality, the computation and approximation of
Zadeh’s extension principle leads to a rather difficult task. The main reason is the difficult
computation of the inverse of the map f under consideration. Only in a few specific cases
(we refer to the text below), one can find an easier solution. Our approach provides a
solution that is more general in several aspects.

1.2. State-of-the-Art

The problem of the approximation of Zadeh’s extension z f of f : X → X is well
known, and many other authors have contributed to this issue, mostly under very specific
assumptions and with no relation to dynamical system simulations. For example, several

Mathematics 2021, 9, 2737. https://doi.org/10.3390/math9212737 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5940-0576
https://orcid.org/0000-0002-2780-5541
https://doi.org/10.3390/math9212737
https://doi.org/10.3390/math9212737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212737
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212737?type=check_update&version=2

Mathematics 2021, 9, 2737 2 of 26

methods were elaborated for one-dimensional (interval) maps and fuzzy numbers only—
e.g., in [5,6], a new method approximating z f (A), A ∈ F(X), based on the decomposition
and multilinearization of a function f , was introduced. However, for one-dimensional
systems and the extension to higher dimensions, this is computationally demanding [7].
Further, in [8], the authors proposed another method using an optimization over the
α-cuts of the fuzzy set, which should also ensure the convexity of the solution. Again,
the computation was restricted to fuzzy numbers only. Moreover, in the latter papers,
the trajectories of fuzzy dynamical systems were not considered and the approximation
properties were not studied. Further, the usage of the parametric (LU-)representation
of particular fuzzy numbers was proposed in [9] and even before in [10]. The LU-fuzzy
representation is based on monotonic splines, which have flexible shapes, and it was
claimed by the authors that it allows an easy and fast simulation of fuzzy dynamical
systems, however, again, for fuzzy numbers only.

In [7], the authors proposed the so-called fuzzy calculator, which can approximate the
membership output function (approximating Zadeh’s extension) of a continuous function,
for which noninteractive input variables described by fuzzy intervals were considered,
Therefore, the problem was transformed into several optimization problems (including
particle swarm optimization) based on the α-cut approach. These optimization algorithms
were used to calculate the points of approximated α-cuts, and then, under some assump-
tions, they could receive the first iteration of a fuzzy dynamical system. This is, to our best
knowledge, the only approach that can be used so far for discrete dynamical systems of
higher dimensions. However, the trajectory of a fuzzy dynamical system was not calcu-
lated here, and the optimization algorithms were used differently than in our approach.
Moreover, this approach is different from the one presented in this manuscript: in our
case, we do not use finite α-cut representations, and therefore, we are able to distinguish
nonconvex fuzzy sets in higher dimensions.

Thus, the practical approaches (mentioned above) are restricted to fuzzy numbers
mostly and to the first application of Zadeh’s extension to the one-dimensional (interval)
map in consideration. There is only one paper [9] in which several iterations of a given
one-dimensional discrete dynamical system were experimentally computed, and this was
performed for fuzzy numbers only. Our motivation was to prepare an algorithm avoiding
these restrictions, i.e., to prepare a universal algorithm that will be flexible enough to
simulate fuzzy dynamical system in which the input values will be represented not only by
fuzzy numbers, which allows long-term simulations and, eventually, considering discrete
dynamical systems in spaces of dimension greater than one.

There are also a few more theoretical works contributing to this topic. For instance,
in [11], not only an interpolation technique (e.g., with the help of the F-transform) was
published, but also the choice of the metric on the space of fuzzy sets and its effect on
the expectation on the approximation were studied. For example, it has been shown that
there are more suitable metrics than the standard, levelwise one. However, there has
been no implementation of that proposal. Another paper [3] contributed to the theoretical
background of the model of fuzzy dynamical systems induced by Zadeh’s extension
principle, e.g., some topological properties of spaces of fuzzy sets or some continuity
and convergence properties of generalized fuzzifications were surveyed and studied;
additionally, the properties preserved by (semi-)conjugacies were specified. In another
paper [12], the author elaborated on a very specific implementation of fuzzy arithmetics
based on α-cuts, which could prevent the possible widening of outcomes, but it cannot be
implemented on any general map.

There are many related papers that should be mentioned, but we cannot comment
on them properly due to the length of this manuscript. To provide a brief overview, one
can find many papers on the approximations of fuzzy numbers [6,12,13], on practical
implementations of the extension principle in real-world problems [14–16] (among others),
or on the theoretical properties of fuzzy dynamical systems induced by the extension
principle [17–19] (among others).

Mathematics 2021, 9, 2737 3 of 26

1.3. Novelties of This Study

The approach proposed in this manuscript is, in fact, a natural continuation and
extension of two recent papers by the same authors. Recently, in [20], we introduced
a preliminary version of the presented algorithm, dealing only with piecewise linear
functions. Then, in [21], the next natural step, a generalization of the algorithm from [20]
to an arbitrary continuous function, was briefly introduced with preliminary testing. We
would like to emphasize that this manuscript fully extends and provides the readers with
a fully extended testing.

In contrast to previous approaches (our approach can deal with more general classes
of fuzzy sets (i.e., fuzzy sets, which are not fuzzy numbers)), we do not require any special
fuzzy set representation, e.g., fuzzy sets to be necessarily fuzzy convex. It should be noted
here that the convexity need not be preserved in higher dimensions. If needed, we are
able to deal with the discontinuities of fuzzy sets, which naturally appear in trajectories of
initial fuzzy states. Additionally, we also provide an implementation providing iterations
of initial fuzzy states.

1.4. Additional Remarks

We would like to mention once more our previous algorithm [20] prepared for a dis-
tinct class of piecewise linear fuzzy sets, for which assuming the continuity is not necessary.
This is an interesting feature because discontinuities naturally appear in simulations of
fuzzy dynamical systems. The algorithm from [20] was able to deal with a much larger
(i.e., topologically dense) class of interval maps. The approach presented in this manuscript
significantly extends the computations to a whole class of all continuous one-dimensional
(interval) maps (i.e., to the system of all continuous fuzzy sets). Another difference from
previous approaches is that we already performed a preliminary testing of the quality
approximation of some trajectories. We plan to develop this direction further, but before
doing that, we need to test our algorithm on simpler cases, which is performed in this
paper. Because of the famous butterfly effect, there will be a natural need to continuously
adapt an approximation given by an evolutionary algorithm (that is why we used the PSO
algorithm within this paper) and to allow further corrections of the studied trajectories.

The structure of this manuscript is the following. In the first section, basic terms from
the fuzzy set theory related to metric spaces, dynamical systems, and fuzzy dynamical sys-
tems are introduced. In Section 2, the implementation of the particle swarm algorithm that
is used for the linearization of interval (one-dimensional) functions is shown. The following
section, i.e., Section 3, provides a discussion on the parameter selection of PSO-based lin-
earizations. Finally, in Section 4, approximations of fuzzy dynamical systems are followed
with a brief discussion on the precision and efficiency of the proposed algorithm (Section 5).
Concluding remarks are given in Section 6.

1.5. Preliminaries

In this subsection, we introduce some basic notions used in our paper. For more
information, we refer, for example, to [3,11].

Let (X, dX) be a nonempty metric space (sometimes called a universe). A fuzzy set
A on a given metric space (X, dX) is a map A : X → [0, 1], and for any point x ∈ X,
the number A(x) represents a membership degree of the point x in the fuzzy set A. A system
of upper semicontinuous fuzzy sets in the universe X is denoted by F(X). The upper
semicontinuity of fuzzy sets under consideration is not crucial for approximations, but it is
formally required in the theoretical model of a discrete fuzzy dynamical system. Further,
for α ∈ (0, 1], the set [A]α = {x ∈ X | A(x) ≥ α} is an α-cut of A. Note that a fuzzy set A is
upper semicontinuous if and only if every α-cut is a closed subset of X. A fuzzy set A is
normal if A(x) = 1 for some x ∈ X. Throughout this paper, we can expect that X = [0, 1],
because the problem considered on many one-dimensional spaces can be easily reduced to
this situation.

Mathematics 2021, 9, 2737 4 of 26

1.6. Metrics

Before we start with the definition of a discrete fuzzy dynamical system, we should
define the notion of a metric on the space of fuzzy sets F(X). Such metrics are often
computed with the help of a Hausdorff metric. Note that in the following text, ε is a real
number, as usual. The Hausdorff metric DX between A, B ∈ K(X), where K(X) is a space of
nonempty closed subsets of X, is defined by:

DX(A, B) = inf{ε > 0 | A ⊆ Uε(B) and B ⊆ Uε(A)},

where:
Uε(A) = {x ∈ X|D(x, A) < ε}.

Among the most often used metrics is the supremum metric d∞, defined as:

d∞(A, B) = sup
α∈(0,1]

DX([A]α, [B]α),

for A, B ∈ F(X). Other metrics, for example an endograph metric or sendograph metric,
can be found in the literature [3]. These metrics are usually considered in connection with
the topological structure on F(X).

However, in our algorithm introduced in Section 2, we need additional distance
notions because we calculate the distance between an initial function and its piecewise
linear approximation, and the metrics mentioned above are not suitable for this.

The distance between two finite vectors x, y, which gives the sum of the lengths of
the projections of the line segment between the points in coordinate axes, is a function
d1 : Rq ×Rq → R in q-dimensional space called Manhattan metric. More precisely,

d1(x, y) =
q

∑
i=1
|xi − yi|,

where (x, y) are vectors x = (x1, x2, . . . , xq), y = (y1, y2, . . . , yq).
The distance between two vectors x, y, that is assigned to arbitrary two vectors in

q-dimensional space, is a function d2 : Rq ×Rq → R called Euclidean metric. More precisely,

d2(x, y) =
√
(x1 − y1)2 + · · ·+ (xq − yq)2,

where (x, y) are vectors x = (x1, x2, . . . , xq), y = (y1, y2, . . . , yq).
A maximum metric (or Chebyshev distance) is a metric, often induced either by the

supremum norm or uniform norm, defined in the following way:

d3(x, y) = max
i=1,2,...,q

|xi − yi|,

where (x, y) are vectors x = (x1, x2, . . . , xq), y = (y1, y2, . . . , yq).

1.7. Dynamical Systems

Let us briefly recall some elementary notions from topological dynamics (for details,
we refer, e.g., to [22] and the references therein).

Assume now that X is a compact metric space and f : X → X is continuous. Then, a
pair (X, f) defines a (discrete) dynamical system. For any given initial state x ∈ X, we can
consider a (forward) trajectory of x under the map f as an inductively defined sequence
{ f n(x)}n∈N: f 0(x) = x, f 1(x) = f (x) and f n+1(x) = f (f n(x)) for every n ∈ N. The initial
state x we call a fixed point of the function f if f (x) = x. Similarly, the point x ∈ X is called
periodic if there exists n ∈ N such that f n(x) = x. These notions are briefly demonstrated in
the following example.

Mathematics 2021, 9, 2737 5 of 26

Example 1. Let us consider a tent map T, where T : [0, 1]→ [0, 1] is defined by

T(x) =

{
2x , 0 ≤ x < 1/2,
2(1− x) , 1/2 ≤ x ≤ 1.

In Figure 1, one can easily see that T(0) = 0 (i.e., 0 is a fixed point), 0.2 is eventually periodic
(the middle picture below), which means that the trajectory of 0.2 becomes periodic in a finitely
many iterations. Finally, 0.4 (and hence, 0.8) is a periodic point with period 2.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Trajectories of three initial states around the value 0.2 of the dynamical system given by the
tent map.

1.8. Fuzzy Dynamical Systems

We are ready to define a fuzzy dynamical system given by Zadeh’s extension principle,
first defined by Zadeh in 1975 [23].

Consider now a discrete dynamical system (X, f). The map f : X → X defines another
map z f : F(X)→ F(X) defined on the space of fuzzy sets F(X) by the following formula:

(z f (A))(x) = sup
y∈ f−1(x)

{A(y)}.

Naturally, (z f (A))(x) = 0 whenever f−1 = ∅. Then, the map z f is a fuzzification (or
Zadeh’s extension) of the map f : X → X. There are many facts known for z f ; see, e.g., [3,24]
and the references therein. For instance, an intuition of how z f works can be provided by:
[z f (A)]α = f ([A]α) for any A ∈ F(X) and α ∈ (0, 1].

It is also known that the continuity of f : X → X implies the continuity of the fuzzifi-
cation z f : F(X)→ F(X) with respect to the metric topology given by the levelwise metric
d∞ (and also other metrics). Consequently, (F(X), z f) is correctly defined as a discrete fuzzy
dynamical system. For more information, we refer to [3].

Example 2. To present some dynamical systems, we refer to some examples below. Namely, a few
first iterations of Zadeh’s extensions of functions (g1, g2 and g3) (Section 4.2) are depicted in
Figures 6–11.

2. Particle Swarm Optimization

In this subsection, we recall Particle Swarm Optimization (PSO), which is one of the
evolutionary algorithms based on repetitive stochastic input adaptation, which is inspired
by the social behavior of the species (R. Eberhart and J. Kennedy in 1995 [25,26]).

Let us briefly demonstrate the use of the PSO algorithm for searching a global opti-
mum of an interval map f : [0, 1]→ [0, 1]. At the very beginning, we establish a population
of a finite set, say of n ∈ N points x ∈ [0, 1] called particles. In the subsequent steps, the pop-
ulation is firstly evaluated, and then, each particle moves in the domain, where movements
are influenced by its historical behavior and, very often, also by neighboring particles.
The process is combined together with the help of the choice of stochastic parameters
(acceleration coefficients, constriction factor), adapted towards the required solution.

Our implementation of the PSO algorithm above is the following: we search for a
linearization l f (see the definition of a piecewise linear function below) of a fixed interval
map f : [0, 1]→ [0, 1]. To find a suitable solution, a function to be minimized is a distance
function between f and its possible linearization l f . Therefore, because every possible
linearization can be represented by a finite number, say ` ∈ N, of points, every population

Mathematics 2021, 9, 2737 6 of 26

consists of n particles represented by `-dimensional vectors, and all, stochastic, parameters
are adapted accordingly. The details of this construction are mentioned in the following
pseudocode (Section 2.1).

Throughout this paper, we work with piecewise linear functions; thus, the definition
of a piecewise linear function should be mentioned. A continuous interval map f : [0, 1]→
[0, 1] is called piecewise linear provided there are finitely many points {ci}`i=1 ⊆ [0, 1],
0 = c1 < c2 < . . . < c` = 1, such that f |[ci ,ci+1]

is linear for every i = 1, 2, . . . , ` − 1.
Obviously, a piecewise linear function f can be uniquely defined by finitely many pairs
(ci, si) ∈ [0, 1]× [0, 1], for i = 1, . . . , `, if the turning points ci preserve the ordering above.

2.1. Pseudocode of PSO-Based Linearization

A pseudocode of the proposed algorithm consists of seven steps:

1. Initialization:

• A continuous function f : [0, 1]→ [0, 1];
• ` ∈ N indicates a dimension of the problem and a number `− 1 of linear segments

of the approximating function;
• A particle is a vector x ∈ [0, 1]`, where x = (x1, x2, . . . , x`) and all xis are pairwise

different;
• n ∈ N denotes a number of particles;
• Thus, Part = {xi}n

i=1, P = {pi}n
i=1 are finite sets of vectors xi, pi ∈ [0, 1]`. At the

beginning, Part, P are randomly chosen particles;
• For every particle x = (x1, x2, . . . , x`), a general formula for (piecewise linear)

function Plx : [0, 1]→ [0, 1] given by ` pairs (xi, f (xi)) is the following:

Plx(x) =

f (x1) + (f (x2)− f (x1))
(x−x1)
(x2−x1)

, x1 ≤ x ≤ x2,

f (x2) + (f (x3)− f (x2))
(x−x2)
(x3−x2)

, x2 ≤ x ≤ x3,
...

f (x`−1) + (f (x`)− f (x`−1))
(x−x`−1)
(xl−x`−1)

, x`−1 ≤ x ≤ x`;

• D = {dm}q
m=1 ⊆ [0, 1], such that 0 = d1 < d2 < · · · < dq = 1, is a set of

equidistant points on the interval [0, 1];
• A chosen metric is denoted by M;
• V = {vi}n

i=1 is a set of vectors vi ∈ [0, 1]`, where v is the velocity of each particle.
Let the initial velocities vi be zero vectors, i.e., vi= (0, 0, . . . , 0) for every i;

• UΦ1 = {Ui
Φ1
}n

i=1 ⊆ [0, Φ1]
`, UΦ2 = {Ui

Φ2
}n

i=1 ⊆ [0, Φ2]
` are sets of vectors with

uniform distributions from intervals (0, Φ1), (0, Φ2), where Φ1, Φ2 are called
acceleration coefficients;

• χ ∈ R is called a constriction factor;
• A number of iterations I ∈ N;

2. Distances:

• For all xi ∈ Part, where i = 1, . . . , n, calculate Dist(xi) = M(f , Plxi , D) (i.e., we
calculate a distance M between two functions f and Plxi at finitely many points
D for every particle xi), and denoted Dist = {Dist1, Dist2, . . . , Distn};

• For all pi ∈ P, where i = 1, . . . , n, calculate Pbest i = M(f , Plpi , D), where M is a
given metric, and from that, Pbest = {Pbest1

, Pbest2
, . . . , Pbestn};

3. Comparison:

• Compare elements from Dist and Pbest such that for all i = 1, . . . , n, if Disti ≤
Pbest i, then Pbest i := Disti, otherwise Pbest i := Pbest i;

4. Best neighbors:

Mathematics 2021, 9, 2737 7 of 26

• There exists k1 such that Distk1 ≤ Distj, where j = {1, 2, . . . , n} \ {k1}, and k2
such that Distk2 ≤ Distj, where j = {1, 2, . . . , n} \ {k1, k2}, and assign them
vectors xk1 , xk2 from Part;

• Create a set Pg = {pi
g}n

i=1, pi
g ∈ [0, 1]` (called the set of best neighbors), where

at the position k2 is a vector xk2 ∈ Part and everywhere else is vector xk1 ∈ Part;

5. Calculation:

• For all i = 1, . . . , n, calculate the velocity vi and update the set Part of particles xi:

– vi := χ(vi +UΦ1(p
i− xi) +UΦ2(p

i
g− xi)), where UΦ1 and UΦ2 are random

vectors (defined above) embedding a piece of randomness in every step of
the algorithm (There is no relationship between UΦ1 and UΦ2 at the very
beginning. However, mutual choices of Φ1 and Φ2 can influence the quality
of the output, and this feature is studied later in this manuscript.);

– xi := xi + vi;

• If the number I is not achieved, then continue with Step 2, otherwise go to Step 6.

6. The best particle:

• For the finite set Part = {xi}n
i=1, calculate Dist(xi) = M(f , Plxi , D). Thus, Dist =

{Dist1, Dist2, . . . , Distn};
• There exists an element k1 such that Distk1 ≤ Distj, where j = {1, 2, . . . , n} \ {k1},

and assign it a vector xk1 from Part to obtain the best distribution of points for a
given function;

• Calculate f (xk1);

7. Output:

• Set of pairs (xk1 , f (xk1)) giving the best possible linearization l f of a function f .

3. Testing of the Linearization Procedure

In this section, we discuss some of the parameters which can affect the linearization
procedure. After that, we introduce functions used for testing, and at the end of this
section, we provide a summary of the results of the algorithm accuracy given by means
and standard deviations.

3.1. Parameter Selection

Naturally, the PSO parameters choice can have a significant impact on optimization
performance. In our optimization algorithm, we search for an appropriate setting of the
constriction factor χ and the acceleration coefficients Φ1, Φ2. The parameter Φ1 is the
personal best value and, Φ2 is the best neighbors value. In the case that values of both
parameters are high, the velocity can grow up faster, and, consequently, the algorithm can
be unstable, but there is a need to get to know the behavior of the proposed parameter
in particular tasks. It is known that the equation Φ = Φ1 + Φ2, where Φ > 4, should be
satisfied and the authors recommended Φ1, Φ2 set to 2.05. Parameter χ is not changed
during the algorithm run, it has a restrictive effect on the result. In the original version [26],
PSO works with χ = 2/(Φ− 2 +

√
Φ2 − 4Φ).

For our purpose, we were testing which combination of parameters can be the most appro-
priate, so we chose χ = {0.57, 0.61, 0.65, 0.69, 0.73} and Φ1, Φ2 = {1.65, 1.85, 2.05, 2.25, 2.45}.
For each of five testing function (see (1)–(5) below) and parameter selection, the result
was calculated 50 times. Additionally, we set ` = 12, D = 80, n = 25 and I = 100. These
parameters are chosen only for our testing purposes, thus before using the proposed al-
gorithm one should always consider, which parameters to choose according to functions
and spaces in consideration. For example in the case of interval maps, the number of linear
parts should be bigger than the number of monotone parts of the function. The distances
between the initial (linearized) function and the approximating (linearizing) piecewise
linear function are given with the help of metrics introduced in Section 1.6.

Mathematics 2021, 9, 2737 8 of 26

3.2. Functions Used for Testing

To be able to test this algorithm, we chose the following functions (see Figure 2), trying
to consider them from simpler ones to a very complex one:

f1(x) = 4x(1− x) (1)

f2(x) =
1
2

(
sin((3

2)

x + 1
10)

+ 1

)
(2)

f3(x) =
1
25

(sin 20x + 20x · sin 20x · cos 20x) +
1
2

(3)

f4(x) = 0.9 + (−1 + x)(0.9 + (−0.16 + (5.4 + (−27 + (36 + (510+

(−120− 2560(−0.9 + x))(−0.1 + x))(−0.6 + x))

(−0.2 + x))(−0.8 + x))(−0.4 + x))x)

(4)

f5(x) =
(

x− 1
2

)(
sin

1
x− 1

2

)
+

1
2

(5)

It follows from Section 3.1 that for each of these functions, we considered 125 com-
binations of parameters χ, Φ1, Φ2; for each of these combinations, we repeated 25 runs,
and the outcomes were evaluated with the help of three metrics. The conclusion of our
statistical testing is provided in the next subsection.

3.3. The Choice of Parameters: Our Conclusion

In this subsection, we do not show all the obtained results due to the fact that this
manuscript would be too long. However, we would like to present our general observations
obtained for interval maps.

For demonstration purposes, we show the results of the mean and standard deviation
for functions f1 (see Tables 1–3) and f4 (see Tables 4–6), which are the most suitable
functions to use for our chosen parameter setting. In these tables, three types of metrics,
twenty-five combinations of Φ1, Φ2, and five different values of χ are used. Naturally,
the choice of parameter χ can affect the final result. In general, we recommend using values
χ ∈ [0.57, 0.69]. It turned out from our testing that if χ was smaller than 0.57, the results
were not convincing, and on the other hand, the same happened if χ was bigger than 0.69.
We can find more effective combinations of Φ1, Φ2, but the best combinations were mostly
given when Φ1 was greater than Φ2.

According to the results evaluated by the metric d1, we would recommend using the
combination of parameters Φ1 = 2.45 and Φ2 = 1.65. Other successful combinations can
be Φ1 = 1.85, Φ2 = 1.65 and Φ1 = 2.25, Φ2 = 1.85 (see Tables 1 and 4). The metric d2 also
provides promising combinations of parameters—for example, for Φ1 = 2.45, Φ2 = 1.65;
Φ1 = 2.45, Φ2 = 1.85, or Φ1 = 2.25, Φ2 = 1.65 (see Tables 2 and 5). The best results of
the metric d3 are based on Φ1 = 2.45, Φ2 = 1.85; Φ1 = 2.05, Φ2 = 1.65 and Φ1 = 2.45,
Φ2 = 1.65 (see Tables 3 and 6). Moreover, our results showed that the metric d1 and
the metric d2 measure the distances consistently across all examples, while the metric d3
delivers the least optimal results.

Table 1. The values of the arithmetic mean and standard deviation of f1 obtained using PSO with I = 100, D = 80, ` = 12,
n = 25 for 50 calculations with the metric d1.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 0.44673 ± 0.00954 0.44384 ± 0.00711 0.44651 ± 0.01313 0.44135 ± 0.00568 0.44421 ± 0.00696
0.61 0.44713 ± 0.01215 0.44373 ± 0.00739 0.44093 ± 0.00422 0.44489 ± 0.00951 0.44153 ± 0.00582
0.65 0.44306 ± 0.00762 0.44317 ± 0.01346 0.43962 ± 0.00271 0.44082 ± 0.00664 0.44156 ± 0.00449
0.69 0.44195 ± 0.00687 0.44086 ± 0.00518 0.46219 ± 0.03799 0.43999 ± 0.00298 0.47689 ± 0.05146
0.73 0.44079 ± 0.00615 0.45020 ± 0.01613 0.57076 ± 0.09284 0.46718 ± 0.03999 0.64096 ± 0.12199

Mathematics 2021, 9, 2737 9 of 26

Table 1. Cont.

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 0.44355 ± 0.00961 0.44265 ± 0.00589 0.44357 ± 0.0072 0.44675 ± 0.01298 0.44597 ± 0.01079
0.61 0.44329 ± 0.01365 0.44249 ± 0.00833 0.44606 ± 0.0126 0.44398 ± 0.00775 0.44399 ± 0.00721
0.65 0.44589 ± 0.01372 0.44101 ± 0.00461 0.44171 ± 0.0053 0.44338 ± 0.00705 0.44310 ± 0.00761
0.69 0.53436 ± 0.09852 0.44438 ± 0.01404 0.44102 ± 0.0042 0.44065 ± 0.00464 0.44319 ± 0.01528
0.73 0.69188 ± 0.12316 0.51971 ± 0.07506 0.44457 ± 0.0123 0.44112 ± 0.00611 0.44109 ± 0.00463

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 0.44299 ± 0.00882 0.44486 ± 0.00942 0.44398 ± 0.00721 0.44505 ± 0.01220 0.44572 ± 0.00972
0.61 0.44239 ± 0.00657 0.44524 ± 0.01199 0.44343 ± 0.00778 0.44311 ± 0.00764 0.44292 ± 0.00789
0.65 0.44116 ± 0.00677 0.44115 ± 0.00566 0.44281 ± 0.00832 0.44112 ± 0.00590 0.44088 ± 0.00432
0.69 0.44378 ± 0.01419 0.44162 ± 0.00589 0.44027 ± 0.00392 0.44333 ± 0.01879 0.46286 ± 0.03899
0.73 0.49788 ± 0.06003 0.44165 ± 0.00504 0.45538 ± 0.01999 0.49800 ± 0.05539 0.59158 ± 0.09469

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 0.44485 ± 0.00773 0.44334 ± 0.00829 0.44387 ± 0.00856 0.44495 ± 0.01425 0.44402 ± 0.01057
0.61 0.44507 ± 0.01544 0.44187 ± 0.00656 0.44056 ± 0.00452 0.44194 ± 0.00601 0.44251 ± 0.00724
0.65 0.43928 ± 0.00283 0.44065 ± 0.00343 0.44204 ± 0.01235 0.44051 ± 0.00434 0.44099 ± 0.00562
0.69 0.44618 ± 0.01709 0.45029 ± 0.01819 0.48591 ± 0.06187 0.47058 ± 0.04682 0.44028 ± 0.00408
0.73 0.54212 ± 0.07472 0.57070 ± 0.09529 0.63198 ± 0.11265 0.60194 ± 0.08960 0.46416 ± 0.03948

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 0.44339 ± 0.00751 0.44268 ± 0.0069 0.44485 ± 0.00868 0.44525 ± 0.00901 0.44481 ± 0.0069
0.61 0.44326 ± 0.00879 0.44267 ± 0.0069 0.44431 ± 0.00840 0.44217 ± 0.00600 0.44447 ± 0.0098
0.65 0.44159 ± 0.00586 0.44208 ± 0.0067 0.44129 ± 0.00605 0.44161 ± 0.00803 0.44404 ± 0.0079
0.69 0.44158 ± 0.00441 0.44146 ± 0.0059 0.44002 ± 0.00434 0.44189 ± 0.01391 0.44150 ± 0.0051
0.73 0.50101 ± 0.06959 0.44738 ± 0.01114 0.44264 ± 0.01486 0.44507 ± 0.01224 0.44012 ± 0.0039

Table 2. The values of mean and standard deviation of f1 obtained using PSO with I = 100, D = 80, ` = 12, n = 25 for
50 calculations with the metric d2.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 0.05529 ± 0.00187 0.05586 ± 0.00264 0.05570 ± 0.00275 0.05515 ± 0.00168 0.05489 ± 0.00151
0.61 0.05513 ± 0.00141 0.05508 ± 0.00186 0.05422 ± 0.00043 0.05443 ± 0.00074 0.05409 ± 0.00015
0.65 0.05460 ± 0.00096 0.05437 ± 0.00162 0.05410 ± 0.00023 0.05436 ± 0.00161 0.05422 ± 0.00026
0.69 0.05418 ± 0.00043 0.05412 ± 0.00022 0.05824 ± 0.00727 0.05492 ± 0.00269 0.06171 ± 0.00799
0.73 0.05411 ± 0.00028 0.05554 ± 0.00318 0.07709 ± 0.01397 0.05954 ± 0.00644 0.08721 ± 0.01525

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 0.05456 ± 0.00107 0.05507 ± 0.00195 0.05511 ± 0.00131 0.05555 ± 0.00225 0.05589 ± 0.00293
0.61 0.05432 ± 0.00161 0.05469 ± 0.00175 0.05475 ± 0.0011 0.05485 ± 0.00139 0.05495 ± 0.00131
0.65 0.05573 ± 0.00338 0.05418 ± 0.00036 0.05471 ± 0.0018 0.05462 ± 0.00123 0.05463 ± 0.00096
0.69 0.07252 ± 0.01461 0.05500 ± 0.00131 0.05415 ± 0.0003 0.05442 ± 0.00163 0.05437 ± 0.00161
0.73 0.09237 ± 0.02132 0.06873 ± 0.01340 0.05477 ± 0.0008 0.05421 ± 0.00038 0.05431 ± 0.00063

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 0.05559 ± 0.00264 0.05511 ± 0.00114 0.05535 ± 0.00218 0.05521 ± 0.00160 0.05518 ± 0.00173
0.61 0.05496 ± 0.00187 0.05518 ± 0.00189 0.05499 ± 0.00196 0.05476 ± 0.00193 0.05428 ± 0.00061
0.65 0.05509 ± 0.00308 0.05444 ± 0.00178 0.05419 ± 0.00038 0.05497 ± 0.00309 0.05483 ± 0.00269
0.69 0.05447 ± 0.00074 0.05435 ± 0.00160 0.05462 ± 0.00224 0.05470 ± 0.00076 0.05876 ± 0.00712
0.73 0.06186 ± 0.00892 0.05471 ± 0.00149 0.05669 ± 0.00412 0.06832 ± 0.01121 0.08204 ± 0.01479

Mathematics 2021, 9, 2737 10 of 26

Table 2. Cont.

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 0.05493 ± 0.00133 0.05517 ± 0.00193 0.05460 ± 0.00099 0.05478 ± 0.00183 0.05487 ± 0.0011
0.61 0.05428 ± 0.00053 0.05419 ± 0.00034 0.05481 ± 0.00269 0.05445 ± 0.00107 0.05440 ± 0.0008
0.65 0.05435 ± 0.00158 0.05448 ± 0.00162 0.05468 ± 0.00163 0.05426 ± 0.00039 0.05429 ± 0.0006
0.69 0.05587 ± 0.00439 0.05646 ± 0.00377 0.06490 ± 0.00903 0.05964 ± 0.00694 0.05454 ± 0.0016
0.73 0.07375 ± 0.01268 0.07905 ± 0.01679 0.09397 ± 0.01939 0.08506 ± 0.01829 0.05756 ± 0.00459

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 0.05521 ± 0.00193 0.05549 ± 0.00198 0.05533 ± 0.00242 0.05563 ± 0.00207 0.05609 ± 0.00289
0.61 0.05442 ± 0.00075 0.05446 ± 0.00066 0.05479 ± 0.0012 0.05501 ± 0.00192 0.05559 ± 0.00257
0.65 0.05409 ± 0.00018 0.05417 ± 0.00033 0.05439 ± 0.0007 0.05425 ± 0.00044 0.05445 ± 0.00090
0.69 0.05439 ± 0.00053 0.05419 ± 0.00032 0.05416 ± 0.0004 0.05459 ± 0.00222 0.05412 ± 0.00027
0.73 0.06403 ± 0.01104 0.05679 ± 0.00633 0.05431 ± 0.0005 0.05513 ± 0.00217 0.05439 ± 0.00160

Table 3. The values of mean and standard deviation of f1 obtained using PSO with I = 100, D = 80, ` = 12, n = 25 for
50 calculations with the metric d3.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 0.01054 ± 0.00109 0.01014 ± 0.00096 0.01048 ± 0.00128 0.00999 ± 0.00101 0.01031 ± 0.00132
0.61 0.01046 ± 0.00139 0.00997 ± 0.00114 0.01002 ± 0.00118 0.00970 ± 0.00105 0.00977 ± 0.00115
0.65 0.01000 ± 0.00092 0.00983 ± 0.00109 0.01006 ± 0.00090 0.00978 ± 0.00107 0.01034 ± 0.00136
0.69 0.00978 ± 0.00109 0.00967 ± 0.00129 0.01367 ± 0.00287 0.01081 ± 0.00206 0.01677 ± 0.00382
0.73 0.00993 ± 0.00102 0.01417 ± 0.00373 0.02092 ± 0.00360 0.01694 ± 0.00395 0.02359 ± 0.00474

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 0.00990 ± 0.00115 0.01012 ± 0.00149 0.01019 ± 0.00095 0.01034 ± 0.00099 0.01032 ± 0.00139
0.61 0.00960 ± 0.00082 0.00989 ± 0.00119 0.01013 ± 0.0012 0.01026 ± 0.00105 0.01009 ± 0.00139
0.65 0.01234 ± 0.00258 0.00983 ± 0.00092 0.00960 ± 0.0009 0.00985 ± 0.0011 0.00992 ± 0.00096
0.69 0.01908 ± 0.00399 0.01227 ± 0.00244 0.00954 ± 0.0008 0.00995 ± 0.0012 0.00956 ± 0.00104
0.73 0.02447 ± 0.00545 0.02009 ± 0.00495 0.01243 ± 0.00285 0.00986 ± 0.0008 0.01041 ± 0.00160

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 0.01049 ± 0.00124 0.01048 ± 0.00150 0.01009 ± 0.00106 0.01025 ± 0.00138 0.01002 ± 0.00107
0.61 0.00993 ± 0.00104 0.01016 ± 0.00101 0.01007 ± 0.00101 0.00986 ± 0.00129 0.00986 ± 0.00129
0.65 0.00990 ± 0.00106 0.00965 ± 0.00083 0.00985 ± 0.00127 0.00978 ± 0.00122 0.01038 ± 0.00162
0.69 0.01073 ± 0.00159 0.00954 ± 0.00097 0.00975 ± 0.00092 0.01229 ± 0.00262 0.01514 ± 0.00371
0.73 0.01749 ± 0.00491 0.01114 ± 0.00218 0.01614 ± 0.00456 0.01933 ± 0.00450 0.02248 ± 0.00508

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 0.01017 ± 0.00109 0.01016 ± 0.00111 0.01018 ± 0.00115 0.00988 ± 0.00112 0.01009 ± 0.0010
0.61 0.00976 ± 0.00102 0.00981 ± 0.00109 0.00959 ± 0.00092 0.00948 ± 0.00085 0.00978 ± 0.0011
0.65 0.00996 ± 0.00116 0.01002 ± 0.00095 0.01141 ± 0.00198 0.01079 ± 0.00181 0.00959 ± 0.0009
0.69 0.01255 ± 0.00250 0.01424 ± 0.00355 0.01795 ± 0.00421 0.01615 ± 0.00384 0.01027 ± 0.00119
0.73 0.02044 ± 0.00514 0.02101 ± 0.00434 0.02369 ± 0.00486 0.02190 ± 0.00482 0.01581 ± 0.00469

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 0.01030 ± 0.00092 0.01015 ± 0.00136 0.01029 ± 0.00108 0.01029 ± 0.00118 0.01061 ± 0.00116
0.61 0.00991 ± 0.00085 0.00970 ± 0.00083 0.00983 ± 0.00117 0.01038 ± 0.00135 0.01001 ± 0.00091
0.65 0.00961 ± 0.00100 0.00961 ± 0.00091 0.00961 ± 0.00096 0.00979 ± 0.00108 0.00989 ± 0.00107
0.69 0.01127 ± 0.00209 0.00963 ± 0.00092 0.00973 ± 0.00092 0.00958 ± 0.00113 0.00950 ± 0.00101
0.73 0.01746 ± 0.00515 0.01386 ± 0.00279 0.01075 ± 0.00211 0.01209 ± 0.00271 0.01008 ± 0.00094

Mathematics 2021, 9, 2737 11 of 26

Table 4. The values of mean and standard deviation of f4 obtained using PSO with I = 100, D = 80, ` = 12, n = 25 for
50 calculations with the metric d1.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 1.59037 ± 0.24984 1.62977 ± 0.23772 1.60976 ± 0.21587 1.57976 ± 0.22699 1.59274 ± 0.19044
0.61 1.57176 ± 0.25262 1.64725 ± 0.22590 1.58791 ± 0.24802 1.56674 ± 0.24249 1.55923 ± 0.18462
0.65 1.62446 ± 0.23553 1.58594 ± 0.24937 1.55904 ± 0.21288 1.56094 ± 0.22623 1.56596 ± 0.18687
0.69 1.59593 ± 0.28093 1.57662 ± 0.22099 1.62292 ± 0.23394 1.53793 ± 0.20723 1.82780 ± 0.48461
0.73 1.54296 ± 0.18417 1.62974 ± 0.40005 2.18634 ± 0.67657 1.86329 ± 0.53715 2.81114 ± 0.71643

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 1.54953 ± 0.18691 1.56018 ± 0.23274 1.54420 ± 0.2148 1.59272 ± 0.22315 1.56309 ± 0.19567
0.61 1.60100 ± 0.24606 1.58447 ± 0.23445 1.52752 ± 0.1661 1.54771 ± 0.22381 1.64471 ± 0.23448
0.65 1.58873 ± 0.19722 1.56955 ± 0.19748 1.53435 ± 0.1962 1.55929 ± 0.20766 1.62295 ± 0.23805
0.69 2.11355 ± 0.62874 1.57120 ± 0.21650 1.58346 ± 0.2232 1.57702 ± 0.22283 1.54543 ± 0.21958
0.73 3.08575 ± 0.76636 2.12823 ± 0.63962 1.61309 ± 0.30878 1.55072 ± 0.19665 1.54910 ± 0.19549

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 1.56249 ± 0.26237 1.58887 ± 0.19827 1.53361 ± 0.19833 1.63057 ± 0.23101 1.64117 ± 0.25050
0.61 1.64186 ± 0.25542 1.62414 ± 0.28323 1.60212 ± 0.20032 1.55226 ± 0.18392 1.62043 ± 0.20008
0.65 1.58061 ± 0.25445 1.56751 ± 0.20445 1.54011 ± 0.18398 1.52378 ± 0.19117 1.60934 ± 0.23505
0.69 1.64619 ± 0.24111 1.58701 ± 0.23610 1.55877 ± 0.20568 1.59617 ± 0.21269 1.77919 ± 0.50372
0.73 1.83898 ± 0.41817 1.57396 ± 0.22158 1.75303 ± 0.48211 1.98592 ± 0.62888 2.55976 ± 0.88166

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 1.62477 ± 0.23632 1.59425 ± 0.23888 1.64423 ± 0.23898 1.59602 ± 0.19285 1.56970 ± 0.20420
0.61 1.62939 ± 0.22346 1.62814 ± 0.25448 1.59375 ± 0.22899 1.58834 ± 0.21454 1.53290 ± 0.19722
0.65 1.54596 ± 0.20629 1.52123 ± 0.20487 1.53762 ± 0.20138 1.54952 ± 0.22325 1.56256 ± 0.20221
0.69 1.58287 ± 0.25216 1.56052 ± 0.17442 2.02994 ± 0.68198 1.69919 ± 0.28745 1.49550 ± 0.16993
0.73 2.13561 ± 0.58176 2.44483 ± 0.84383 2.83623 ± 0.75432 2.79640 ± 0.76496 1.81328 ± 0.57589

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 1.55519 ± 0.19483 1.54445 ± 0.1999 1.59542 ± 0.24518 1.61905 ± 0.24451 1.619185 ± 0.2652
0.61 1.57253 ± 0.24238 1.56136 ± 0.1877 1.55255 ± 0.21057 1.58888 ± 0.20543 1.56638 ± 0.1918
0.65 1.58877 ± 0.20531 1.52698 ± 0.1733 1.59913 ± 0.21885 1.58028 ± 0.23733 1.56697 ± 0.2314
0.69 1.57858 ± 0.23933 1.53281 ± 0.2015 1.49796 ± 0.19331 1.52631 ± 0.20260 1.56326 ± 0.2191
0.73 1.86237 ± 0.55692 1.61428 ± 0.22193 1.55055 ± 0.20346 1.53991 ± 0.20199 1.57203 ± 0.20965

Table 5. The values of mean and standard deviation of f4 obtained using PSO with I = 100, D = 80, ` = 12, n = 25 for
50 calculations with the metric d2.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 0.22428 ± 0.04796 0.22339 ± 0.04519 0.23525 ± 0.05531 0.22591 ± 0.04513 0.22228 ± 0.04359
0.61 0.22588 ± 0.04931 0.22616 ± 0.04679 0.24263 ± 0.04674 0.21206 ± 0.03926 0.21532 ± 0.03998
0.65 0.21930 ± 0.04664 0.22361 ± 0.05068 0.23316 ± 0.04788 0.22258 ± 0.04518 0.22230 ± 0.04847
0.69 0.22161 ± 0.04589 0.22314 ± 0.04748 0.22553 ± 0.04635 0.23269 ± 0.04760 0.26191 ± 0.06652
0.73 0.22129 ± 0.04425 0.22577 ± 0.04872 0.35671 ± 0.11336 0.24843 ± 0.07165 0.40197 ± 0.10584

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 0.21494 ± 0.04212 0.22804 ± 0.05293 0.21972 ± 0.0456 0.22398 ± 0.04644 0.22409 ± 0.04693
0.61 0.22228 ± 0.04269 0.22473 ± 0.05040 0.22697 ± 0.0477 0.22819 ± 0.04674 0.22183 ± 0.04719
0.65 0.21996 ± 0.04131 0.21865 ± 0.04135 0.21537 ± 0.0394 0.22257 ± 0.04993 0.22894 ± 0.04954
0.69 0.30814 ± 0.09305 0.22586 ± 0.04540 0.20867 ± 0.0379 0.21307 ± 0.03884 0.22351 ± 0.04718
0.73 0.47047 ± 0.08969 0.30696 ± 0.08766 0.22502 ± 0.05328 0.20869 ± 0.03358 0.22016 ± 0.04894

Mathematics 2021, 9, 2737 12 of 26

Table 5. Cont.

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 0.23748 ± 0.05018 0.22955 ± 0.04986 0.22928 ± 0.05013 0.24323 ± 0.04934 0.23398 ± 0.04834
0.61 0.23593 ± 0.05504 0.23270 ± 0.05155 0.22148 ± 0.04521 0.23444 ± 0.04959 0.24798 ± 0.05103
0.65 0.21569 ± 0.04623 0.23239 ± 0.04840 0.22238 ± 0.04693 0.22163 ± 0.04204 0.21798 ± 0.04421
0.69 0.23198 ± 0.04504 0.23036 ± 0.04744 0.23554 ± 0.04707 0.22059 ± 0.05076 0.25991 ± 0.07731
0.73 0.26495 ± 0.08492 0.23875 ± 0.05508 0.24165 ± 0.06436 0.30658 ± 0.10267 0.34796 ± 0.11848

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 0.23759 ± 0.05529 0.22647 ± 0.04859 0.23110 ± 0.04822 0.21771 ± 0.03847 0.22337 ± 0.04781
0.61 0.23447 ± 0.05261 0.21992 ± 0.04422 0.21165 ± 0.04038 0.22259 ± 0.04845 0.21999 ± 0.0426
0.65 0.22119 ± 0.04488 0.21702 ± 0.04438 0.22111 ± 0.04777 0.21502 ± 0.04317 0.20878 ± 0.0381
0.69 0.22634 ± 0.04375 0.24130 ± 0.06648 0.29621 ± 0.09594 0.26973 ± 0.07975 0.22204 ± 0.0504
0.73 0.29735 ± 0.08863 0.37698 ± 0.11345 0.44674 ± 0.14117 0.42936 ± 0.14449 0.27860 ± 0.09009

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 0.23532 ± 0.04658 0.23531 ± 0.04888 0.22888 ± 0.04673 0.22384 ± 0.04304 0.22043 ± 0.04402
0.61 0.22432 ± 0.04966 0.21942 ± 0.04624 0.21421 ± 0.0417 0.22569 ± 0.04689 0.22739 ± 0.04739
0.65 0.21499 ± 0.03993 0.21576 ± 0.04011 0.20710 ± 0.0357 0.21864 ± 0.04639 0.21948 ± 0.05028
0.69 0.22334 ± 0.04574 0.20707 ± 0.03682 0.21833 ± 0.0420 0.22015 ± 0.04512 0.21713 ± 0.04304
0.73 0.28392 ± 0.09143 0.23115 ± 0.06359 0.21731 ± 0.0458 0.22633 ± 0.05611 0.21560 ± 0.04133

Table 6. The values of mean and standard deviation of f4 obtained using PSO with I = 100, D = 80, ` = 12, n = 25 for
50 calculations with the metric d3.

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 0.05884 ± 0.01919 0.05521 ± 0.01975 0.06012 ± 0.02065 0.05911 ± 0.02112 0.05146 ± 0.01865
0.61 0.05671 ± 0.01967 0.05254 ± 0.01905 0.05957 ± 0.02184 0.05166 ± 0.01809 0.05355 ± 0.01981
0.65 0.05706 ± 0.02057 0.05382 ± 0.01959 0.05499 ± 0.02002 0.05379 ± 0.02009 0.05977 ± 0.01951
0.69 0.05141 ± 0.01956 0.05742 ± 0.02228 0.07635 ± 0.02211 0.05969 ± 0.02245 0.09168 ± 0.02804
0.73 0.05623 ± 0.02020 0.07677 ± 0.03276 0.10688 ± 0.02519 0.08755 ± 0.02855 0.11951 ± 0.02804

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 0.05688 ± 0.02054 0.05567 ± 0.02012 0.05074 ± 0.0161 0.05686 ± 0.01921 0.05817 ± 0.01892
0.61 0.05426 ± 0.01928 0.05532 ± 0.02062 0.04914 ± 0.0162 0.05955 ± 0.02080 0.05128 ± 0.01757
0.65 0.06146 ± 0.01945 0.05346 ± 0.01897 0.05201 ± 0.0195 0.05321 ± 0.0195 0.05467 ± 0.01963
0.69 0.11293 ± 0.03684 0.06863 ± 0.02501 0.05464 ± 0.0207 0.04997 ± 0.0183 0.05359 ± 0.02032
0.73 0.13540 ± 0.03379 0.11486 ± 0.02767 0.06863 ± 0.02962 0.05769 ± 0.02018 0.05972 ± 0.02053

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 0.05581 ± 0.01955 0.05344 ± 0.01804 0.05749 ± 0.02033 0.05290 ± 0.01914 0.06272 ± 0.02081
0.61 0.05822 ± 0.02049 0.05653 ± 0.01924 0.05368 ± 0.02003 0.05748 ± 0.02183 0.05149 ± 0.01913
0.65 0.05626 ± 0.02037 0.05522 ± 0.02034 0.06168 ± 0.02261 0.05604 ± 0.02044 0.05319 ± 0.01736
0.69 0.06797 ± 0.02293 0.05133 ± 0.01934 0.06178 ± 0.02204 0.06414 ± 0.01960 0.07969 ± 0.02570
0.73 0.10082 ± 0.02886 0.06129 ± 0.02273 0.08309 ± 0.02806 0.09859 ± 0.02905 0.11416 ± 0.02832

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 0.05549 ± 0.02101 0.05338 ± 0.01915 0.05483 ± 0.01977 0.05722 ± 0.02035 0.04985 ± 0.0158
0.61 0.05290 ± 0.01891 0.05442 ± 0.01984 0.06215 ± 0.02202 0.04994 ± 0.01849 0.04707 ± 0.0154
0.65 0.05358 ± 0.02055 0.05709 ± 0.01980 0.06311 ± 0.02427 0.05655 ± 0.02084 0.05245 ± 0.0193
0.69 0.06777 ± 0.02369 0.07196 ± 0.02419 0.09635 ± 0.03088 0.09084 ± 0.03178 0.06001 ± 0.02202
0.73 0.10526 ± 0.02582 0.12179 ± 0.03535 0.13492 ± 0.03662 0.12453 ± 0.02500 0.08574 ± 0.03117

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 0.05076 ± 0.01727 0.05409 ± 0.01944 0.05397 ± 0.01721 0.05533 ± 0.01930 0.05563 ± 0.01850
0.61 0.05474 ± 0.02024 0.05110 ± 0.01923 0.06233 ± 0.02204 0.05738 ± 0.02083 0.05443 ± 0.01899
0.65 0.04912 ± 0.01728 0.05445 ± 0.01901 0.05134 ± 0.01895 0.05179 ± 0.01984 0.05044 ± 0.01751
0.69 0.06082 ± 0.02158 0.06154 ± 0.02321 0.06005 ± 0.02155 0.05431 ± 0.02025 0.05259 ± 0.01889
0.73 0.10637 ± 0.02870 0.07115 ± 0.02986 0.06023 ± 0.02386 0.06961 ± 0.02684 0.05855 ± 0.02179

Mathematics 2021, 9, 2737 13 of 26

3.4. Examples of the Linearization Process

In this subsection, the use of the proposed algorithm is demonstrated on the testing
functions introduced in Section 3.2. The following examples are based on calculations with
random parameters selected in Section 3.3.

Example 3. Let a function f1, whose graph can be seen in Figure 2, be given. The chosen parameters
are χ = 0.69, Φ1 = 2.45, Φ2 = 1.65, and the metric d1 is used. In this example, ` = 3, 8, 12,
D = 80, and I = 100. This function has two monotone parts, so the choice of the linear parts
depends on the accuracy of what we want to obtain. In Figure 3, we can see the difference between
3, 8, and 12 points.

Mathematics 2021, 1, 0 13 of 26

3.4. Examples of the Linearization Process

In this subsection, the use of the proposed algorithm is demonstrated on the testing
functions introduced in Section 3.2. The following examples are based on calculations with
random parameters selected in Section 3.3.

Example 3. Let a function f1, whose graph can be seen in Figure 2, be given. The chosen parameters
are χ = 0.69, Φ1 = 2.45, Φ2 = 1.65, and the metric d1 is used. In this example, ` = 3, 8, 12,
D = 80, and I = 100. This function has two monotone parts, so the choice of the linear parts
depends on the accuracy of what we want to obtain. In Figure 3, we can see the difference between
3, 8, and 12 points.

Figure 2. The graphs of the functions f1, f2, f3, f4, and f5.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3. The graphs of the original function f1 (the black line) and its piecewise linearizations l f1

(the red line), where ` = 3, 8, 12.

Example 4. Let a function f2, whose graph is depicted in Figure 2, be given. The initial parameters
are χ = 0.69, Φ1 = 2.45, Φ2 = 1.65; the metric d1 is chosen; ` = 12, I = 100. As we can see,
the first monotone parts are narrower, so if we choose D = 80, the algorithm cannot approximate
the first part correctly. For illustration, we take D = 500 and D = 1000 (see Figure 4).

Figure 2. The graphs of the functions f(1), f(2), f(3), f(4), and f(5).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3. The graphs of the original function f1 (the black line) and its piecewise linearizations l f1

(the red line), where ` = 3, 8, 12.

Example 4. Let a function f2, whose graph is depicted in Figure 2, be given. The initial parameters
are χ = 0.69, Φ1 = 2.45, Φ2 = 1.65; the metric d1 is chosen; ` = 12, I = 100. As we can see,
the first monotone parts are narrower, so if we choose D = 80, the algorithm cannot approximate
the first part correctly. For illustration, we take D = 500 and D = 1000 (see Figure 4).

Mathematics 2021, 9, 2737 14 of 26

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The graphs of the original function f2 (the black lines) and its piecewise linearizations l f2 (the
red lines), where D = 80, 500, 1000.

Example 5. Let a function f5 be given, and its graph can be seen in Figure 2. The initial parameters
χ = 0.69, Φ1 = 2.45, Φ2 = 1.65 with the metric d1 were chosen. In the first part of Figure 5,
` = 12, 40, 100, I = 100, and D = 80. In the second part of the figure, ` = 25, 60, 100, I = 100,
and D = 1000.

We intentionally chose a function of this shape, namely with infinitely many pieces of mono-
tonicity, and a simple observation confirmed that the problem can occur and the proposed solutions
are unstable. The algorithm is not able to approximate all monotone parts correctly, and as we can
see in Figure 5, the result need not always be as required. In this particular case, parameters D
and ` should be much higher, and the calculation would take a bit more time.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5. The graphs of the original function f5 (the black lines) and its piecewise linearizations l f5

(the red lines), where ` = 12, 40, 100, I = 100, D = 80 (the first row) and ` = 25, 60, 100, I = 100,
D = 1000 (the second row).

The latter example brings us to the discussion on the complexity of the proposed algo-
rithm.

3.5. Complexity of the Proposed Algorithm

In this subsection, we provide the computational complexity with the Big O notation,
and we also show the computation time of the linearization process of the functions
introduced in Section 3.2.

3.5.1. Computational Complexity

Let n be the input data size. The input data preprocessing of this algorithm has a
computational complexity equal to n2; the main loop has a computational complexity equal
to n3; the complexity of the last algorithm part, mainly consisting of drawing graphs, is
equal to n2; thus, the final complexity is given by the sum of all parts n2 + n3 + n2. The Big
O notation of this algorithm is O(n3).

3.5.2. Computation Time

Computation time is significantly influenced by more factors, especially the number of
linear parts `, iterations I, discretization points D, and also, the machine used for compiling.
In Table 7, we can see the time dependent on ` and D, which are the most important
values for the algorithm’s accuracy. The test was executed on the functions introduced in

Mathematics 2021, 9, 2737 15 of 26

Section 3.2 with random parameters χ = 0.69, Φ1 = 2.45, Φ2 = 1.65, the metric d1, I = 100,
and n = 25.

Table 7. Computing time in seconds.

D = 80 D = 200 D = 500 D = 1000

f1 ` = 12 1.232 1.408 1.951 2.719
` = 18 1.677 1.876 2.417 3.187
` = 25 2.212 2.361 2.989 3.779
` = 50 3.881 4.172 4.993 5.843

f2 ` = 12 1.357 1.515 2.058 2.869
` = 18 1.793 1.998 2.562 3.414
` = 25 2.295 2.515 3.179 4.034
` = 50 3.953 4.445 5.539 6.256

f3 ` = 12 1.628 1.832 2.429 3.208
` = 18 2.274 2.473 3.095 3.892
` = 25 2.975 3.225 3.917 4.755
` = 50 5.169 5.677 6.626 7.616

f4 ` = 12 1.390 1.604 2.122 2.789
` = 18 1.911 2.147 2.689 3.392
` = 25 2.499 2.777 3.340 4.093
` = 50 4.357 4.898 5.650 6.559

f5 ` = 12 1.342 1.519 2.083 2.894
` = 18 1.778 2.026 2.613 3.444
` = 25 2.335 2.576 3.209 4.076
` = 50 4.002 4.474 5.427 6.377

a Compiled in Python 3.8 (CPU: AMD 2920X, RAM: 32 GB, GPU: AMD RX VEGA64).

4. Approximation of Fuzzy Dynamical Systems

In this section, we present a generalization of the algorithm originally introduced
in [20]. In the first part, we briefly comment on the algorithm in order to make the second
technical part more legible. To simplify the notation below, we considered X = [0, 1].
However, our algorithm can be easily adapted to an arbitrarily closed nondegenerated
subinterval of the real line R.

The main idea of the following algorithm is to compute a trajectory of a given discrete
fuzzy dynamical subsystem (F(X), z f), which is a natural and unique extension of a
discrete dynamical system (X, f). The main idea behind the previous algorithm [20] was to
calculate Zadeh’s extension with the help of calculations on smaller intervals, i.e., pieces of
linearity of both the map f and the fuzzy set A. This allowed computing Zadeh’s extension
on a limited number of points. To be able to generalize the previous algorithm, we need to
find appropriate linearizations. For this reason, the PSO-based linearization introduced in
Section 2 was used.

In Step 1, the PSO-based linearization proposed in the previous section is used to find
an appropriate linearization of the function f (resp. of the fuzzy set A, but the latter case is
usually not needed).

In Step 2, it is shown how to decompose X = [0, 1] into finitely many subintervals
and what points should be chosen for the calculation of Zadeh’s extension. Instinctively, it
is important (and mostly, also sufficient) to consider the turning points of the function f
and the turning points of a given fuzzy set A. The union of all such turning points defines
a set J from which the starting and ending points of each interval of the decomposition of
[0, 1] are generated.

In Step 3, Zadeh’s extension on intervals given by properly chosen pairs di, di+1
of points is computed in order to define linear elements from which the image z f (A) is
reconstructed. This is a partial outcome from which we obtain a finite set of linear functions,

Mathematics 2021, 9, 2737 16 of 26

and by using pointwise maxima of such linear parts, we obtain a graph of the image z f (A)
of the fuzzy set A.

The process that is described in Steps 2 and 3 is repeated until we obtain the chosen
number M of iterations. Below, we demonstrate several trajectories of fuzzy initial states A
in a given dynamical system ([0, 1], f), which represent the final results of the proposed
algorithm, i.e., a 3D plot of all evaluated iterations z f (A), z2

f (A), . . ., zM
f (A).

4.1. Pseudocode

Now, a bit more formal description of the algorithm consisting of six steps follows:

1. Initialization—let the following items be given:

• A continuous function f : [0, 1]→ [0, 1];
• A piecewise linear fuzzy set A : [0, 1]→ [0, 1], defined by points (ai, bi) ∈ [0, 1]×

[0, 1], where i = 1, 2, . . . , n,

A(y) =

b1 + (b2 − b1)
(y−a1)
(a2−a1)

, a1 ≤ y ≤ a2,

b2 + (b3 − b2)
(y−a2)
(a3−a2)

, a2 ≤ y ≤ a3,
...

bn−1 + (bn − bn−1)
(y−an−1)
(an−an−1)

, an−1 ≤ y ≤ an;

• A number of iterations M ∈ N. Let k = 1;

2. Step 1:

• Use the PSO algorithm (see Section 2) to find a linearization l f of a function f ,
i.e., to find a sequence of pairs (xk1 , f (xk1)) giving an appropriate linearization
of a function f . For our notion, let (xk1 , f (xk1)) := (ci, si), where i = 1, . . . , `;

3. Step 2:

• Create a set J of s linear segments Li of l f obtained from linear segments of A
by the following inductive procedure. Whenever cj ∈ (ai, a′i) for some L′i :=
Li((ai, bi), (a′i, b′i)) ∈ J and m is the number of elements in J, then J obtains
two new linear segments Li, Lm+1 instead of L′i, where Li = ((ai, bi), (cj, A(cj)))
and Lm+1 = ((cj, A(cj)), (a′i, b′i)). This step is used repeatedly (if needed) in
an analogous way. This way, we obtain a finite set of s linear segments Li =
((ai, bi), (a′i, b′i)) from J;

4. Step 3:

• For i = 1, 2, . . . , s and for every linear segment Li = ((ai, bi), (a′i, b′i)) from J,
we compute its image zl f

(Li) under Zadeh’s extension of the map l f restricted
to [ai, a′i]. More precisely, for every Li, we obtain a linear segment zl f

(Li) =

((l f (ai), bi), (l f (a′i), b′i));
• Take pointwise maxima of the obtained linear segments of zl f

(Li), i = 1, 2, . . . , s,

in order to obtain the graph of zk
l f
(A);

5. Step 4:

• If k = M, then the algorithm is finished;
• If k < M, then put k = k + 1, and repeat the whole procedure, i.e., continue from

Step 2;

6. Output:

• Depict images of z f (A), . . . , zM
f (A) in a 3D plot.

4.2. Examples

In this subsection, the algorithm for the approximation of fuzzy dynamical systems
is demonstrated with the help of three examples. Below, we take three interval maps g1,
g2, and g3 and an appropriate fuzzy set Ai, i = 1, 2, 3, as the initial stages, and then, we

Mathematics 2021, 9, 2737 17 of 26

compute the first tens of iterations to demonstrate the time evolution of the given initial
state.

Example 6. Let a piecewise linear function g1 be given by five points {[0, 0], [1/8, 3/4], [2/5, 3/5],
[1, 0]}, and let a piecewise linear fuzzy set A1 be given by the following points {[0, 0], [1/5, 0], [2/5, 3/5],
[4/5, 1], [9/10, 0], [1, 0]}(see Figure 6).

Figure 6. The graphs of the function g1 given by 4 points (left) and the fuzzy set A1 given by 6 points
(right).

Now, we can use the algorithm introduced in Section 4. Below (see Figure 7), we can see a final
plot that contains images of the fuzzy set A1 for the first 30 iterations. This example gives a precise
trajectory; the linearization of the function g1 was not needed.

Figure 7. The graphs of zg̃1 (A1), . . . , z30
g̃1
(A1).

Example 7. Let a piecewise linear function g2 be given by a formula:

g2(x) = (−2.9 + (−4.1 + (−15.6− 14(−0.8 + x))(−0.2 + x))(−0.6 + x))(−1 + x)x

and let a piecewise linear fuzzy set A2 be given by points {[0, 0], [1/10, 1], [1, 0]}. First, the PSO
algorithm, which searches for a suitable linearization of a function g2, is applied. Therefore, we
have a linearized function lg2 , with ` = 17, D = 80, I = 100, which can be seen in Figure 8. Then,
the algorithm for the approximation of fuzzy dynamical system can continue.

Finally, a plot containing the trajectory of the fuzzy set A2 for the first 25 iterations can be seen
(see Figure 9).

Mathematics 2021, 9, 2737 18 of 26

Figure 8. The graphs of the linearized function lg2 given by 18 points (left) and the fuzzy set A2

given by 3 points (right).

Figure 9. The graphs of zlg2
(A2), . . . , z25

lg2
(A2).

Example 8. Let a piecewise linear function g3 be given by three points {[0, 0]}, [1/10, 9/10], [1, 0]},
and let A3 be given by 30 points, as depicted in Figure 10. Now, we can use the algorithm for the
approximation of the trajectory within an induced fuzzy dynamical system.

Figure 10. The graphs of the function lg3 given by 3 points (left) and the fuzzy set A3 given by 30
points (right).

Again, a plot containing the first 30 elements of the trajectory of the fuzzy set A3 under the
map zlg3

can be seen (see Figure 11). As we can see, the trajectory tends to have a periodic behavior.

Mathematics 2021, 9, 2737 19 of 26

Figure 11. The graphs of zlg3
(A3), . . . , z30

lg3
(A3).

Example 9. Let a function g4 be given by the formula g4(x) = 3.45x(1− x), and let a fuzzy set
A4 be given by 23 points (see Figure 12).

To be able to calculate the approximation of Zadeh’s extension of g4 we need to linearize the
function g4 first. Thus, we use the PSO algorithm to find the an appropriate linearization of the
function g4.

Figure 12. The graphs of the linearized function lg4 given by 18 points (left) and the fuzzy set A4

given by 23 points (right).

Below (Figure 13), we can see a final plot containing the first 30 iterations of the trajectory of
the fuzzy set A4 under the map zlg4

.

Figure 13. The graphs of zlg4
(A4), . . . , z30

lg4
(A4).

4.3. Algorithmic Complexity of Approximations of Fuzzy Dynamical Systems

In this subsection, the computational complexity with the Big O notation and the
computation time of a few examples are provided.

Mathematics 2021, 9, 2737 20 of 26

4.3.1. Computational Complexity

Let n be the input data size. The Big O notation of this algorithm is O(n2 log(n)). The
input data preprocessing has a computational complexity equal to n; the main loop has
a computational complexity equal to n2 log(n); the last algorithm part has a complexity
equal to n2. Thus, the final complexity is O(n2 log(n)), which is given by the sum of all
parts n + n2 log(n) + n2.

4.3.2. Computation Time

In Table 8, we provide the computation time of the examples introduced in Section 4.2
for a rough orientation.

Table 8. Computing time in seconds.

10 Iterations 100 Iterations 1000 Iterations 10,000 Iterations

Example 1 0.35 2.11 24.59 317.12
Example 2 2.12 158.42 17,457.49 over 5 h
Example 3 0.62 5.26 66.99 794.6
Example 4 2.83 147.44 16,552.96 over 5 h
a Compiled in Python 3.8 (CPU: AMD 2920X, RAM: 32 GB, GPU: AMD RX VEGA64).

5. Accuracy of Approximations of Fuzzy Dynamical Systems

It is indisputable that the accuracy of approximations of fuzzy dynamical systems
largely depends on the given input values and also the parameter selection. Generally,
known as a butterfly effect [27] in dynamical systems, a small change of the side of inputs
can cause a large change in the output, especially in long-term observations. In the previous
version of our algorithm [20], we dealt with calculations of piecewise linear functions and
fuzzy sets, so there was no need to open any discussion on accuracy. However, because the
functions (and fuzzy sets) need not always be piecewise linear, there is a natural demand
for the algorithm proposed in this paper. Since PSO is a stochastic algorithm based on
computing with random parameters, various linearizations provided by the PSO algorithm
can give us similar, close to each other, but different outputs. Consequently, there will
definitely be different trajectories that will differ from each other especially in higher
iterations. However, it is natural to ask how significant the influence of these small
changes for the algorithm used for the computations of trajectories of an induced fuzzy
dynamical system is.

To provide a discussion on this topic, we considered tens of iterations only. Concern-
ing the butterfly effect mentioned above, it is natural that, in general, no approximation
prepared at the very beginning can be sufficient in long-term behavior, and in particular ap-
plications, some form of recalculations and adjustments will be needed, which is supposed
to be a part of our future work. Consequently, to show some observations on the stability
of the proposed algorithm, we prepared a comparison of the beginning of the trajectories.
For this comparison, we prepared yet another algorithm called a testing algorithm below,
which is based on direct calculations of a huge number of points of the phase space and
their subsequent reduction. Therefore, we considered it as a perspective for long-term
estimates; however, we considered it suitable for our purposes because it provides exact
values of Zadeh’s extension when used with a big number of points. The calculation
of the distances in the tables below was performed with the help of the Euclidean and
Manhattan metrics.

Comparison

To demonstrate the stability, we chose Example 7 from Section 4.2. Let the function g2
be given by the following formula (see Figure 14):

g2(x) = −2.9 + (−4.1 + (−15.6− 14(−0.8 + x))(−0.2 + x))(−0.6 + x))(−1 + x)x.

Mathematics 2021, 9, 2737 21 of 26

+
Figure 14. The graph of the function g2 (left) and a fuzzy set A represented by 2020 equidistantly
distributed points (right).

In Figure 15, one can see the results calculated with the help of the testing algorithm
on the right side, and the second example (on the left side) is given by the algorithm based
on the PSO linearization (proposed in Section 4).

Figure 15. The graphs of zlg2
(A), . . . , z25

lg2
(A).

Upon the first sight, we can see that the trajectories are similar. To be more spe-
cific about how stable the proposed algorithm is, we calculated the distances between
each iteration with the Euclidean and Manhattan distances introduced in Section 1.6 (see
Tables 9 and 10).

In Table 11, we provide five runs of the proposed algorithm, and for each of them,
we calculated the distances to the elements of the trajectory of A provided by the testing
algorithm and the PSO-based one; we demonstrate that they tend to provide a stable
solution. The distances were calculated on a moving set of points given by images of
2020 points approximating A with their careful pruning lowering the number of approxi-
mating points. This tends to show a more practical behavior of the trajectory. In Table 12,
we provide another comparison in which the pruned points are refilled by equidistantly
distributed points. That calculation provided outcomes closer to the endograph distance,
which showed a behavior closer to theoretical studies, e.g., in [3,28], and that is also why
the butterfly effect is more observable in the latter case.

First of all, the next tables show the dependence of the choice on the number of linear
parts, i.e., when ` = 17, 25, and 40, respectively.

Table 9. The distances (Euclidean, Manhattan) between the testing algorithm and the proposed algorithm for ` = 17.

Run 1 Run 2 Run 3 Run 4 Run 5

1.it 0.8919, 5.1155 1.566, 11.4928 1.5653, 11.4085 1.5659, 11.5735 1.0103, 7.0495
2.it 1.0983, 5.7121 1.963, 12.2853 1.9607, 12.1007 1.9627, 12.4276 1.2682, 7.6393
3.it 1.0682, 5.6671 1.8581, 10.3098 1.8528, 10.0456 1.8575, 10.5338 1.2167, 7.2449
4.it 1.0705, 6.207 1.697, 9.2699 1.7696, 9.4782 1.6962, 9.5903 1.2425, 7.7789
5.it 0.9993, 6.6038 1.5301, 8.7346 1.5138, 8.3465 1.5295, 9.1549 1.0583, 7.59

Mathematics 2021, 9, 2737 22 of 26

Table 9. Cont.

Run 1 Run 2 Run 3 Run 4 Run 5

6.it 0.8675, 6.8625 1.3713, 8.5283 1.3462, 8.0865 1.3712, 9.0421 0.946, 7.9534
7.it 0.6659, 7.0358 1.2889, 8.7891 1.2542, 8.3194 1.2901, 9.4107 0.9829, 8.7625
8.it 0.6933, 7.7999 1.1768, 8.9707 1.1293, 8.5039 1.1801, 9.7274 1.0224, 9.688
9.it 0.7192, 8.5805 1.0354, 9.0945 0.9697, 8.6472 1.0425, 9.9978 0.8383, 9.8451

10.it 0.7436, 9.3818 1.2491, 10.4618 1.1856, 10.0458 1.2586, 11.5175 1.0863, 11.389
11.it 0.7678, 10.1832 1.1043, 10.5292 1.0207, 10.1579 1.12, 11.741 0.9025, 11.5197
12.it 0.7914, 10.9849 1.1364, 11.2221 1.0444, 10.9133 1.1576, 12.5993 0.9294, 12.2951
13.it 0.815, 11.7803 0.9626, 11.235 0.8387, 11.0108 0.9958, 12.793 0.9661, 13.2032
14.it 0.8383, 12.5751 0.9962, 11.8828 0.8642, 11.7657 1.0374, 13.6378 0.9929, 13.9848
15.it 0.8614, 13.3641 1.0289, 12.5086 0.8896, 12.523 1.0789, 14.4797 1.0293, 14.9047
16.it 0.8844, 14.1493 1.0606, 13.1153 0.9146, 13.2817 1.12, 15.3187 1.0557, 15.6904
17.it 0.609, 14.2639 1.0917, 13.7037 0.9395, 14.0371 1.161, 16.1522 0.8597, 15.9405
18.it 0.6414, 15.0579 1.1216, 14.2828 0.9633, 14.7924 1.201, 16.9827 0.8908, 16.7227
19.it 0.674, 15.8522 0.9309, 14.1761 0.718, 14.8648 1.0399, 17.1336 0.9214, 17.4992
20.it 0.707, 16.6491 1.1796, 15.4016 1.0094, 16.2746 1.2798, 18.6267 0.9629, 18.4067
21.it 0.7403, 17.4479 0.9981, 15.2692 0.7761, 16.3257 1.1295, 18.7622 0.9914, 19.1622
22.it 0.7744, 18.2657 1.0302, 15.8061 0.8041, 17.0482 1.1724, 19.5691 1.0305, 20.0508
23.it 0.8092, 19.0897 1.0613, 16.3339 0.8318, 17.7678 1.214, 20.3694 1.0567, 20.7841
24.it 0.8448, 19.9349 1.2875, 17.5359 1.0976, 19.1672 1.428, 21.8433 1.094, 21.6593
25.it 0.881, 20.7703 1.1208, 17.3695 0.8869, 19.2024 1.2929, 21.9435 1.1189, 22.3747

Table 10. The distances (Euclidean, Manhattan) between the testing algorithm and the proposed algorithm for ` = 25.

Run 1 Run 2 Run 3 Run 4 Run 5

1.it 1.5642, 10.4592 0.8908, 4.2392 0.8912, 4.4135 1.2241, 6.9286 0.9287, 4.7612
2.it 1.9588, 10.7188 1.1626, 4.6363 1.0964, 4.439 1.5573, 7.3061 1.1633, 4.6546
3.it 1.8489, 8.2665 1.0623, 3.7226 1.0645, 3.9701 1.5058, 6.0132 1.1641, 4.0716
4.it 1.6798, 6.6697 1.0606, 3.7612 1.0644, 4.0904 1.4042, 5.246 1.0603, 3.5433
5.it 1.5013, 5.6034 0.9832, 3.6547 0.9895, 4.0835 1.2691, 4.6698 0.9827, 3.3467
6.it 1.3264, 4.8673 0.8415, 3.4435 0.8517, 3.9723 1.1876, 4.5088 0.8405, 3.0633
7.it 1.2255, 4.625 0.62, 3.1822 0.638, 3.8011 0.8711, 3.6628 0.8685, 3.3129
8.it 1.0879, 4.3399 0.6365, 3.509 0.6584, 4.2093 0.8929, 3.9885 0.8895, 3.5422
9.it 0.9088, 4.0241 0.6506, 3.8275 0.6763, 4.6053 0.911, 4.3057 0.6472, 3.1277

10.it 1.1254, 4.9738 0.6623, 4.1451 0.6918, 4.9916 0.9254, 4.6219 0.9201, 3.9785
11.it 0.9359, 4.6423 0.6733, 4.4663 0.7063, 5.3718 0.6763, 4.293 0.6675, 3.5389
12.it 0.9466, 4.9566 0.6833, 4.7987 0.7194, 5.7473 0.9495, 5.2703 0.6757, 3.7362
13.it 0.6915, 4.6111 0.6934, 5.14 0.732, 6.1185 0.6961, 4.9436 0.6834, 3.9269
14.it 0.6998, 4.9198 0.703, 5.4966 0.7438, 6.4878 0.7053, 5.279 0.6902, 4.113
15.it 0.7077, 5.2263 0.7127, 5.8664 0.7552, 6.8555 0.7145, 5.6215 0.6967, 4.2953
16.it 0.7152, 5.5327 0.7227, 6.249 0.7662, 7.2239 0.7237, 5.9727 0.7027, 4.4741
17.it 0.7229, 5.8398 0.2902, 5.9704 0.3886, 6.9216 0.2908, 5.6591 0.2213, 3.9769
18.it 0.7298, 6.1526 0.3115, 6.3742 0.4062, 7.293 0.31, 6.0275 0.2324, 4.1478
19.it 0.2921, 5.7953 0.3333, 6.786 0.4234, 7.6654 0.3297, 6.4022 0.2433, 4.3126
20.it 0.7446, 6.7901 0.355, 7.2022 0.4405, 8.0383 0.3498, 6.7842 0.2541, 4.4726
21.it 0.3219, 6.4371 0.3769, 7.6243 0.4572, 8.4119 0.3702, 7.1717 0.2648, 4.6297
22.it 0.3371, 6.7674 0.3986, 8.0527 0.4737, 8.7869 0.3909, 7.5698 0.2754, 4.7885
23.it 0.3525, 7.1021 0.42, 8.4847 0.4898, 9.1612 0.4117, 7.9721 0.286, 4.9452
24.it 0.7756, 8.1237 0.4408, 8.9201 0.5057, 9.5373 0.4325, 8.3832 0.2966, 5.1046
25.it 0.3834, 7.7849 0.4611, 9.3534 0.5215, 9.9133 0.453, 8.7923 0.3071, 5.2582

Mathematics 2021, 9, 2737 23 of 26

Table 11. The distances (Euclidean, Manhattan) between the testing and the proposed algorithm for ` = 40.

Run 1 Run 2 Run 3 Run 4 Run 5

1.it 0.9581, 4.164 0.9245, 3.9838 0.8896, 3.6624 0.8553, 3.8953 0.9259, 4.2064
2.it 1.1620, 4.0212 1.1621, 4.2027 1.0947, 3.7035 1.0997, 4.7368 1.1634, 4.3623
3.it 1.1632, 3.4836 1.1635, 3.7722 1.0614, 3.1262 1.0727, 4.6947 1.1658, 3.9224
4.it 1.0589, 2.8857 1.0597, 3.2758 1.0591, 3.0348 1.0787, 5.1298 1.0640, 3.4514
5.it 0.9805, 2.5967 0.9817, 3.0868 0.9807, 2.7742 1.0128, 5.3904 0.9889, 3.3021
6.it 0.8370, 2.2123 0.8391, 2.8005 0.8374, 2.4034 0.8895, 5.5319 0.8510, 3.0571
7.it 0.8641, 2.3681 0.6158, 2.4489 0.6127, 1.9762 0.7034, 5.6009 0.6374, 2.7494
8.it 0.8841, 2.5122 0.8876, 3.2974 0.6273, 2.1294 0.7386, 6.2316 0.9069, 3.6503
9.it 0.6381, 2.0106 0.6442, 2.8962 0.6392, 2.2797 0.7720, 6.8422 0.6769, 3.2981

10.it 0.9124, 2.7679 0.9177, 3.7655 0.6484, 2.4325 0.8035, 7.4366 0.9459, 4.2058
11.it 0.6547, 2.2352 0.6638, 3.3555 0.6566, 2.582 0.8343, 8.0102 0.7092, 3.8233
12.it 0.6609, 2.344 0.6717, 3.5941 0.6631, 2.7297 0.5626, 7.9099 0.7239, 4.0827
13.it 0.6665, 2.4516 0.6792, 3.8382 0.6692, 2.8766 0.8928, 9.0961 0.7384, 4.3415
14.it 0.6711, 2.5577 0.6859, 4.0917 0.6743, 3.0270 0.9207, 9.6089 0.7522, 4.5992
15.it 0.6751, 2.662 0.6924, 4.3556 0.6789, 3.1821 0.9479, 10.105 0.7659, 4.8562
16.it 0.6786, 2.7652 0.6987, 4.6295 0.6832, 3.3433 0.7070, 9.9192 0.7793, 5.1142
17.it 0.1092, 2.1953 0.2101, 4.2436 0.1389, 2.8395 0.7402, 10.3864 0.4188, 4.7006
18.it 0.1143, 2.2967 0.2244, 4.54 0.1475, 3.0161 0.7725, 10.8465 0.4403, 4.9594
19.it 0.1193, 2.3959 0.2394, 4.8484 0.1563, 3.199 0.8038, 11.298 0.4615, 5.2186
20.it 0.1243, 2.4913 0.2550, 5.1663 0.1653, 3.3876 0.8343, 11.7414 0.4824, 5.4763
21.it 0.1291, 2.5846 0.2711, 5.4949 0.1747, 3.584 0.8639, 12.1762 0.5029, 5.7325
22.it 0.1340, 2.6804 0.2876, 5.8357 0.1845, 3.7945 0.8927, 12.6057 0.5231, 5.9887
23.it 0.1390, 2.7771 0.3044, 6.1845 0.1948, 4.0166 0.9208, 13.0294 0.5430, 6.2452
24.it 0.1442, 2.8775 0.3215, 6.5434 0.2057, 4.2559 0.9482, 13.447 0.5627, 6.5046
25.it 0.1496, 2.978 0.3388, 6.908 0.2171, 4.5056 0.9747, 13.8553 0.5820, 6.7657

Table 12. The distances (Euclidean, Manhattan) between the testing and the proposed algorithm in 2020 points for ` = 40.

Run 1 Run 2 Run 3 Run 4 Run 5

1.it 0.9581, 4.164 1.5653, 11.4085 0.8896, 3.6624 0.8553, 3.8953 0.9259, 4.2064
2.it 1.1621, 4.1663 1.9612, 12.7846 1.0948, 3.8907 1.1009, 5.1424 1.1637, 4.5722
3.it 1.1633, 3.8174 1.9757, 12.4359 1.0616, 3.5694 1.0773, 5.6598 1.1670, 4.4189
4.it 1.1843, 3.9087 2.2011, 14.8196 1.1847, 4.283 1.2092, 7.105 1.1906, 4.6808
5.it 0.9811, 3.3538 1.7223, 12.8369 0.9817, 3.7878 1.0309, 7.7422 0.9933, 4.344
6.it 0.8382, 3.2151 1.6008, 13.6743 0.8392, 3.7529 0.9272, 8.9988 0.8616, 4.605
7.it 0.8655, 3.5041 1.8712, 16.5554 0.6156, 3.4628 0.7572, 9.2505 0.6533, 4.349
8.it 0.8860, 3.9035 1.7092, 17.2633 0.6315, 3.995 0.8170, 10.8973 0.9245, 5.7198
9.it 0.9021, 4.2084 1.6292, 18.1477 0.9043, 5.0636 1.0604, 12.2797 0.9445, 5.9602

10.it 0.9151, 4.4996 2.2977, 23.9888 0.6544, 4.8894 0.9081, 13.3456 0.9678, 6.5753
11.it 0.6597, 4.2437 1.7037, 21.5917 0.6647, 5.5777 0.9572, 14.6087 0.7493, 6.578
12.it 0.6669, 4.6091 1.6183, 23.3675 0.6721, 5.9713 0.7850, 15.9054 0.7757, 7.2886
13.it 0.9431, 5.5407 1.6391, 24.0636 0.9479, 7.1016 1.2524, 18.1113 1.0361, 8.5428
14.it 1.1587, 6.4636 1.7918, 25.41 1.1638, 8.2782 1.0868, 17.6525 1.2395, 9.4029
15.it 1.3438, 7.6741 1.8359, 27.9844 1.1716, 8.7462 1.4963, 21.4299 1.4260, 10.8137
16.it 0.6890, 6.0338 1.2867, 26.1661 0.6994, 7.8038 1.0118, 20.3395 0.8798, 10.0349
17.it 0.1612, 5.5331 1.1384, 26.785 0.2044, 7.3743 1.0329, 20.8362 0.5516, 8.8711
18.it 0.1703, 5.8584 1.7918, 30.7683 0.2178, 7.8088 1.0420, 20.8536 0.5699, 9.0907
19.it 0.1775, 6.0815 0.9871, 28.0267 0.2277, 8.1142 1.1324, 22.483 0.6296, 10.1419
20.it 0.1858, 6.3469 1.2572, 30.9921 0.2345, 8.3376 1.2104, 24.2562 0.6629, 10.7395

Mathematics 2021, 9, 2737 24 of 26

Table 12. Cont.

Run 1 Run 2 Run 3 Run 4 Run 5

21.it 0.1914, 6.5616 1.0957, 31.7035 0.2480, 8.7462 1.2284, 24.8786 0.6771, 10.793
22.it 0.2033, 6.8999 1.1531, 33.7333 0.2534, 8.9109 1.2858, 26.0793 0.7062, 11.3334
23.it 0.2064, 7.028 1.1959, 35.0461 0.2753, 9.4986 1.3534, 27.889 0.7339, 12.113
24.it 0.2137, 7.1825 1.4009, 36.7751 0.2740, 9.4073 1.3634, 27.4815 0.7737, 12.2315
25.it 0.2184, 7.3571 1.2388, 37.0353 0.2984, 10.0981 1.4508, 29.8616 0.7946, 12.9525

In Figure 16, we also depict the first, tenth, and twenty-fifth iteration. The green
trajectory is the result of our proposed algorithm, the red trajectory is the result given by
the testing algorithm, while the last image illustrates the difference between the selected it-
erations.

Figure 16. Accuracy of the algorithm—the 1st, 10th, and 25th iteration.

6. Conclusions

In this contribution, we introduced an algorithm that can be used for simulations of
fuzzy dynamical systems induced by one-dimensional maps. The proposed algorithm
is partially based on the calculation of Zadeh’s extension on smaller linear pieces imple-
mented in a previous paper ([20]). The latter approach covered topologically large, yet
not the full class of continuous interval maps. To be able to compute it for any arbitrary

Mathematics 2021, 9, 2737 25 of 26

continuous interval map, we focused on the linearization process and adapted the PSO
algorithm to search for a suitable linearization of a given map. This approach provides
us an approximated trajectory of the initial state A in a general one-dimensional fuzzy
dynamical system. To highlight some advantages in contrast to previous approaches, we
are not restricted to fuzzy numbers only (the family of fuzzy sets is far richer), we are
not restricted to convex fuzzy sets (convexity is not preserved by higher iterations), and,
if needed, we are able to deal with discontinuous fuzzy sets (which naturally appear in
higher iterations). We are also convinced that our approach will be generalized to higher
dimensions, which would be a case not provided by previous approaches.

The proposed algorithm has been tested from several points of view. In the first part
of the algorithm, the parameter selection in the PSO algorithm has been elaborated and,
also, the algorithm complexity was discussed. The algorithm complexity was discussed
also for the main part of the proposed algorithm and, subsequently, some trajectories
of fuzzy dynamical systems derived by Zadeh’s extension were presented and briefly
compared in precision. The next natural steps are to extend this algorithm into higher
dimensions, to implement advanced features like automatic detection of pieces of linearity
of the approximating map, to show implementations in particular applications and so on.

Author Contributions: The authors contributed equally to this paper. All authors have read and
agreed to the published version of this paper.

Funding: N. Škorupová acknowledges funding from the project “Support of talented PhD students
at the University of Ostrava” from the program RRC/10/2018 “Support for Science and Research in
the Moravian-Silesian Region 2018”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Esmi, E.; Sussner, P.; Ignácio, G.B.D.; de Barros, L.C. A parametrized sum of fuzzy numbers with applications to fuzzy initial

value problems. Fuzzy Sets Syst. 2018, 331, 85–104. [CrossRef]
2. Pedro, F.S.; de Barros, L.C.; Esmi, E. Population growth model via interactive fuzzy differential equation. Inf. Sci. 2019, 481,

160–173. [CrossRef]
3. Kupka, J. On fuzzifications of discrete dynamical systems. Inf. Sci. 2011, 181, 2858–2872. [CrossRef]
4. Zhao, Y.; Cheng, W.-C.; Ho, C.-C. On sequential entropy of fuzzy systems. J. Intell. Fuzzy Syst. 2011, 34, 2021–2029. [CrossRef]
5. Chalco-Cano, Y.; Misukoshi, M.T.; Román-Flores, H.; Flores-Franulic, A. Spline approximation for Zadeh’s extensions. Int. J.

Uncertain. Fuzziness—Knowl.-Based Syst. 2009, 7, 269–280. [CrossRef]
6. Chalco-Cano, Y.; Román-Flores, H.; Rojas-Medar, M.; Saavedra, O.; Jiménez-Gamero, M.-D. The extension principle and a

decomposition of fuzzy sets. Inf. Sci. 2007, 177, 5394–5403. [CrossRef]
7. Scheerlinck, K.; Vernieuwe, H.; Baets, B.D. Zadeh’s extension principle for continuous functions of non-interactive variables:

A parallel optimization approach. IEEE Trans. Fuzzy Syst. 2011, 20, 96–108. [CrossRef]
8. Ahmad, M.Z.; Hasan, M.K. A new approach for computing Zadeh’s extension principle. Matematika 2010, 26, 71–81.
9. Stefanini, L.; Sorini, L.; Guerra, M.L. Simulation of fuzzy dynamical systems using the LU-representation of fuzzy numbers.

Chaos Solitons Fractals 2006, 29, 638–652. [CrossRef]
10. Guerra, M.L.; Stefanini, L. Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets Syst. 2005, 150,

5–33. [CrossRef]
11. Kupka, J. On approximations of Zadeh’s extension principle. Fuzzy Sets Syst. 2016, 283, 26–39. [CrossRef]
12. Hanss, M. The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst.

2002, 130, 277–289. [CrossRef]
13. Otto, K.N.; Lewis, A.D.; Antonsson, E.K. Approximating α-cuts with the vertex method. Fuzzy Sets Syst. 1993, 55, 43–50.

[CrossRef]
14. Sánchez, D.E.; Wasques, V.F.; Arenas, J.P.; Esmi, E.; de Barros, L.C. On interactive fuzzy solutions for mechanical vibration

problems. Appl. Math. Model. 2021, 96, 304–314. [CrossRef]

http://doi.org/10.1016/j.fss.2017.05.017
http://dx.doi.org/10.1016/j.ins.2018.12.076
http://dx.doi.org/10.1016/j.ins.2011.02.024
http://dx.doi.org/10.3233/JIFS-17793
http://dx.doi.org/10.1142/S0218488509005851
http://dx.doi.org/10.1016/j.ins.2007.07.007
http://dx.doi.org/10.1109/TFUZZ.2011.2168406
http://dx.doi.org/10.1016/j.chaos.2005.08.096
http://dx.doi.org/10.1016/j.fss.2004.06.007
http://dx.doi.org/10.1016/j.fss.2015.03.014
http://dx.doi.org/10.1016/S0165-0114(02)00045-3
http://dx.doi.org/10.1016/0165-0114(93)90300-7
http://dx.doi.org/10.1016/j.apm.2021.03.002

Mathematics 2021, 9, 2737 26 of 26

15. Wasques, V.F.; Esmi, E.; Barros, L.C. Solution to the advection equation with fuzzy initial condition via sup-j extension principle.
In Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), 12th Conference of the
European Society for Fuzzy Logic and Technology (EUSFLAT), and 11th International Summer School on Aggregation Operators
(AGOP), Bratislava, Slovakia, 19–24 September 2021; Atlantis Press: Paris, France, 2021; pp. 134–141.

16. Wasques, V.F.; Esmi, E.; Barros, L.C.; Sussner, P. The generalized fuzzy derivative is interactive. Inf. Sci. 2020, 519, 93–109.
[CrossRef]

17. Jardón, D.; Sánchez, I.; Sanchis, M. Transitivity in fuzzy hyperspaces. Mathematics 2020, 8, 1862. [CrossRef]
18. Khatua, D.; Maity, K. Stability of fuzzy dynamical systems based on quasi-level-wise system. J. Intell. Fuzzy Syst. 2017, 33,

3515–3528. [CrossRef]
19. Ma, C.; Zhu, P.; Lu, T. Some chaotic properties of fuzzified dynamical systems. SpringerPlus 2016, 5, 1–7. [CrossRef]
20. Kupka, J.; Škorupová, N. Calculations of Zadeh’s extension of piecewise linear functions. In International Fuzzy Systems Association

World Congress; Springer: Berlin/Heidelberg, Germany, 2019; pp. 613–624. [CrossRef]
21. Kupka, J.; Škorupová, N. On PSO-based approximation of Zadeh’s extension principle. In International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 267–280.
[CrossRef]

22. Block, L.S.; Coppel, W.A. Dynamics in One Dimension; Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]
23. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
24. Kloeden, P. Fuzzy dynamical systems. Fuzzy Sets Syst. 1982, 7, 275–296. [CrossRef]
25. Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston,

MA, USA, 2011; pp. 760–766.
26. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
27. D’Aniello, E.; Steele, T.H. Asymptotically stable sets and the stability of omega-limit sets. J. Math. Anal. Appl. 2006, 321, 867–879.

[CrossRef]
28. Canovás, J.; Kupka, J. On the topological entropy on the space of fuzzy numbers. Fuzzy Sets Syst. 2014, 257, 132–145. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2020.01.042
http://dx.doi.org/10.3390/math8111862
http://dx.doi.org/10.3233/JIFS-17165
http://dx.doi.org/10.1186/s40064-016-2297-z
http://dx.doi.org/10.1007/978-3-030-21920-8_54
http://dx.doi.org/10.1007/978-3-030-50153-2_20
http://dx.doi.org/10.1007/ BFb0084762
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0165-0114(82)90056-2
http://dx.doi.org/10.1016/j.jmaa.2005.08.077
http://dx.doi.org/10.1016/j.fss.2013.05.013

	Introduction
	Motivation of This Study
	State-of-the-Art
	Novelties of This Study
	Additional Remarks
	Preliminaries
	Metrics
	Dynamical Systems
	Fuzzy Dynamical Systems

	Particle Swarm Optimization
	Pseudocode of PSO-Based Linearization

	Testing of the Linearization Procedure
	Parameter Selection
	Functions Used for Testing
	The Choice of Parameters: Our Conclusion
	Examples of the Linearization Process
	Complexity of the Proposed Algorithm
	Computational Complexity
	Computation Time

	Approximation of Fuzzy Dynamical Systems
	Pseudocode
	Examples
	Algorithmic Complexity of Approximations of Fuzzy Dynamical Systems
	Computational Complexity
	Computation Time

	Accuracy of Approximations of Fuzzy Dynamical Systems
	Conclusions
	References

