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Abstract: In this paper, we develop an economic order quantity (EOQ) model for fixed shelf-life
items and a non-increasing demand. The objective of this model is to maximize the total profit. We
find the criterion to decide (i) the interior maximum solution or (ii) the boundary maximum solution.
Eight numerical examples are given to illustrate all possible scenarios of this generalized model. Our
results identify a scenario for which the maximum profit is always negative. This is highly relevant
for firms in the public sector operating at a financial loss.
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1. Introduction

There are many research topics that are related to inventory management. For example,
Sarkar et al. [1] and Quezada-Téllez et al. [2] studied inventory management in society. Lee
et al. [3] and Zimpel-Leal, and Lettice [4] considered industry. Rubio-Valdehita et al. [5] and
Górska-Warsewicz et al. [6] examined retailing companies. Gładysz et al. [7] and Orynycz
et al. [8] presented lean management. De Giovanni [9] and Malik, and Sarkar [10] developed
supply chain philosophies. Inventory management depends on the type of product that a
firm retails. Stable products have no expiration date, while perishable products feature a
limited time range, gradually losing their value over time. Whereas perishable products,
such as fresh fish, lose their value steadily, others, such as milk, have a fixed shelf life. Before
the expiry date is reached, these products do not change in appearance, taste, texture, or
flavor. There exists a large body of research on inventory models for products with a fixed
shelf life. Most inventory models dealing with deteriorated items have a constant decay
rate. For example, Lin et al. [11] developed a production inventory model with the constant
deteriorated date and the production rate dependent on demand and inventory level, and
Yang et al. [12] studied an inventory model with a constant decay rate proportional to the
inventory level. In these models, a dichotomous shelf-life effect for perishable items is
assumed. The item is either as good as brand-new or the item is deteriorated and cannot be
used. However, this assumption is not reasonable in some situations. An obvious case is
an agricultural product. The quality of products perceived by consumers may be reduced
within the shelf-life duration. They may purchase substitute products or brands offering
a later expiry date. The demand reaches the maximum when the product is fresh and
declines as time goes on. Just a few inventory models considered perishable items with
a fixed shelf-life. The current paper is based on the work of Avinadav and Arponen [13],
who considered the effect of perceived quality, using a declining demand rate, which is
dependent on the time until the expiry date. When an item is fresh, its perceived quality is
considered perfect. They constructed an inventory model with polynomial-type demand
which is proportional to the remaining time to full shelf-life duration. The research gap
is that Avinadav and Arponen [13] provided those numerical examples with negative
maximum profit. It seems trivial that for an example of a maximum profit inventory model
obtains a negative profit then this example or the computation of this numerical example
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must contain errors. However, Avinadav and Arponen [13] informed researchers that
they examined 729 numerical examples to find 255 examples with negative maximum
profits, and then they discard those 255 examples. For the remaining 474 examples with
positive maximum profits, Avinadav, and Arponen [13] execute sensitivity analysis. In this
paper, we will provide theoretical evidenceto show that under two conditions of Theorem
2, obtaining a negative maximum profit is reasonable.

Up to now, 26 papers have cited Avinadav and Arponen [13] in their references. We
will provide a brief discussion of those 26. Avinadav et al. [14] expanded this inventory
system to derive the optimal order quantity, price, and replenishment cycles for a demand
that is linearly dependent on price and time. We recall that Avinadav and Arponen [13]
considered the polynomial type demand λ(t) and then Avinadav et al. [14] extended to
λ(t, p) where p is the selling price such that λ(t, p) is the multiplication of a polynomial
type function in t and a linearly decreasing function in p. Leśniewski and Bartoszewicz [15]
study inventory models with defect items, warehouse capacity, and deterioration during
storage in a warehouse under the bullwhip effect and supply chain. Aiello et al. [16]
constructed a mathematical model to optimize the food supply chain consist of retailers and
potential recipients that operate the food recovery to include the benefits of donors and the
operational charges for the food recovery. Avinadav [17] studied periodic inventory models
to revise a classical newsvendor system such that the holding cost is related to the stock
levels within the selling period to optimize the expected profit. Avinadav et al. [18] further
generalized this approach so that generalized demand is the multiplication of a decreasing
function and a linearly decreasing function. However, Lemma 1 of Avinadav et al. [18]
is questionable, as its proof is based on the existence of an interior optimal solution. In
Section 3, this paper will provide a reasonable explanation for the restriction. In Avinadav
et al. [14] and Avinadav et al. [18], they cannot prove the uniqueness of the optimal solution
and they were not aware that sometimes the optimal solution occurs at the boundary.
Herbon [19] examined an inventory model with a perishable product with a fixed shelf life,
and a dynamic pricing policy to study consumer sensitivity to price and freshness. Aiello
et al. [20] developed a food supply chain for food recovery policies to find the optimal time
to remove perishable items from the shelves and then decided to the livestock market or
donated organizations. Chuang and Lin [21] studied a two-echelon inventory model with
a supplier and one retailer to decide the optimal solutions for selling price under a fixed
shelf-life and a ramp type demand with shortages. Ma [22] analyzed the maximization of
profit for fresh products with two quality levels by a consumer utility function to solve the
optimal solutions for ordering quantity and selling price. Muriana [23] considered a food
supply chain product with an uncertain shelf life that could be withdrawn and shipped to
alternative destinations. Avinadav [24] considered a stochastic periodic-review inventory
system to investigate its relation to the classical newsvendor problems and then derived
several approximated solutions by a Brownian motion demand process. Muriana [25]
developed a deterioration model with a stochastic demand following a normal distribution
for open-dating foods with a shelf life. Yamazaki et al. [26] analyzed safety stock and cycle
stock to study the relationship between fluctuation stock and safety stock under various
cases of differences between supply and demand. Avinadav et al. [27] constructed a new
inventory system with deteriorated items to determine the optimal promotion expenditures,
ordering quantity, selling price, and cycle length. Demirag et al. [28] built an economic
order quantity model with a decreasing demand, expired date, and a linear expression
that is closely related to Avinadav and Arponen [13]. Demirag et al. [28] obtained a cubic
polynomial for the optimal cycle length and then they derived three formulated candidates
for the optimal solution to replace the numerical approximated approach proposed by
Avinadav and Arponen [13]. Muriana [29] tried to diminish the influence of production
losses along the supply chain when demand is restricted by various economic, political,
climatic, and legal factors. Sharma et al. [30] studied partial backlogging policy when
demand is dependent on selling price and expiry date. Chernonog and Avinadav [31]
considered a two-echelon supply chain consisting of a leader (manufacturer) and a follower
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(retailer) where the demand is related to investment in advertising, product age, and price.
Hanukov et al. [32] developed a combined queueing and inventory system to consider
inventory management techniques and time management policies simultaneously for
the fast-food industry. They obtained the steady-state probabilities by matrix geometric
methods to decide the optimal level of investment in preservation technologies and the
optimal preliminary services capacity. Lin et al. [33] examined a system to the reserves and
procurement management for humanitarian logistics by sensitivity analyses and numerical
examples to reveal managerial insights and then provided practical suggestions for the
government. Avinadav [34] formulated a two-echelon supply chain with a manufacturer
and a retailer to examine conditions where the demand is related to the age of the product
on a shelf-life, sales effort, and selling price. Chernonog [35] developed a two-echelon
supply chain consisting of a manufacturer and a retailer under a Stackelberg game to
decide the investment in advertising, cycle length, and the selling price. He studied two
cases: retailer-leader and manufacturer-leader to derive relations between advertising
investment and cycle length. Hanukov et al. [36] constructed service models for the fast-
food market for fastidious or strategic customers for fresh items or pre-prepared items
under different prices to optimize the expected profit. Krommyda et al. [37] developed
a maximum profit inventory model in which products that are near their expiry date
are reduced in price, donated to charity, or sold to the livestock market. Muriana [38]
examined inventory models for deteriorated items with Weibull perishable rate to consider
the relationship between the characteristic life and the perishable rate to locate the optimal
solution. Hanukov et al. [39] developed a multi-server model to short sojourn time that
servers will use their idle time to make partially prepared items. They applied a Markovian
queueing method to derive closed-form solutions for the entries of the rate matrix.

In this paper, we extend the inventory model of Avinadav and Arponen [13] from a
special form of polynomial type demand to a generalized version of any non-increasing
demand. We further prove the existence and uniqueness of the optimal solution for our
new inventory model. We also identify the criterion for determining whether the optimal
solution is an interior or a boundary point. Moreover, when the optimal solution occurs at
the boundary point, we prove that the maximum profit is always negative. This finding is
relevant to firms in the public sector operating at a financial loss.

The remainder of this paper is organized as follows. In Section 2, we provide a
literature review to compare our new model with those existing systems to demonstrate
our contributions. In Section 3, we present the notation and assumptions which constitute
the framework of this paper. In Section 4, we review the solution procedure of Avinadav
and Arponen [13]. We derive an extension and then demonstrate our improvements
in Section 5. In Section 6, we show that our findings can be applied to Avinadav and
Arponen [13] and Avinadav et al. [14]. In Section 7, we present eight examples of the
proposed generalized inventory model. In Section 8, we discuss several directions for
future research and managerial insights of our paper. Section 9 presents our conclusion.

2. A Literature Review among Models

We list comparisons among our new model and those existing systems to illustrate
our contribution to the academic society (Table 1).
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Table 1. Comparisons among models.

S1 B L S2 P1 S3 W P2
Aiello et al. [16] X

Aiello et al. [20] X

Avinadav [34] X X

Avinadav and Arponen [13] X

Avinadav et al. [14] X X

Avinadav et al. [18] X

Avinadav et al. [27] X X

Bhuiya et al. [40] X

Chernonog [35] X X

Chernonog andAvinadav [31] X X X

Chuang and Lin [21] X X

De Giovanni [9] X

Demirag [28] X

Ganguly et al. [41] X X

Gładysz et al. [7] X X

Hanukov et al. [32] X

Hanukov et al. [36] X

Herbon [19] X

Hota et al. [42] X

Khan et al. [43] X

Kim et al. [44] X

Krommyda et al. [37] X

Lee et al. [3] X

Leśniewski and Bartoszewicz [15] X

Lin et al. [11] X X

Ma [22] X

Malik and Sarkar [10] X

Mishra et al. [45] X

Muriana [23] X X

Muriana [25] X X

Muriana [29] X

Muriana [38] X

Orynycz et al. [8] X

Sarkar et al. [1] X X

Sharma et al. [30] X

Taleizadeh et al. [46] X

Yang et al. [12] X X

Zimpel-Leal and Lettice [4] X

Sarkar [47] X X

Sarkar [48] X X

Sepehri et al. [49] X X X

This study X
Abbreviations for the first row: S1: Sustainable; B: Backordering; L: Lean management; S2: Supply chain; P1:
Pricing; S3: Shelf-life; W: Waste management; P2: Perishable.
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When we constructed Table 1, we find six related papers: Ganguly et al. [41], Hota
et al. [42], Khan et al. [43], Kim et al. [44], Mishra et al. [45], and Taleizadeh et al. [46] such
that we add those six papers to our comparison. Based on the above table, we provide a
literature review to compare our new model with those existing systems to demonstrate
our contributions.

3. Notation and Assumptions

In Avinadav and Arponen [13], Avinadav et al. [14], and Avinadav et al. [18], they
used different notation. To be compatible with Avinadav and Arponen [13], we will apply
the same notation and assumptions as they used in Avinadav and Arponen [13].

The notation used in Avinadav and Arponen [13]:
n: the power for the polynomial type demand proposed by Avinadav and Arpo-

nen [13];
t : time elapsed from the beginning of the last replenishment.
T0 : the full shelf-life duration of the item.
λ(t) : the demand rate of the item at a time t.
c : the purchasing cost of the item.
p : the selling price of the item.
h : the holding cost per unit, per unit of time.
K : the ordering cost per order.
T : the cycle length (i.e., the time between sequential replenishments), which is a

decision variable;
Q : the order quantity, which is a function of T.
π : the average profit.
A =

(
p− c− hT0

n+2

)
λ0T0
n+1 : an abbreviation to simplify the expression that was defined

by Avinadav and Arponen [13].
They proposed the following five assumptions:

(1) All units in the arriving order have a full and fixed shelf-life duration.
(2) Units that have passed their expiry date have no demand.
(3) Replenishments are instantaneous and the lead time effect is neglected.
(4) Shortages are not allowed.
(5) In Avinadav and Arponen [13], the demand rate is expressed as a polynomial function

that decreases with time. In this paper, we extend the demand rate to any positive,
non-increasing function.

Avinadav and Arponen [13] assumed that demand has a decreasing polynomial form,
with the following demand rate:

λ(t) = λ0

(
1− t

T0

)n
, for 0 ≤ t ≤ T0, (1)

where λ0 is the initial demand rate with λ0 = λ(0). We extend this to arbitrary non-
increasing demand.

Cycle length T has three restrictions: (a) T > 0 if the decision-maker seeks to maximize
profit, (b) T ≤ T0 that is, the full shelf-life duration, T0, is an upper bound for the cycle
length, and (c) T ≤ (p− c)/h so that gross profit per unit is not less than maximum holding
cost Th, there by guaranteeing a profit on each item sold.

This represents a maximum profit inventory model. hT ≤ p− c means that the selling
price should not be less than the purchasing cost plus the maximum holding cost. If the
maximum solution Ta satisfies h Ta > p− c, then we know that for all items sold during
T ∈ ((p− c)/h, Ta], the net profit is negative. Hence, the replenishment cycle should
be shortened from (0, Ta] to (0, (p− c)/h]. This shows that the restriction hT ≤ p− c is
reasonable.
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4. Model Proposed by Avinadav and Arponen (2009)

In the considered system, shortages are not allowed and old items have no demand
after new items arrive. Therefore, at the end of the replenishment cycle, the inventory level
drops to zero and the order quantity is derived as follows:

Q =
∫ T

0
λ(t)dt, (2)

to derive the order quantity

Q =
λ0T0

n + 1

(
1−

(
1− T

T0

)n+1
)

. (3)

Without deterioration, the inventory level is obtained as follows:

I(t) =
∫ T

t
λ(s)ds, (4)

to obtain the inventory level

I(t) =
λ0T0

n + 1

((
1− t

T0

)n+1
−
(

1− T
T0

)n+1
)

. (5)

Average profit is derived as follows:

π(T) =
1
T

[
(p− c)Q− K− h

∫ T

0
I(t)dt

]
, (6)

to find that

π(T) =
(

hλ0T0

n + 2
− A

T

)(
1− T

T0

)n+1
+

A− K
T

, (7)

where A =
(

p− c− hT0
n+2

)
λ0T0
n+1 is an abbreviation to simplify the expression, for the domain

T ≤ min
{

T0, p−c
h

}
. They assumed an auxiliary function G(T) satisfying d

dT π(T) = G(T)
T2

yielding

G(T) =
(

1− T
T0

)n(
−n + 1

n + 2
hλ0T2 +

nA
T0

T + A
)
− (A− K), (8)

for T < min{T0, (p− c)/h}. In Lemma 3.1 of Avinadav and Arponen [13], they mentioned
that G(T) is a decreasing function for T < min

{
T0, p−c

h

}
.

In Appendix A of Avinadav and Arponen [13], they showed that

dG(T)
dT

= (n + 1)
hλ0

T0
T
(

1− T
T0

)n−1(
T − T0 + n((p− c)/h)

n + 1

)
. (9)

They further defined expression T1 as follows:

T1 =
1

n + 1
T0 +

n
n + 1

p− c
h

. (10)

This expression is a linear combination of two upper bounds T0 and p−c
h . Because

T < min
{

T0, p−c
h

}
we know that T < T1 and obtain

dG(T)
dT

< 0. (11)
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This completed the proof provided by Avinadav and Arponen [13] to verify that G(T)
is a decreasing function.

5. Proposed Modification

We extend the inventory model proposed by Avinadav and Arponen [13] from
polynomial-type decreasing demand to any non-increasing demand.

Because shortages are not allowed, the ordering quantity is derived from Q =∫ T
0 λ(t)dt where λ(t) is the demand and the gross profit is (p− c)Q. The inventory level at

the time t is derived by I(t) =
∫ T

t λ(s)ds, and the total holding cost is obtained as:

h
∫ T

0
I(t)dt =h

∫ T

0

∫ T

t
λ(s) ds dt. (12)

We derive average profit

π(T) =
1
T

[
(p− c)

∫ T

0
λ(s)ds− K− h

∫ T

0

∫ T

t
λ(s) ds dt

]
, (13)

under three conditions: T > 0, T ≤ p−c
h , and T ≤ T0.

We assume an auxiliary function, H(T), satisfying d
dT π(T) = H(T)

T2 . Based on Leibniz’s
rule, we imply that:

∂

∂T

∫ T

0

∫ T

t
λ(s)dsdt = 1 ·M(T, T)− 0 ·M(T, 0) +

∫ T

0

∂

∂T
M(T, t)dT, (14)

where M(T, t) =
∫ T

t λ(s)ds, with ∂
∂T M(T, t) = λ(T) and

∫ T
0 λ(T)dt = Tλ(T). Hence, we

find

H(T) = Tλ(T)[(p− c)− hT]− (p− c)
∫ T

0
λ(s)ds + K + h

∫ T

0

∫ T

t
λ(s) ds dt (15)

under three conditions: T > 0, T < p−c
h , and T < T0.

Applying Leibniz’s rule again, we derive that

d
dT

H(T) = T
[
(p− c− hT)

dλ(T)
dT

− h λ(T)
]

. (16)

Because demand λ(T) with λ(T) > 0 and λ(T) is a non-increasing function (i.e,
dλ(T)

dT ≤ 0), we obtain
d

dT
H(T) < 0. (17)

If we compare Equations (11) and (17) under generalized demand, we still obtain the
property proposed in Lemma 3.1 of Avinadav and Arponen [13]; that is, the first derivative
of the objective function is characterized by a decreasing function. This extends demand to
a generally non-increasing function.

We know that solving d
dT π(T) = 0 is equivalent to solving H(T) = 0.

Owing to lim
T→0

H(T) = K > 0, we assume an auxiliary notation

lim
T→min{T0,(p−c)/h}

H(T) = Ω. (18)

We consider two cases: (a) Ω ≥ 0 and (b) Ω < 0.
For Case (a), d

dT π(T) > 0 for 0 < T < min{T0, (p− c)/h} so that π(T) is an increasing
function attaining its maximum at the right boundary, min{T0, (p− c)/h}.
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For Case (b), Ω < 0, we know that d
dT π(T) is decreasing from lim

T→0
d

dT π(T) > 0

to lim
T→min{T0,(p−c)/h}

d
dT π(T) = Ω < 0, such that there exists a unique point T∗ with

d
dT π(T)|T∗ = 0 ; that is, H(T∗) = 0. We find that d

dT π(T) > 0 for 0 < T < T∗ and
d

dT π(T) < 0 for T∗ < T <min{T0, (p− c)/h}. Hence, π(T) increases for 0 < T < T∗

and decreases for T∗ < T <min{T0, (p− c)/h}. This implies that T∗ represents the global
maximum point.

We summarize these findings in the following theorem:

Theorem 1. We extended the inventory model of Avinadav and Arponen [13] from a polynomial
type demand to any non-increasing demand, to derive two cases:

(a) If Ω ≥ 0, then the maximum point will occur at the boundary point, min{T0, (p− c)/h}.
(b) If Ω < 0, then T∗ is the maximum point with H(T∗) = 0.

We can change the order of integration to imply that:∫ T

t=0

∫ T

s=t
λ(s)dsdt =

∫ T

s=0

∫ s

t=0
λ(s)dtds. (19)

This yields ∫ T

t=0

∫ T

s=t
λ(s)dsdt =

∫ T

s=0
sλ(s)ds. (20)

Moreover, we assume auxiliary function f (s) where

f (s) = [(p− c)− hs]λ(s). (21)

We know that f (s) is a decreasing function with f (s) > 0 for s ∈ (0, T) and for new
expression L(T),

L(T) = K+Tλ(T)[(p− c)− hT]−
∫ T

0
f (s)ds. (22)

We find that
Ω = lim

T→min{T0,(p−c)/h}
L(T). (23)

In the above, K is ordering cost; p is selling price; c is purchasing cost; h is holding cost
per unit time; and (p− c)− hs is the net profit for one item with store period [0, s]. If amount
λ(s)∆s is the demand during [s, s + ∆s], then this implies that [(p− c)− hs]λ(s)∆s is the
accumulated net profit during [s, s + ∆s] and

∫ T
0 [(p− c)− hs]λ(s)ds is the accumulated net

profit during [0, T]. Tλ(T)[(p− c)− hT] then indicates the accumulated net profit during
the whole time interval [0, T] with stable demand λ(T).

Hence, Ω represents the difference between (a) the sum of the ordering cost and a
stable demand accumulated net profit and (b) the accumulated net profit with decreasing
demand.

6. Applying the Proposed Approach to Models of Avinadav and Arponen (2009) and
Avinadav et al. (2014)

Based on Equation (16), we can prove d
dT H(T) < 0 by showing

(p− c− hT)
dλ(T)

dT
− h λ(T) < 0. (24)

If we consider the demand of Avinadav and Arponen [13] of Equation (1), then

d
dT

λ(T) = λ0n
(

1− T
T0

)n−1(−1
T0

)
. (25)
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If we substitute Equation (25) into Equation (24), and substitute Equation (1) into

Equation (24) and then cancel λ0
h

(
1− T

T0

)n−1
from both sides of the inequality, we show

that Equation (24) is equivalent to(
p− c

h
− T

)
n
(
−1
T0

)
<

(
1− T

T0

)
. (26)

This inequality can be directly verified, because T < p−c
h and T < T0. Moreover, we

can simplify it to separate variable T with the constant term. Then,

(n + 1)T < T0 + n
p− c

h
. (27)

If we divide this by n + 1, we obtain

T < T1 =
T0 + n((p− c)/h)

n + 1
. (28)

The above discussion shows that the claim made by Avinadav and Arponen [13], in
which T is less than the linear combination of upper bounds T0 and (p− c)/h, is not an
astonishing result. Hence, we illustrate that the model of Avinadav and Arponen [13] is a
special case of the model proposed in this paper.

In Avinadav et al. [14], polynomial demand is expressed as

λ(t, p) = λ0(1− α p)
[

1−
(

t
E

)n]
, (29)

t ≤ E and α p ≤ 1 to include a new variable, price p. To apply our derivation to Avinadav
et al. [14], the variable p should be treated as a constant with Γ0 = λ0(1− α p). This gives

λ(t) = Γ0

[
1−

(
t
E

)n]
, . (30)

for t ≤ E.
If we substitute the demand of Equation (30) into Equation (24), then d

dT H(T) < 0 is
equivalent to prove

(p− c− hT) Γ0
n
E

(
T
E

)n−1
+ h Γ0

[
1−

(
T
E

)n]
> 0. (31)

We know that the inequality of Equation (31) is valid such that we illustrate that our
derivation can be applied for Avinadav et al. [14].

7. Numerical Examples

Two conditions must be examined to find the optimal solution: (a) min{T0, (p− c)/h},
and (b) the sign of Ω. Hence, we present four examples:

Example 1. min{T0, (p− c)/h} = (p− c)/h, and Ω ≥ 0.
Example 2. min{T0, (p− c)/h} = T0, and Ω ≥ 0.
Example 3. min{T0, (p− c)/h} = (p− c)/h, and Ω < 0.
Example 4. min{T0, (p− c)/h} = T0, and Ω < 0.
Based on Avinadav and Arponen [13], we construct numerical examples with the

following parameters: selling price p = 2 and purchasing cost c = 1. For general non-
increasing demand, we adopt exponential decreasing demand λ(t) = D0e−α t for 0 ≤ t ≤
min{T0, (p− c)/h} with D0 = 20 and α = 0.01. The parameters of holding cost h, ordering
cost K, and shelf-life period T0 are listed in Table 2 for Examples 1–4.
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Table 2. Parameters for h, K, and T0 as well as for derived Ω and T∗.

Ex. h K T0 (p−c)/h min{T0,(p−c)/h} Ω T*

1 0.05 200 30 20 (p− c)/h = 20 12.7 20

2 0.5 7 1 2 T0 = 1 1.97 1

3 0.05 50 30 20 (p− c)/h = 20 −137.3 9.6893

4 0.02 50 30 50 T0 = 30 −142.8 13.9555

For Example 1, because (p− c)/h = 20 <T0 = 30, we find Ω = H(20) = 12.7 > 0.
According to Theorem 1 (a), we know the optimal replenishment cycle T∗ = 20 and
maximum profit π(20) = −0.63462. For the sake of completeness, we list several related
profits in Table 3 to illustrate that T∗ = 20 is the optimal solution.

Table 3. Related profits for Example 1.

T 1 5 10 15 20

π(T) −180.59635 −22.90998 −5.64632 −1.55161 −0.63462

It may seem unreasonable that the maximum profit in Example 1 is negative. Hence,
we show that when Ω ≥ 0 and (p− c)/h < T0, the optimal maximum profit is always
non-positive.

By Equation (10), with λ(t) = D0e−α t for 0 ≤ t ≤ min{T0, (p− c)/h}, we obtain

π(T) =
K(T)

T
(32)

and
H(T) = T(p− c− hT)D0e−α T − K(T), (33)

where

K(T) =
[
(p− c)

D0

α

(
1− e−α T

)
− K− hD0

α2

(
1− e−α T − α Te−α T

)]
(34)

is an auxiliary function to simplify the expression.
Under the conditions of (p− c)/h < T0 and Ω = H((p− c)/h) ≥ 0, using Equation

(33), we find that H((p− c)/h) = −K((p− c)/h) ≥ 0. Then, optimal profit is derived

π((p− c)/h) =
K((p− c)/h)
(p− c)/h

≤ 0. (35)

This verifies that the maximum profit is always non-positive. For a private company,
this scenario will result in the disposal of inventory. However, for the public sector, projects
operating at a loss may still serve to benefit society as a whole. We summarize our findings
in the following theorem.

Theorem 2. Under conditions(p− c)/h < T0 and Ω = H((p− c)/h) ≥ 0 , non-positive
profit π((p− c)/h) satisfies

π((p− c)/h)= −H((p− c)/h)
((p− c)/h)

≤ 0. (36)

For Example 2, because T0 = 1 <(p− c)/h = 2, we find Ω = H(1) = 1.97 > 0.
Theorem 1 (a) gives us an optimal replenishment cycle T∗ = 1 and maximum profit
π(1) = 7.93354. For the sake of completeness, we list several related profits in Table 4 to
illustrate that T∗ = 1 is the optimal solution.
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Table 4. Related profits for Example 2.

T 0.3 0.5 0.7 0.9 1

π(T) −4.86031 3.45840 6.44645 7.65940 7.93354

For Example 3, because (p− c)/h = 20 <T0 = 30, we find Ω = H(20) = −137.3 < 0.
According to Theorem 1 (b), there exists a unique solution of H(T) = 0, for 0 < T < 20
where H(T) is a decreasing function from lim

T→0+
H(0) = ∞ to H(20) < 0. Through bisection,

we find the optimal replenishment cycle T∗ = 9.6893 and maximum profit π(T∗) = 9.35850.
For the sake of completeness, we list several related profits in Table 5 to illustrate that
T∗ = 9.6893 is the optimal solution.

Table 5. Related profits for Example 3.

T 9.6 9.68 9.6893 9.69 9.7

π(T) 9.35808 9.35849362 9.35849813 9.35849811 9.35849227

For Example 4, because T0 = 30 <(p− c)/h = 50, we find Ω = H(30) = −142.8 < 0.
According to Theorem 1 (b), there exists a unique solution for H(T) = 0 with 0 < T < 30.
Through bisection, we find the optimal replenishment cycle T∗ = 13.9555 and maximum
profit π(T∗) = 12.53983. For the sake of completeness, we list several related profits in
Table 6 to illustrate that T∗ = 13.9555 is the optimal solution.

Table 6. Related profits for Example 4.

T 13.9 13.95 13.9555 13.96 14.0

π(T) 12.53977 12.53982 12.53983 12.53982 12.53979

These examples demonstrate all possible cases that may occur concerning (i) the
interior maximum point and boundary maximum point as well as (ii) the comparison
between T0 and (p− c)/h. However, for all these examples, lim

t→T0
λ(t) 6= 0. For certain

products, demand will drop to zero before the expiry date. For example, when buying
powdered milk, parents might worry that the milk will have expired before their infant
uses all the product. Hence, we provide another four examples with lim

t→T0
λ(t) = 0 where

T0 is up to a month before the expiry date. We refer to Avinadav and Arponen [13] to
construct our examples, using the following parameters: T0 = 30, λ0 = 100, n = 1, c = $1,
p = $2, h = $0.05, and K = $50. We modify these slightly to construct four different cases,
as follows:

Example 5. min{T0, (p− c)/h} = (p− c)/h, and Ω < 0, with T0 = 30.
Example 6. min{T0, (p− c)/h} = T0, and Ω < 0, with T0 = 30.
Example 7. min{T0, (p− c)/h} = (p− c)/h, and Ω ≥ 0, with T0 = 4.
Example 8. min{T0, (p− c)/h} = T0, and Ω ≥ 0, with T0 = 3.
These parameters and their corresponding results are listed in Table 7.

Table 7. Modified parameters for Examples 5–8 and optimal solutions.

Ex. T0 h K Ω T* π
(

T*
)

5 30 0.05 50 −727.778 3.646 71.833192

6 30 0.02 50 −1.15×
103 4.502 77.33889172

7 4 0.27 150 21.971 3.704 −5.932099

8 3 0.27 150 40.5 3 −13.5
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To confirm the optimality of our solutions for Examples 5–8, we ran a comparison test
near the proposed solutions, which are listed in Table 8.

Table 8. Comparisons near the optimal solution for Examples 5–8.

Ex. 5 T 3.645 3.646 3.647

H(T) 0.022 −3.547× 10−3 −0.03

π(T) 71.833191 71.833192 71.833191

Ex. 6 T 4.501 4.502 4.503

H(T) 0.029 7.392× 10−3 −0.014

π(T) 77.33889100 77.33889172 77.33889156

Ex. 7 T 3.700 3.702 3.704

π(T) −5.938041 −5.934830 −5.932099

Ex. 8 T 2.8 2.9 3.0

π(T) −14.518095 −13.977471 −13.500000

For Example 5, our result is the same as that of Avinadav and Arponen [13]. The result
for Example 7 supports Theorem 2. Examples 7 and 8 illustrate that the maximum point
can occur at the boundary; this was overlooked by Avinadav et al. [18].

8. Direction for Future Research and Managerial Insights

There are three papers: Sarkar [47], Sarkar [48], and Sepehri et al. [49] that are worth
mentioning for the direction of future research. Sarkar [47] developed a maximized profit
model for deteriorated items where the deterioration rate is a reciprocal of a linear function
and the demand is a quadratic polynomial function of time. In his model, the suppliers
offered a trade-credit offer to the retailers. Based on Sarkar [47], in the future, we may try
to extend our inventory model with deteriorated items and a trade-credit offer provided
by the suppliers to the retailers. Sarkar [48] proposed a production-inventory model with
deteriorating items in a two-echelon supply chain environment. His goal was to find the
minimum cost for the supply chain by algebraic methods. Deterioration cost, transportation
cost, and handling cost are included in his model. Based on Sarkar [48], we may try to
generalize our inventory model with deterioration cost, transportation cost, and handling
cost. Sepehri et al. [49] considered deteriorating inventory models with shelf life, delay in
payment, and carbon emissions. They tried to find the optimal replenishment cycle, selling
price, and carbon reduction investment. Based on Sepehri et al. [49], in the future, we may
try to extend our inventory model with deteriorated items, payment delays, and carbon
emissions.

Based on Theorem 2, if two conditions are satisfied then the optimal profit value must
be negative to indicate a distinct character of our inventory model. For private companies,
if the maximum profit is negative, then the companies will give up this replenishment
policy to avoid financial loss. However, for public service environments, to fulfill citizens’
daily requirements, some organizations with a bottomless pit for money are running to
perform government duty and canvassing voters. Our model may be provided a proper
description for these kinds of phenomenons.

Managerial insights of our manuscript are described as follows. We find conditions
to help decision-makers to decide the interior optimal solution or the boundary optimal
solution where the boundary optimal solution was overlooked by Avinadav and Arpo-
nen [13]. Our Theorem 2 shows that the maximum profit is always negative that was
supported by numerical Examples 1 and 7. On the other hand, Avinadav and Arponen [13]
had only one example that is our numerical Example 5. In Appendix D of Avinadav and
Arponen [13], they mentioned that they solved 729 different numerical examples and then
only 474 of them end with a positive profit. For those 474 numerical examples, Avinadav
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and Arponen [13] studied the sensitivity analysis and then listed the average derivation in
the Table D1 of Avinadav and Arponen [13]. We can claim that Avinadav and Arponen [13]
did not know these kinds of inventory models under the condition of Theorem 2 will result
in a negative profit. They arbitrarily neglected those numerical examples with negative
maximum profit values. Our approach points out that under the condition of Theorem 2,
the negative maximum profit is a valid finding.

9. Conclusions

The significant finding of our paper is to point out that sometimes a negative maximum
profit model is reasonable which is verified by our Theorem 2. In this paper, we extend the
inventory model of Avinadav and Arponen [13]. We provide a reasonable explanation for
the linear combination of two upper bounds that appeared in the derivation of Avinadav
and Arponen [13] and further identify a condition for boundary optimal solutions. We
also show that for some cases, the boundary maximum value is always negative. For
the applicability of the model, we believe that some public sections with financial loss
will adopt our model to describe their real-life situation to reflect the results of negative
maximum profit. For the direction for future research if this can be justified would it not
be better to model using a probabilistic approach such as with probability pi an arriving
demand will accept the product whose demand is i units away from expiring? To derive
a negative maximum profit value appear SASA failed development. However, if in the
future, some social and humanitarian considerations are combined with our proposed
model, then the maximum profit may be changed to a positive value. These findings lay the
foundation for the development of sound inventory models in the future. For limitations of
our paper, in our present version, we did not consider the following factors: deterioration
cost, transportation cost, handling cost, payment delays, and carbon emissions. In the
future, we will consider developing new inventory models to contain some of the above
factors to modify our system to a more general setting.
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