
mathematics

Article

Topic-Based Document-Level Sentiment Analysis Using
Contextual Cues

Ciprian-Octavian Truică 1,*,† , Elena-Simona Apostol 1,*,† , Maria-Luiza S, erban 1,† and Adrian Paschke 2

����������
�������

Citation: Truică, C.-O.; Apostol, E.-S.;

S, erban, M.-L.; Paschke, A.

Topic-Based Document-Level

Sentiment Analysis Using Contextual

Cues. Mathematics 2021, 9, 2722.

https://doi.org/10.3390/math9212722

Academic Editor: Stelios Papadakis

Received: 28 September 2021

Accepted: 24 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science and Engineering Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, RO-060042 Bucharest, Romania; maria_luiza.serban@upb.ro

2 Fraunhofer Institute for Open Communication Systems, 10589 Berlin, Germany;
adrian.paschke@fokus.fraunhofer.de

* Correspondence: ciprian.truica@upb.ro (C.-O.T.); elena.apostol@upb.ro (E.-S.A.)
† These authors contributed equally to this work.

Abstract: Document-level Sentiment Analysis is a complex task that implies the analysis of large
textual content that can incorporate multiple contradictory polarities at the phrase and word levels.
Most of the current approaches either represent textual data using pre-trained word embeddings
without considering the local context that can be extracted from the dataset, or they detect the overall
topic polarity without considering both the local and global context. In this paper, we propose a
novel document-topic embedding model, DOCTOPIC2VEC, for document-level polarity detection in
large texts by employing general and specific contextual cues obtained through the use of document
embeddings (DOC2VEC) and Topic Modeling. In our approach, (1) we use a large dataset with game
reviews to create different word embeddings by applying WORD2VEC, FASTTEXT, and GLOVE, (2)
we create DOC2VECs enriched with the local context given by the word embeddings for each review,
(3) we construct topic embeddings TOPIC2VEC using three Topic Modeling algorithms, i.e., LDA,
NMF, and LSI, to enhance the global context of the Sentiment Analysis task, (4) for each document
and its dominant topic, we build the new DOCTOPIC2VEC by concatenating the DOC2VEC with
the TOPIC2VEC created with the same word embedding. We also design six new Convolutional-
based (Bidirectional) Recurrent Deep Neural Network Architectures that show promising results
for this task. The proposed DOCTOPIC2VECs are used to benchmark multiple Machine and Deep
Learning models, i.e., a Logistic Regression model, used as a baseline, and 18 Deep Neural Networks
Architectures. The experimental results show that the new embedding and the new Deep Neural
Network Architectures achieve better results than the baseline, i.e., Logistic Regression and DOC2VEC.

Keywords: document-level Sentiment Analysis; document-topic embeddings; Topic Modeling; Deep
Learning Architectures

1. Introduction

Opinion Mining and Sentiment Analysis are related research topics, at the intersection
of Machine Learning and Natural Language Processing, that, recently, have been studied
intensively [1–6]. The interest in these related topics is due to the wide range of applications
where they can be used (e.g., advertising, politics, business, etc.) and the availability of large
amounts of textual data. They are generally used to identify opinions and recognize the
sentiments expressed, as well as the general polarity of a text, e.g., subjective or objective,
positive or negative. The data sources that are mostly used in Opinion and Sentiment
Analysis tasks are represented by blogs, posts from social media, comments from movie
and product reviews sites or new articles [7]. These can be used to complete different tasks,
such as emotion detection and sentiment classification.

Various types of neural networks have been employed to solve more accurately
specific Opinion and Sentiment Analysis tasks, e.g., Recurrent Neural Networks (RNNs),

Mathematics 2021, 9, 2722. https://doi.org/10.3390/math9212722 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7292-4462
https://orcid.org/0000-0001-6397-4951
https://orcid.org/0000-0002-9559-4459
https://orcid.org/0000-0003-3156-9040
https://doi.org/10.3390/math9212722
https://doi.org/10.3390/math9212722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212722
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212722?type=check_update&version=1

Mathematics 2021, 9, 2722 2 of 23

Convolutional Neural Networks (CNNs). RNNs have been proven to offer good results
for text analysis tasks [8]. Different types of RNNs, such as GRU (Gated Recurrent Unit)
or LSTM (Long Short Term Memory), were developed to overcome the flaws of other
feed-forward PERCEPTRON-based neural networks. RNNs can capture information about
the input, such as context dependency between words, and share parameters across
epochs. CNNs [9,10] are a type of feed-forward networks very popular due to the minimal
preprocessing requirement. These types of networks are regarded as more powerful than
RNNs. Although CNNs are ideal for image processing and their accuracy is dependent on
the initial parameter tuning, they turned out to also bring increased performance in text
processing, especially combined with other neural networks.

The main motivation of this paper is to improve the accuracy of document-level Senti-
ment Analysis (Definition 1) using Deep Learning models which employ contextual cues
(Definition 2). Thus, we aim to introduce specific/local (Definition 3) and general/global
(Definition 4) contextual cues by employing word embeddings (WORDEMBs) and Topic
Modeling in order to improve the accuracy of polarity detection. Thus, to improve the
context of Sentiment Analysis, we enhance document embedding (DOC2VEC) using con-
textual cues through the use of different WORDEMBs, which adds local context by training
the embeddings on the documents within a set of documents D, and Topic Modeling
algorithms, which adds global context by extracting topics from the set of documents D.
To add context, we employ DOC2VECs and topic embeddings (TOPIC2VECs) to create
a new embedding, i.e., DOCTOPIC2VEC, as a concatenation between a DOC2VEC and a
TOPIC2VEC.

Definition 1 (Document-level Sentiment Analysis). Document-level Sentiment Analysis is the
task used to determine for a document di belonging to a set of documents D whether its text has a
positive, neutral, or negative polarity.

Definition 2 (Contextual cues). The contextual cues consist of the local and global lexical,
semantic, and syntactic information of a word wi given to a Machine/Deep Learning model to solve
a task t. (Note: We use both local and global context for document-level Sentiment Analysis.)

Definition 3 (Local Context). The local context refers to the local lexical, semantic, and syntactic
information of a word wi within a document d. (Note: We extract the local context by training word
embeddings for each word wi ∈ d. Thus, the embedding encodes the local context by preserving the
word’s lexical, semantic, and syntactic similarity as well as its relation with other words within the
same document).

Definition 4 (Global Context). The global context refers to the global lexical, semantic, and syn-
tactic information of a word wi within a set of documents D. (Note: We extract the global context
by detecting the most important topic for each document di ∈ D. Thus, documents belonging to
the same topic also belong to the same context and the context given by a topic is seen as a global
context for the document belonging to this topic).

A DOC2VEC is constructed as the average of the WORDEMBs for the terms in the
document. This embedding manages to preserve the contexts and semantics of words at the
document level [11]. WORDEMBs add semantic context by encoding the position for words
in a sentence before vectorizing the text. We use five WORDEMB: (1) WORD2VEC CBOW
(Continuous Bag-of-Words) model; (2) WORD2VEC SKIP-GRAM model; (3) FASTTEXT

CBOW model; (4) FASTTEXT SKIP-GRAM model, and (5) GLOVE model. WORD2VEC cap-
tures the context of a word in a document and the relationship with the words surrounding
it. Furthermore, this embedding manages to encode the semantic and syntactic similarity
of the words within the document. WORD2VEC uses two models to determine the local
context: CBOW and SKIP-GRAM. The CBOW model predicts the word’s individual con-
text by taking into account the context of all the words within the corpus. The SKIP-GRAM

takes a word and determines the words that are in the same context. FASTTEXT extends

Mathematics 2021, 9, 2722 3 of 23

Word2Vec by learning embedding vectors for the n-grams that are found within each word.
FASTTEXT also uses CBOW and SKIP-GRAM models. GLOVE enhances the local context
information of words using global statistics, i.e., word co-occurrence.

We use Topic Modeling to extract the hidden latent semantic patterns and to add a
general context to Sentiment Analysis by detecting and grouping document with similar
characteristics by the subjects of interest. We employ different Topic Modeling algorithms,
i.e., Latent Dirichlet allocation (LDA) [12], Non-Negative Matrix Factorization (NMF) [13],
Latent Semantic Indexing (LSI) [14]. We encode these hidden patterns that add a general
context to Sentiment Analysis into TOPIC2VECs. TOPIC2VECs are built as the average be-
tween the topics top-k terms’ relevance and their WORDEMBs. By employing TOPIC2VECs,
we manage to encode context-based document grouping and to enhance each document’s
context by constructing the DOCTOPIC2VEC using the dominant topic as a concatenation
between each document’s DOC2VEC and TOPIC2VEC. Thus, documents that are similar in
meaning and context, including polarity and opinion, will be closer to each other in the
vector space than texts which are not necessarily related.

For the experiments, we use a large dataset consisting of game reviews. We create the
DOCTOPIC2VECs using the discussed WORDEMBs and Topic Modeling algorithms. Each
DOCTOPIC2VEC embedding is used in classification tasks that apply Logistic Regression
(LOGREG) and neural networks with LSTM, GRU, Bidirectional, DENSE, and CNN layers.
We also design six news Convolutional-based (Bidirectional) Recurrent Deep Neural Net-
work (CNN-(BI)RNN) Architectures for the task of determining accurate document-level
polarity. The results of our benchmark show that the accuracy is improved by about 5%
when adding DOC2VEC contextual clues with NMF and LSI Topic Modeling algorithms,
compared to the baseline, i.e., DOC2VEC-based LOGREG Sentiment Analysis. Furthermore,
the proposed new architectures outperformed the state of the art solution proposed in [3].

The main research questions we want to answer are:

(Q1) Does a Topic Modeling approach improve the overall accuracy of detecting the polarity
of textual data?

(Q2) Can local context added by Word Embeddings and global context added by Topic
Modeling improve the accuracy of the Sentiment Analysis task?

(Q3) Can a novel CNN-(BI)RNN architecture prove to be a better model for the Sentiment
Analysis task?

Thus, by answering these questions, the main objective of this work is three-fold:

(O1) Analyze the impact of Topic Modeling on the Sentiment Analysis task;
(O2) Construct a novel embedding DOCTOPIC2VEC that encapsulates both local and global

context in order to improve the accuracy of detecting the polarity of textual data;
(O3) Build a novel CNN-(BI)RNN architecture to increase the accuracy of the Sentiment

Analysis task.

This paper is structured as follows. In Section 2, we discuss the current advancement in
Sentiment Analysis techniques. Section 3 presents the proposed architecture and describes
each component module, together with the used algorithms and techniques. In Section 4,
we describe the dataset and our set of experiments. Finally, we analyze and interpret the
results. Section 5 is drawing the final conclusions and provides several future directions.

2. Related Work

Sentiment Analysis approaches can be classified into three categories: Machine Learn-
ing, Lexicon-based, and Hybrid [15]. Furthermore, these techniques are divided, based on
the granularity level, in word (or aspect), sentence (or short text), and document (or long
text) level.

There are not many solutions focusing on context-based Sentiment Analysis mod-
els. A context enrichment model for Sentiment Analysis is proposed in [4]. The authors
add several processing steps, prior to sentiment classification, in order to augment the
dataset with context. One important step discussed here is the prior-polarity identifica-

Mathematics 2021, 9, 2722 4 of 23

tion with SentiWordNet. Unfortunately, the authors do not clearly specify what are the
advantages of prior-polarity identification, and their model is just conceptual without any
real experiments.

Most of the related previous works primarily use either only embeddings as text
representation that are incorporated into the Sentiment Analysis model (e.g., [2,3]) or they
consider Topic Modeling for determining the opinion by topic, and not to add context to
the model (e.g., [16,17]).

In [3], the authors propose a Deep Learning 4CNN-BILSTM model for document-
level Sentiment Analysis. Their model consists of four CNN layers and one BILSTM layer.
For the experiments, they use a relatively small amount of documents, i.e., 2003 articles
from French newspapers. They employ two optimizers, SGD and Adam, and WORD2VEC

as WORDEMBs solution. The proposed model is compared with CNN, LSTM, BILSTM,
and CNN-LSTM, and they conclude that it achieves the best accuracy. Although they
obtained a high accuracy for the 4CNN-BILSTM model, the results are not conclusive,
as the experiments are performed on a small dataset. In our experiments, we also analyze
their model, both the version proposed by them and also by adding Topic Modeling.

Attention mechanisms condition the Sentiment Analysis model to pay attention to
the features which contribute the most to the task. The authors of the paper [18] propose
a model based on LSTM layers with an attention mechanism. They used different ap-
proaches for the attention mechanism, i.e., convolution-based and pooling-based attention
mechanism, and the word-vectors used for training, i.e., pre-trained word vectors from
Word2Vec and randomly initialized word-vectors. Their model obtained better results than
baseline methods on two out of three datasets. Attention-based Bidirectional CNN-RNN
Deep Model (ABCDM) [19], another attention-based solution, use independent BiLSTM
and GRU layers to extract both past and future contexts and an attention mechanism to
put more or less emphasis on different words. To reduce the dimensionality and create
new feature representations, the ABCDM model utilizes both convolutional layers and
pooling techniques. This model achieves state-of-the-art performance when compared
with other Neural Network architectures for the task of Sentiment Analysis on reviews and
Twitter datasets.

An improved method for generating WORDEMBs used in Sentiment analysis is pro-
posed in [2]. This method, Improved Word Vectors, uses Part-of-Speech, lexicon-based,
and word position techniques together with WORD2VEC or GLOVE models. The per-
formance of the proposed solution is tested using four different Deep Learning models
and benchmark sentiment datasets. The results show that when using these embeddings,
the accuracy of the model is slightly increased.

One solution that uses Topic Modeling for sentiment detection is presented in [17].
The authors combine shrinkage regression and Topic Modeling for detecting polarity in a
Twitter dataset. The proposed model consists of two stages. In the first stage, they detect
the polarity of the tweets using two shrinkage regression models. This type of regression
adds a penalty in the way the loss function is calculated for models that have too many
variables. During the second stage, the relevant topics are identified using LDA. The model
estimates the sentiment of each topic using term sentiment scores.

Topic Modeling and WORDEMBs have been used together to analyze the sentiment
of topics. However they have never been applied in Sentiment Analysis at the document
level, as we propose in this paper. This approach is used for aspect-based topic Sentiment
Analysis [20,21]. In this case, Topic Modeling is used for aspect extraction and categoriza-
tion without considering the global context. In [21], the authors combine domain-trained
WORDEMB and Topic Modeling for categorizing aspect-terms from online reviews. Their
proposed model uses continuous WORDEMB and LDA algorithm. The model is tested us-
ing a small dataset, i.e., the restaurant reviews from the SemEval-2014 dataset consisting of
3841 sentences. One important limitation of their model is that it has a longer convergence
time than the standard model and has lower performance than supervised models.

Mathematics 2021, 9, 2722 5 of 23

Several recent works also explore pre-trained language models for the Sentiment
Analysis task, e.g., BERT [22], RoBERTa [23], ALBERT [24]. In [25], BERT is compared with
an LSTM-based architecture and achieves an overall better f-measure. In [26], a RoBERTa
Sentiment Analysis model is combined with key entity detection, based on the presumption
that people are more prone to observe negative information. This approach improves the
accuracy of the Sentiment Analysis task when compared with architectures consisting
of BERT or RoBERTa transformers combined with SVM, LR, or NBM. DICET [1] is an-
other transformer-based method for sentiment analysis. The novelty of DICET is that it
enhances the data quality by handling noises within contexts. For this, it uses six types
of embeddings, i.e., character embeddings, GloVe, Part-of-Speech embeddings, Lexicon
embeddings, ELMo [27] and BERT-based embeddings. The concatenated embeddings are
fed to a BILSTM network with attention. DICET has higher performance compared with
Sentiment Analysis methods that use the standard one-type of embeddings, e.g., Glove or
Word2Vec, or other pre-processing methods, e.g., TFIDF.

3. Methodology

Figure 1 presents the proposed architecture for our topic-based Sentiment Analysis
using a contextual cues model.

Figure 1. The proposed topic-based Sentiment Analysis using a contextual cues architecture.

The Data Preprocessing module cleans and transforms the textual data to make them
suitable for analysis. The Word Embedding and TFIDF Vectorization modules encode
the documents’ words into vector representations. The Document Embedding module
computes a vector for each document based on the Word Embedding. The Topic Modeling
uses the TFIDF document vectorization to extract the topics and the most relevant keywords.
The Topic Embedding module constructs the vector representation of topics using word
embedding. The Document-Topic Embedding module computes the new context enhanced
document embeddings using the topic and document embeddings that add bot semantic
and syntactic context to the vector representation. The classification module uses the
new document-topic embeddings to classify documents and extract their polarity. The
Evaluation module uses different metrics to determine the accuracy of the classification
and determine the quality of the resulting models.

3.1. Data Preprocessing Module

The preprocessing step is important because the text written by people can contain
misspelled words, symbols, abbreviations etc. that need to be removed or replaced to
facilitate the execution of the subsequently tasks with greater accuracy [28]. The initial text
is preprocessed using the following steps:

(1) The text is cleaned by removing all JavaScript functions, HTML tags, and URL;
(2) The contractions are expanded;
(3) The named entities are extracted while the rest of the text is lemmatized;
(4) The punctuation and stop words excluding negations (i.e., no, not, etc.) are removed;
(5) The text is transformed to lowercase and then split into tokens;
(6) The tokens that have a length greater than 3 or are negations are kept. Using this

aggressive text preprocessing improves the algorithms’ time performance, as the

Mathematics 2021, 9, 2722 6 of 23

vocabulary is minimized to the essential tokens without excluding the terms which
impact the polarity.

3.2. Word Embedding Module

The word embedding models used in this paper are WORD2VEC, FASTTEXT, and GLOVE.
Each embedding model (WORDEMB) generates word representations in a vector space. The
context of each word within a document is captured when employing these embeddings.
Moreover, these models also encode both the relationship and the similarity between words
from a semantic and syntactic perspective.

3.2.1. WORD2VEC

WORD2VEC represents a textual dataset as a set of vectors and outputs a vector
space [29]. The context similarity of a word within the dataset is determined by measuring
the distance between the corresponding vectors in this space. WORD2VEC use either the
Continuous Bag-Of-Words (CBOW) or SKIP-GRAM model to create the representation
of words.

The CBOW model utilizes the context of a word as input and attempts to predict the
word itself. The input layer of the model is represented by the one-hot encoded vectors
corresponding to each context words. The average of the vectors from this layer is used
to compute the input for the hidden layer. The weighted sum of the inputs, computed by
the hidden layer, is sent to the next layer. The hidden layer sends the weighted sum of the
inputs to the next layer. Each terms’ probability value is computed by the network’s last
layer and is given as a final result in the form of a vector.

THE SKIP-GRAM model, as opposed to CBOW, starts with the word as input and
tries to generate its context. The input layer is the target word vector, while the output
layer consists of the vectors with the probability values of the words appearing in the
context of a target word. The hidden layer sends the weighted input to the following
layer. The SKIP-GRAM model is generally used to discover the semantic similarity between
words. Therefore, if two words have a similar context, these words might also have a
similar semantic.

3.2.2. FASTTEXT

FASTTEXT is an unsupervised algorithm that uses the CBOW and SKIP-GRAM mod-
els for learning word embeddings [30]. This embedding is considered an extension of
WORD2VEC as it follows a similar approach [31]. The difference is that the word is not
considered the basic unit, but a bag of character n-grams. This facilitates better accuracy
and a faster training time compared to WORD2VEC.

3.2.3. GLOVE

GLOVE (Global Vectors) is an unsupervised model applied for learning word em-
beddings [32]. In comparison to the other models described, i.e., WORD2VEC, FASTTEXT,
GLOVE consider both local and global statistics of word–word co-occurrences in the corpus
to obtain the vector representations of the words. It uses a term co-occurrence matrix that
stores, for each word, the frequency of its appearance in the same context with another
word. GLOVE captures the relationship between words by using the ratio of co-occurrence
probability. Using the co-occurrence probability ratio, it extracts information from all the
word vectors and identifies word analogies or synonyms within the same contexts.

3.3. Document Embedding Module

The document embeddings DOC2VEC (Equation (1)) are generated for each document
di in the dataset by adding the word embeddings for all the terms t (WORDEMB(t)) in the
document and divide the sum by the number of terms in the document (mi). We build a
DOC2VEC for each WORDEMB we previously discussed.

Mathematics 2021, 9, 2722 7 of 23

DOC2VEC(di) =
∑t∈di

WORDEMB(t)
mi

(1)

3.4. TFIDF Vectorization

The TFIDF (term frequency-inverse document frequency) Vectorization module uses
a bag-of-word approach to vectorize the news articles given:

(1) A textual corpus D = {di|i = 1, n} of size n = ||D|| that contains documents di;
(2) A vocabulary V = {t1, . . . , tm} of size m = ||V|| that contains the unique words or

terms tj in the dataset D.

A document di ∈ D(i = 1, n) of length mi(6= m) is a multi-set of V, i.e., di = (V, f) =
{t f (t1,di)

1 , . . . , t f (tm ,di)
m } with f (tj, di) ≥ 0 the multiplicity (co-occurrences) function which

denotes the number of times tj appears in document di. For simplicity, we will denote

t
f (tj ,di)

j as tij, thus, di = {ti1, . . . , tim}.
TFIDF (Equation (2)) is defined using:

(1) Term frequency TF(tj, di) (Equation (3)) that computes the co-occurrences f (tj, di) of
a term tj ∈ V in a document di;

(2) The inverse-document frequency IDF(tj, D) (Equation (4)) which uses the number
document nj where a term tj ∈ V appears to penalize frequent terms that bring no
information gain;

(3) The normalization factor `2(di) (Equation (5)) to normalize TFIDF in the range [0, 1].

TFIDF(tj, di, D) =
TF(tj, di) · IDF(tj, D)

`2(di)
(2)

TF(tj, di) = f (tj, di) (3)

IDF(tj, D) = log2
n
nj

(4)

`2(di) =

√√√√ m

∑
j=1

(TF(tj, di) · IDF(tj, D))2 (5)

Using the term weights, we can construct a document–term matrix A = {wij|i =

1, n ∧ j = 1, m}, where rows correspond to documents and terms to columns. The cell
value wij is the weight (e.g., TF, TFIDF, etc.) of term tj in document di.

3.5. Topic Modeling Module.

This module utilizes statistical unsupervised methods to extract hidden latent semantic
patterns within our dataset. We use the following models for this module.

This module utilizes statistical unsupervised Machine Learning methods, i.e., Topic
Modeling, to extract hidden latent semantic patterns within our dataset. We use three gen-
erative statistical models for this module, i.e., Latent Dirichlet allocation (LDA) [12], Non-
Negative Matrix Factorization (NMF) [13], Latent Semantic Indexing (LSI) [14], also known
as Latent Semantic Analysis (LSA). The Topic Modeling algorithms use the document–term
matrix A as input.

3.5.1. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a probabilistic model that groups various terms
with similar meaning that represent the same notions [12]. It is one of the most popular
Topic Modeling approaches [33]. LDA algorithm relies on the assumption that random
mixtures over latent topics can be used to generate documents. In this context, each topic
is described by a multinomial distribution over the unique terms in the vocabulary. Thus,
we can generate documents using techniques such as Gibbs that samples <topic, words>
pairs from a random mixture.

Mathematics 2021, 9, 2722 8 of 23

For k topics and a corpus of n documents D = {di|i = 1, n} where each document
di is a sequence of mi words tj ∈ V j = 1, m modeled as Poisson distributions, i.e., mi ∼
Poisson(ξ) LDA uses the following process:

(1) Determine a distribution of topics θi for each document di;
(2) Determine a distribution of words ϕκ in a topic κ ∈ 1, k;
(3) For each word tj in document di:

(a) Determine a topic zij;
(b) Determine a word ti

j.

The distribution of topics in document di is a Dirichlet distribution over the number
of topics θi ∼ Dirichletk(α) where θi = {θiκ |i = 1, n ∧ κ = 1, k ∧ ∑k

κ=1 θiκ = 0} is a k-
dimensional vector of probabilities, θiκ is the probability of topic κ occurring in document
di, and α = {α1, α2, . . . , ακ} is a k-dimensional vector of positive reals αk > 0.

The distribution of words in topic κ is also a Dirichlet distribution over the vocab-
ulary ϕκ ∼ Dirichletm(fi) where ϕκ = {ϕκ j|κ = 1, k ∧ j = 1, m ∧ ∑k

κ=1 θiκ = 0} is a
m-dimensional vector of probabilities, ϕκ j is the probability of a word probability of word
tj occurring in topic κ, and β = {β1, β2, . . . , βm} is a m-dimensional vector of positive reals
β j > 0.

For each document di (i = 1, n), we define ziκ described by a set of words tκ j (j = 1, m)
of size mi. Both ziκ and tκ j are multinomial distributions, i.e., zκ j = Multinomialk(θi) and
tκ j = Multinomialm(ϕziκ).

3.5.2. Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is a dimensionality reduction paradigm
based on linear algebra [34]. Experimental results prove that NMF is the best choice for
extracting topics [35]. It is constructed on the premises that a matrix can be created as a
product of two non-negative matrices. Thus, NMF factorizes a matrix A ∈ Rn×m into two
non-negative matrices W ∈ Rn×k and H ∈ Rk×m. With regard to Topic Modeling, these
matrices have the following signification:

(1) A is a document–term matrix constructed using weighted term frequencies for a
corpus containing n documents and a vocabulary of size m terms;

(2) W is the document–topic matrix that assigns a document membership to each topic k;
(3) H is the topic–term matrix that assigns to each topic k the importance of a term.

To determine W and H, the objective function F(W, H) must be minimized by respect-
ing the constraint that all the elements of W and H are non-negative. Equation (6) presents
the objective function, where || · ||F is the Frobenius norm.

F(W, H) = ||A−WH||2F =
n

∑
i=1

m

∑
j=1

(Aij − (WH)ij)
2 (6)

To minimize the objective function (Equation (7)), the values of W and H are updated
iteratively (with τ the index of the iteration) until they stabilize (Equation (8)).

min
W≥0,H≥0

F(W, H) = min
W≥0,H≥0

||A−WH||2F (7)

Hτ+1
ij ← Hτ

ij
((Wτ)T A)ij

((Wτ)TWτ Hτ)ij

Wτ+1
ij ←Wτ

ij
(A(Hτ+1)T)ij

(Wτ Hτ+1(Hτ+1)T)ij

(8)

Mathematics 2021, 9, 2722 9 of 23

3.5.3. Latent Semantic Indexing

Latent Semantic Indexing (LSI) tries to solve the problem of synonyms by identifying
terms that statistically appear together. The algorithm’s main consideration is that the ran-
domness of word choice within documents hides an underlying latent semantic structure.
To determine this latent structure, LSI employs the matrix factorization technique called
Singular Value Decomposition (SVD). It identifies syntactical different but semantically
similar terms using a structure called hidden “concept” space.

Given the document–term matrix A with the size n×m (n is number of documents,
m is the number of terms in the vocabulary), LSI uses SVD to interactively factorize A into
a product of three matrices, i.e., A = UΣVT .

(1) U is an n × k matrix that denotes the document–topics association. The columns
of U are the eigenvectors u of AAT . Thus, these vectors identify the k non-zero
eigenvalues ΣL = diag(σ1, σ2, . . . , σk) of AAT . Moreover, u are unit orthogonal vectors,
i.e., UTU = I and are also called left singular values because they satisfy the condition
uA = ΣLv.

(2) VT is an k×m matrix that denotes the topic–keywords association. The columns of V
are the eigenvectors v of AT A. Thus, these vectors identify the r non-zero eigenvalues
ΣR = diag(σ1, σ2, . . . , σr) of AT A. Moreover, v are unit orthogonal vectors, i.e., VTV =
I, and are also called right singular values because they satisfy the condition Av =
ΣRv.

(3) Σ is a k× k diagonal matrix which has on the diagonal the singular values or eigen-
values σi > 0. Thus, this diagonal matrix is defined as Σ = diag(σ1, σ2, . . . , σk) where
each value is sorted in decreasing order from the one that holds the highest value to
the one that represents the smallest one, i.e., σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

3.6. Topic Embedding Module

To encode the global context that is hidden in the latent semantic structures defined
by the randomness of words, we employ a topic vector embedding TOPIC2VEC that
encodes the keyword for the k topics extracted using one of the Topic Modeling algorithms.
TOPIC2VEC takes the weighted average of the word embeddings WORDEMB of each
relevant term t belonging to the topic zi (i = 1, k) and its probability distribution p(t|zi)
within the topic zi. Equation (9) presents the proposed encoding, where the number of
keywords considered for a topic zi is ni. We build a TOPIC2VEC for each topic model and
WORDEMB we previously discussed.

TOPIC2VEC(zi) =
∑t∈zi

WORDEMB(t) · p(t|zi)

ni
(9)

3.7. Document-Topic Embedding Module

The document with topics embeddings DOCTOPIC2VEC (Equation (10)) are generated
by concatenating (operator ⊕) the TOPIC2VEC of the most dominant topic of a document
with the document’s DOC2VEC. We build a DOCTOPIC2VEC for each TOPIC2VEC we
previously discussed using the same WORDEMB for both the DOC2VEC and the TOPIC2VEC.
By concatenating the DOC2VEC with TOPIC2VEC and obtaining the DOCTOPIC2VEC we
manage to encode the local context given by the document embedding (DOC2VEC) with
the global context given by the topic embedding (TOPIC2VEC).

DOCTOPIC2VEC(di, zi) = DOC2VEC(di)⊕ TOPIC2VEC(zi) (10)

3.8. Classification Module

For classification, we use the Logistic Regression (LOGREG) algorithm, which serves
as a baseline, and multiple Deep Neural Network (DNN) Architectures.

Mathematics 2021, 9, 2722 10 of 23

3.8.1. Logistic Regression

Logistic Regression (LOGREG) is a classification algorithm successfully used, in many
cases, as a baseline for the Sentiment Analysis task to predict the class in which an observa-
tion can be categorized [36,37]. The algorithm tries to minimize the error of the estimations
made using the log-likelihood and to determine the parameters that produce the best
estimations using gradient descent [38]. The log-likelihood functions guarantee that the
gradient descent algorithm can converge to the global minimum.

3.8.2. Deep Neural Network

Deep Neural Network (DNN) Architectures are used to classify the textual data and
extract the polarity at the document level using DOC2VEC and DOCTOPIC2VEC. These
architectures are developed using different fully connected or convolutional layers. The
neural network units that make up these layers are PERCEPTRON, Gated Recurrent Unit
(GRU), and Long Short-Term Memory (LSTM), Bidirectional GRU (BIGRU), and Bidirec-
tional LSTM (BILSTM). Figure 2 presents the combinations we use between these layers to
create 17 DNN Architectures.

Figure 2. DNN architecture.

A Perceptron is a processing unit used to predict the label of an observation
ŷ = argmaxy f (x, y) ·w. The function f (x, y) is used to map all the possible feature repre-
sentation <x, y> pairs to a new feature vector x and multiplies them by a weight vector w.
The x vector must fulfill the following conditions: (1) it has a positive number of elements,
and (2) the values of its elements are real value numbers.

GRU is a recurrent unit that has two gating mechanisms: (1) the update gate, and (2)
the reset gate. The update gate is used as both the forget gate and the input gate. The
reset gate determines what percentage of the previous hidden state contributes to the
candidate state of the new step. Furthermore, the GRU has only one state component,
i.e., the hidden state.

LSTM is a recurrent unit that uses in its design two components to represent its state:
(1) the hidden state is given by a short-term memory component, and (2) the current cell
state is achieved by the long-term memory component. The LSTM unit comprise of a gating
mechanism with three gates and a memory cell. The gating mechanism has the following
gates: (1) the input gate, (2) the forget gate, and (3) the output gate. LSTM controls
the gradients’ values and avoids the problems of vanishing and exploding gradients by
using the forget gate and the properties of the additive functions which compose the cell
state gradients.

Bidirectional RNN (BIRNN) units allow for the use of information from both the
previous and next state to make predictions about the current state. We use both BIGRU
and BILSTM in our models.

Dense layers are regular deeply connected neural network layers that contain only
PERCEPTRON units.

CNN are Deep Neural Networks containing multiple convolution hidden layers that
apply a filter to the activation function. After a convolutional layer, it is customary to use
a layer that employs a pooling mechanism. The pooling layer reduces the dimensions of
the data returned by the convolutional layer. This reduction is achieved by combining
the results of the previous layer into a single layer neuron. The output of this single layer
neuron is then used as the input of the following layer

Mathematics 2021, 9, 2722 11 of 23

Considering these layers, we propose six new CNN-(BI)RNN architectures: CNN-
BIGRU, CNN-3GRU, CNN-3BIGRU, CNN-BILSTM, CNN-3LSTM, and CNN-3BILSTM.
When multiple recurrent layers are used, they form a stacked architecture.

These architectures are designed as follows:

(1) The input layer that accepts the DOC2VEC or DOCTOPIC2VEC;
(2) The CNN layer;
(3) MAXPOOLING;
(4) (Stacked) Recurrent layer(s), either BILSTM or BIGRU;
(5) DENSE layer containing PERCEPTRON.

Moreover, we implement the DNN Architecture presented in [3]. We use the same
configurations for this DNN as presented in the original work. In the experiments, we
name this architecture 4CNN-BILSTM.

3.9. Evaluation Module

Evaluation metrics are used to better understand the performance of a model and for
fine-tuning the model on a given classification task. In our case, we are solving a multi-class
classification problem where we are trying to determine the different polarities of a given
text. Thus, we use the weighted accuracy measure for evaluating our models because it
takes into account the distribution of classes within the dataset. The weighted accuracy
ωA (Equation (11)) measures the per-class effectiveness of a classifier by employing the
True/False Positive (TPi and FPi) and True/False Negative (TNi and TPi) rates. Given k
classes yi (i = 1, k) and a dataset with n observations where ni observations are labeled
with class yi, then we can compute a weight ωi for each class yi using Equation (12).

ωA =
1
k

k

∑
i=1

ωi ·
TPi + TNi

TPi + TNi + FPi + FNi
(11)

ωi =
k · ni

n
(12)

4. Experimental Results
4.1. Dataset

For the experiments, we used a game reviews dataset containing context textual data
posted on the MetaCritic website (https://www.metacritic.com/, accessed on 28 September
2021). The original version of this dataset is presented in [39] and improved in [40]. From
the dataset, we use only the reviews and the polarity assigned for each review, although the
collected raw data also contain other information. The polarity was transformed from
the initial string format (i.e., positive, neutral, negative) into integer format (i.e., 2, 1, 0).
This dataset contains over 90,500 game reviews with a polarity assigned that can be −1 for
negative, 1 for positive, or 0 for neutral. After preprocessing, we had with 90,165 with the
following distribution of class: 15,721 negative, 22,433 neutral, and 52,011 positive. Out of
the total number of 90,165 comments, 99.31% were in English, while 0.69% were in Spanish.
As the number of comments in Spanish is negligible, we kept them to see if and how they
impact our analysis. The vocabulary size is 23,016. The reviews contain from 1 to 1217
terms, with an average of 44.02. The reviews with a length between 1 and 50 words are the
most common in the dataset, i.e., 66,713. The number of reviews with more than 100 words
is 8538.

Experimentally, we have identified that the classification tasks perform better when
the training and testing sets keep the proportions of the polarities of the entire dataset. For
example, on a LOGREG classification experiment, if the data are split poorly, e.g., mostly
positive reviews are used in the training dataset, the accuracy is lower than 55%. If
equal proportions are created, based on three-quarters of the initial dataset, the accuracy
improves up to 67%, whereas if the dataset is split using the initial proportions, this results
in approximately 71% accuracy. Therefore, we conducted the classification experiments

https://www.metacritic.com/

Mathematics 2021, 9, 2722 12 of 23

using 80% of the dataset for training and 20% for testing, i.e., 72,132 reviews for training
and 18,033 for testing. We preserved the polarity distribution of reviews in the both training
and testing subsets. Moreover, we identified that the better the data are cleaned, i.e., as
little as possible misspelled or foreign words are left in the dataset, the better the accuracy
of the classification tasks is, with an increase of even 10% in accuracy compared to other
data normalization methods.

4.2. Word Embedding

To identify the best size for each WORDEMB, we tested various parameters and
evaluated the resulting embeddings using a few approaches:

(1) Computing accuracy by identifying how well the model recognizes analogies; the test
is performed using the questions-words dataset [41] that contains pairs of analogies
from different domains;

(2) Identifying the cosine similarity between words with positive and negative connota-
tion that appear in the dataset, i.e., (fun, enjoyable), (boring, dull), etc., and

(3) Checking the most similar words with a common word in the dataset.

We determined experimentally using a grid search that (1) the best window size is four;
(2) the number of epochs used for training is 30; (3) the initial learning rate is 10−2. Table 1
presents the final embedding sizes used for classification determined after evaluation.

Table 1. Embedding sizes.

Embedding Model
Size

Embedding DOC2VEC DOCTOPIC2VEC

WORD2VEC
CBOW 256 256 512

Skip-Gram 128 128 256

FASTTEXT
CBOW 256 256 512

Skip-Gram 128 128 256

GLOVE N/A 128 128 256

4.3. Document Embeddings

Using the five WORDEMBs, we construct a DOC2VEC for each review as an average of
the WORDEMBs for the terms in the document. The size of the DOC2VEC is equal to the
size of the WORDEMB used.

4.4. Topic Modeling

We identify 10 topics using the TFIDF document–term matrix as input together with
the three Topic Modeling algorithms, i.e., LSA, NMF, and LSI. From each topic, the first 15
most relevant features are used in the algorithm for computing the topic embeddings. The
number of documents where a topic is the most relevant is presented in Table 2. Tables 3–5
present the results for LDA, NMF, and LSI, respectively.

Analyzing the results of Table 3, we observe that LDA extracts diverse topics that can
be interpreted using the keywords, e.g., Topic 0 is related to racing games, Topic 4 is related
to sports games. Furthermore, LDA also manages to determine topics that find hidden
latent semantic patterns that describe polarity, e.g., Topic 9 and Topic 7. We also note that
LDA manages to detect and group together documents that have words in other languages
than English, e.g., Topic 3, being the only algorithm among the three used in our analysis
that picked up on the this negligible percent (0.69%) of comments.

As in the case of LDA, NMF (Table 4) manages to determine topics related to different
games’ genres and polarity. Unlike LDA, NMF manages to discover topics that that group
together both polarity and game type, e.g., Topic 0, Topic 1, Topic 2. Furthermore, NMF
fails to discover the comments that use a different language to English.

Mathematics 2021, 9, 2722 13 of 23

Table 2. Number of documents by dominant topic.

LDA NMF LSI

Topic ID Documents Topic ID Documents Topic ID Documents

7 83,743 0 28,957 0 81,260
9 5297 3 14,490 2 2037
3 620 1 10,400 1 1664
4 135 2 7356 9 1660
5 108 5 7253 8 1200
0 73 4 6458 7 947
2 64 7 5864 4 788
8 53 8 3643 6 369
1 38 9 2890 5 193
6 34 6 2854 3 47

Finally, LSI (Table 5) manages to determine topics related to the overall game play
experience and users’ opinion towards this aspect, e.g., Topic 0, Topic 2, Topic 5, Topic 6.
Thus, most of the topics detected by LSI contain similar terms, e.g., game, play, to underline
some of the polarity, e.g., good, awesome, beautiful, bad, fun, terrible.

Table 3. The most relevant features for topics generated with LDA.

Keywords
and Impact Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

0 racing rule dinosaur para rock splinter competent game sweet game
68.54 27.97 41.72 102.85 92.42 44.41 25.88 8390.99 23.92 1112.34

1 rally guitar worm con football cent cough not piranha good
60.52 25.26 36.27 82.42 86.12 42.98 24.28 5522.88 19.7 896.02

2 uplay medal twitch mas ace cell bout play harry great
43.88 19.2 34.66 63.26 51.38 42.15 15.71 3433.44 19.4 560.82

3 dirt ego bastion no manager strike pet good nan play
40.75 18.57 31.99 62.47 42.61 37.32 15.58 2937.24 18.17 439.94

4 coaster fez myst las soccer counter nonstop great breach awesome
34.61 16.11 30.74 55.34 40.53 36.7 14.02 2137.95 16.36 342.82

5 blah honor noir son innovate addict demigod time potter love
33.72 16.07 27.25 40.9 23.84 31.01 13.24 2065.73 16.07 300.87

6 processor legal preview ser mesa spore splendid fun napoleon amazing
27.44 15.57 24.86 39.13 18.49 27.85 13.12 2010.35 11.27 273.44

7 terror outstanding jest bien sherlock annihilation remote no ruler graphic
26.92 15.36 23.08 34.18 18.1 26.24 11.94 1876.78 10.11 261.46

8 golf wizardry van bom bastard outlast fluidity story refreshingly fun
26.56 13.61 22.56 24.11 17.46 26.19 9.61 1857.25 9.72 234.68

9 roller article enthral sin submit halo closet graphic orientate not
24.31 12.29 19.52 22.63 16.62 24.45 9.57 1788 9.71 226.23

10 fallen wine hall dos doctor dogs dying bad hoi cool
23.9 11.57 19.46 22.61 15.63 23.59 9.37 1623.48 7.94 149.77

11 theft shameless working hay cos ing nook feel sensational excellent
22.72 10.94 19.26 21.38 14.38 21.2 9.09 1470.19 7.24 144.28

12 bye apologize tycoon mal overture suck bomb thing bean buy
20.01 9.060 18.17 21.33 13.55 21.09 8.8 1359.17 6.32 138.63

13 grand sailing pour excelente thumb gra transformer player crapy year
18.81 8.43 17.89 20.64 13.27 20.33 8.61 1346.69 5.26 127.48

14 car tribunal braid vale cheat sports man buy fore perfect
18.47 8.20 17.5 19.7 11.4 20.13 8.57 1328.62 5.08 123.02

Mathematics 2021, 9, 2722 14 of 23

Table 4. The most relevant features for topics generated with NMF.

Keywords
and Impact Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

0 game good great story play not amazing fun love awesome
6.64 4.91 4.94 2.05 5.24 5.98 4.86 4.33 4.46 4.15

1 time game game character hour bad story lot game graphic
0.57 0.79 0.75 1.63 0.60 2.01 0.53 0.74 0.29 1.10

2 no graphic graphic feel time buy graphic friend series nice
0.54 0.39 0.38 1.25 0.57 1.37 0.52 0.33 0.14 0.24

3 player pretty story level year money game hour hate cool
0.39 0.13 0.15 1.23 0.52 0.83 0.52 0.26 0.12 0.20

4 release story music time friend people simply pretty fan game
0.38 0.12 0.14 1.07 0.42 0.67 0.31 0.26 0.12 0.19

5 people series atmosphere combat never graphic absolutely worth original sound
0.38 0.09 0.13 1.06 0.28 0.56 0.25 0.24 0.11 0.18

6 strategy nice sound no player review episode mode absolutely music
0.38 0.09 0.11 0.96 0.27 0.50 0.23 0.22 0.10 0.15

7 bug shooter job enemy free worth perfect price buy car
0.35 0.09 0.09 0.91 0.26 0.49 0.21 0.19 0.09 0.13

8 year year fantastic not day bug music bit favorite perfect
0.33 0.08 0.09 0.84 0.25 0.47 0.20 0.18 0.07 0.11

9 developer sound excellent system stop pay beautiful nice expansion realistic
0.31 0.08 0.08 0.83 0.24 0.45 0.19 0.17 0.07 0.09

10 review racing recommend puzzle enjoy thing buy recommend hope excellent
0.3 0.07 0.07 0.80 0.21 0.44 0.16 0.17 0.07 0.09

11 fan perfect action interesting long no fantastic campaign cool story
0.29 0.06 0.07 0.78 0.19 0.44 0.15 0.16 0.07 0.08

12 never music expansion world game waste incredible level story totally
0.28 0.06 0.06 0.76 0.17 0.44 0.14 0.16 0.07 0.07

13 work world lot thing start work sound simple perfect racing
0.27 0.06 0.06 0.73 0.16 0.38 0.13 0.15 0.07 0.06

14 enjoy atmosphere puzzle bit single release atmosphere challenge fall effect
0.26 0.05 0.06 0.73 0.16 0.38 0.13 0.15 0.06 0.06

4.5. Topic to Vector

For each topic determined by an algorithm, we build a TOPIC2VEC as the weighted
average of the WORDEMB and the importance of each relevant word that describes the
topic. Thus, the size of the TOPIC2VEC is same as the size of the used WORDEMB.

4.6. Document-Topic to Vector

A DOCTOPIC2VEC is created by concatenating the DOC2VEC with the TOPIC2VEC

of the dominant topic for a document. The same WORDEMB is used when constructing
the DOC2VEC and TOPIC2VEC embeddings that are concatenated for building the DOC-
TOPIC2VEC embedding. Thus, the size of the DOCTOPIC2VEC is twice the size of the used
WORDEMB.

4.7. Classification Algorithms

The classification experiments with LOGREG are computed using both DOC2VEC and
DOCTOPIC2VEC. For this model to achieve a stronger regularization, we set the inverse
regularization parameter C to 10−5.

Using the GRU units, we built multiple models:

(1) One with a single GRU Layer;
(2) One with three GRU layers (3GRU);
(3) One with a single BIGRU Layer, and
(4) One with three BIGRU layers (3BIGRU).

Mathematics 2021, 9, 2722 15 of 23

Table 5. The most relevant features for topics generated with LSI.

Keywords
and Impact Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

0 game good great game play play love fun love awesome
0.58 0.77 0.79 0.53 0.57 0.39 0.47 0.74 0.72 0.64

1 not game game play fun not not not awesome graphic
0.34 0.23 0.19 0.34 0.41 0.36 0.35 0.24 0.19 0.44

2 good great love love time great play graphic player bad
0.24 0.15 0.11 0.11 0.12 0.33 0.3 0.12 0.15 0.27

3 play graphic fun buy hour buy story awesome good amazing
0.24 0.05 0.09 0.08 0.12 0.16 0.27 0.11 0.1 0.19

4 great awesome awesome year level bad amazing lot map no
0.16 0.05 0.08 0.06 0.11 0.13 0.17 0.09 0.1 0.15

5 time play amazing friend lot good awesome nice no nice
0.13 0.05 0.07 0.03 0.1 0.12 0.16 0.08 0.09 0.1

6 fun amazing graphic amazing player fun graphic bad buy sound
0.12 0.04 0.03 0.03 0.09 0.1 0.13 0.08 0.09 0.09

7 graphic love fantastic release love money episode game expansion car
0.11 0.03 0.03 0.03 0.09 0.09 0.1 0.07 0.08 0.07

8 story year music steam friend pay bad puzzle single control
0.11 0.01 0.03 0.03 0.08 0.06 0.09 0.07 0.07 0.07

9 no racing puzzle money story people character worth fun year
0.1 0.01 0.03 0.03 0.08 0.06 0.07 0.06 0.07 0.05

10 bad excellent story fun character player buy pretty unit bug
0.1 0.01 0.03 0.03 0.07 0.05 0.06 0.06 0.07 0.05

11 feel perfect recommend never awesome free puzzle buy bug port
0.08 0.01 0.02 0.03 0.07 0.05 0.05 0.05 0.07 0.05

12 buy strategy excellent awesome amazing bug adventure car release version
0.08 0.01 0.02 0.03 0.06 0.05 0.04 0.04 0.07 0.05

13 thing music atmosphere pay mode friend music cool campaign terrible
0.08 0.01 0.02 0.03 0.05 0.05 0.04 0.04 0.07 0.05

14 love adventure beautiful free enjoy year atmosphere price lot play
0.08 0.01 0.02 0.03 0.05 0.05 0.03 0.04 0.06 0.05

All these models have a final DENSE Layer used for the final classification. Each
GRU layer is initialized with 128 units and a dropout of 0.2. The activation for the update
gate is the sigmoid function (Equation (13)) and for the reset gate the hyperbolic tangent
function (Equation (14)). The sigmoid function is defined in (0, 1) and is used for models
that utilize the probability of a variable. The hyperbolic tangent function is defined on the
[−1, 1] interval and it is mainly used to better differentiate between the strongly negative
values and 0. The DENSE output layer is initialized using the softmax activation function
(Equation (15)) and with three as the dimension, corresponding with the number of possible
values for the polarity. For multiclass classification, the softmax function is a generalized
logistic activation function used to normalize the output of a network x = (x1, x2, . . . , xK)
to a probability distribution over predicted output classes i = 1, K. In our case, we set
K = 3, as we are predicting the positive, negative, or neutral polarity.

sigmoid(x) =
1

1 + e−x (13)

tanh(x) =
e2x − 1
e2x + 1

(14)

Mathematics 2021, 9, 2722 16 of 23

so f tmax(x)i =
exi

∑K
j=1 exj

(15)

Using the LSTM units, we built multiple models to mirror the GRU architectures:

(1) One with a single LSTM Layer;
(2) One with three LSTM layers (3LSTM);
(3) One with a single BILSTM Layer, and
(4) One with three BILSTM layers (3BILSTM).

We keep the same initialization parameters for the LSTM and DENSE layer as for the
GRU architectures. The activation for the input, output, and forget gates is the sigmoid
function, while for the hidden state and the cell input activation vector is the hyperbolic
tangent function. The LSTM models use the same loss function and optimizer parameter.

As CNN architectures proved to be an asset for text classification [10], we build a CNN
Sentiment Analysis architecture with three layers: CNN, MAXPOOLING, and DENSE. We
initialize the filters to 64 and the kernel size to half the size of the input vector, i.e., DOC2VEC

or DOCTOPIC2VEC. We also add the CNN and MAXPOOLING layers on top of the four GRU
and four LSTM architectures to determine if convolutions on top of recurrent layers improve
the classification as in [9]. Moreover, we implement the Deep Learning Architecture
presented in [3] using the same configuration. In the experiments, we name this architecture
4CNN-BILSTM.

For all the Deep Neural Network Architectures, we utilize a batch size of 5000 to
accurately estimate the gradient error in the detriment of the drawback known as slowing
the convergence of the learning process. The loss is computed using categorical cross entropy
and the applied optimizer is Adam. Each network is trained with a maximum of 200 epochs,
using an automated stopping mechanism that stops the execution if the accuracy is not
improved during 20 successive epochs.

4.8. Implementation

The entire pipeline is implemented in Python3.7. For named entity recognition and
lemmatization we used the en_core_web_sm from the SpaCy [42] package. We use the
gensim [43] and python-glove [44] packages for the WORDEMBs and the scikit-learn [45]
package for the TFIDF vectorization, LOGREG classifier, and Topic Modeling algorithms.
All the DNN Architectures are implemented in Keras [46] with TensorFlow [47] as the tensor
backend engine. The experiments are run on an NVIDIA® DGX Station™. The code is
freely available online on GitHub at https://github.com/cipriantruica/DocTopic2Vec.

4.9. Results

Tables 6–10 present the average accuracy obtained after 10 distinct training experi-
ments. As a baseline for the embeddings, we use the DOC2VEC, while, for classification,
we use LOGREG. We utilize Stratified Cross-Validation for splitting the dataset into 80–20%
training–testing sets with random seeding, i.e., 72,132 reviews for training and 18,033
for testing. Furthermore, we identified that the better the data are cleaned, i.e., as little
as possible misspelled or foreign words left in the dataset, the better the accuracy of the
classification tasks is, with an increase of even 10% in accuracy compared to other data
normalization methods.

The proposed DOCTOPIC2VEC improves significantly the detection of polarity at
document-level, for both NMF and LSI, over the simple implementation of DOC2VEC

with over 5%. In the case of the LDA, we observe a decrease in accuracy. When using
the WORD2VEC CBOW model to construct DOCTOPIC2VEC (Table 6), we obtain the best
results and the overall best accuracy (i.e., 0.7718) for all our experiments with the GRU
architecture and LSI topic model. For the WORD2VEC SKIP-GRAM (Table 7), the CNN-
BIGRU architecture with the DOCTOPIC2VEC for NMF obtain the best results. The CNN-
BIGRU architecture also achieves the best results when building the DOCTOPIC2VEC

using FASTTEXT and LSI (Tables 8 and 9). When using GLOVE and the LSI topic model

https://github.com/cipriantruica/DocTopic2Vec

Mathematics 2021, 9, 2722 17 of 23

to construct the DOCTOPIC2VEC (Table 10), the best results are obtained with the novel
CNN-3BIGRU architecture.

Table 6. Experiments using the WORD2VEC CBOW embeddings of size 256. (Note: Bold marks the
best accuracy obtained for the combination of Algorithm and Doc2Vec/DocTopic2Vec).

Algorithm DOC2VEC
DOCTOPIC2VEC

LDA NMF LSI

LOGREG 0.7259 0.6827 0.7614 0.7610
GRU 0.7429 0.5770 0.7663 0.7718
BIGRU 0.7440 0.5768 0.7681 0.7713
3GRU 0.7464 0.5769 0.7708 0.7713
3BIGRU 0.7469 0.5769 0.7700 0.7668
LSTM 0.7407 0.5771 0.7686 0.7715
BILSTM 0.7457 0.5769 0.7678 0.7686
3LSTM 0.7459 0.5770 0.7713 0.7689
3BILSTM 0.7491 0.5768 0.7685 0.7674
CNN 0.7230 0.3111 0.7515 0.7583
CNN-GRU 0.7400 0.5768 0.7613 0.7589
CNN-BIGRU 0.7455 0.7636 0.7643 0.7708
CNN-3GRU 0.7415 0.5768 0.7603 0.7631
CNN-3BIGRU 0.7463 0.5768 0.7596 0.7615
CNN-LSTM 0.7423 0.5769 0.7635 0.7679
CNN-BILSTM 0.7449 0.7647 0.7653 0.7662
CNN-3LST 0.7401 0.5768 0.7616 0.7633
CNN-3BILSTM 0.7411 0.7608 0.7603 0.7618
4CNN-BILSTM [3] 0.7244 0.7463 0.7425 0.7534

Table 7. Experiments using the WORD2VEC SKIP-GRAM embeddings of size 128. (Note: Bold marks
the best accuracy obtained for the combination of Algorithm and Doc2Vec/DocTopic2Vec).

Algorithm DOC2VEC
DOCTOPIC2VEC

LDA NMF LSI

LOGREG 0.7215 0.5772 0.7533 0.7542
GRU 0.7334 0.5768 0.7536 0.7532
BIGRU 0.7359 0.5767 0.7553 0.7563
3GRU 0.7378 0.5768 0.7563 0.7579
3BIGRU 0.7390 0.5767 0.7557 0.7608
LSTM 0.7322 0.5768 0.7530 0.7531
BILSTM 0.7375 0.5767 0.7557 0.7559
3LSTM 0.7355 0.5768 0.7540 0.7563
3BILSTM 0.7401 0.5768 0.7584 0.7593
CNN 0.7230 0.5768 0.7507 0.7560
CNN-GRU 0.7387 0.5768 0.7606 0.7543
CNN-BIGRU 0.7445 0.7574 0.7655 0.7628
CNN-3GRU 0.7392 0.5768 0.7569 0.7589
CNN-3BIGRU 0.7456 0.7573 0.7648 0.7639
CNN-LSTM 0.7405 0.5768 0.7599 0.7599
CNN-BILSTM 0.7430 0.7586 0.7617 0.7594
CNN-3LSTM 0.7306 0.5768 0.7622 0.7586
CNN-3BILSTM 0.7384 0.7578 0.7630 0.7640
4CNN-BILSTM [3] 0.7332 0.7592 0.7559 0.7573

Mathematics 2021, 9, 2722 18 of 23

Table 8. Experiments using the FASTTEXT CBOW embeddings of size 256. (Note: Bold marks the
best accuracy obtained for the combination of Algorithm and Doc2Vec/DocTopic2Vec).

Algorithm DOC2VEC
DOCTOPIC2VEC

LDA NMF LSI

LOGREG 0.7201 0.6699 0.7518 0.7462
GRU 0.7412 0.5772 0.7547 0.7553
BIGRU 0.7399 0.5772 0.7586 0.7573
3GRU 0.7434 0.5771 0.7591 0.7558
3BIGRU 0.7450 0.5772 0.7575 0.7521
LSTM 0.7399 0.5772 0.7550 0.7565
BILSTM 0.7405 0.5772 0.7599 0.7553
3LSTM 0.7416 0.5768 0.7584 0.7562
3BILSTM 0.7441 0.5772 0.7591 0.7568
CNN 0.7206 0.2279 0.7496 0.7479
CNN-GRU 0.7343 0.5768 0.7555 0.7584
CNN-BIGRU 0.7440 0.7539 0.7547 0.7620
CNN-3GRU 0.7347 0.5768 0.7523 0.7578
CNN-3BIGRU 0.7409 0.7528 0.7556 0.7571
CNN-LSTM 0.7376 0.5768 0.7521 0.7522
CNN-BILSTM 0.7421 0.7504 0.7554 0.7528
CNN-3LSTM 0.7376 0.5768 0.7536 0.7511
CNN-3BILSTM 0.7366 0.7536 0.7566 0.7582
4CNN-BILSTM [3] 0.7206 0.7430 0.7431 0.7394

Table 9. Experiments using the FASTTEXT SKIP-GRAM embeddings of size 128. (Note: Bold marks
the best accuracy obtained for the combination of Algorithm and Doc2Vec/DocTopic2Vec).

Algorithm DOC2VEC
DOCTOPIC2VEC

LDA NMF LSI

LOGREG 0.7227 0.5771 0.7514 0.7522
GRU 0.7329 0.5770 0.7583 0.7535
BIGRU 0.7359 0.5769 0.7625 0.7579
3GRU 0.7377 0.5768 0.7613 0.7561
3BIGRU 0.7389 0.5768 0.7639 0.7608
LSTM 0.7331 0.5768 0.7616 0.7515
BILSTM 0.7349 0.5769 0.7613 0.7566
3LSTM 0.7355 0.5771 0.7609 0.7567
3BILSTM 0.7400 0.5768 0.7637 0.7599
CNN 0.7240 0.2274 0.7551 0.7563
CNN-GRU 0.7441 0.5768 0.7612 0.7631
CNN-BIGRU 0.7467 0.7612 0.7653 0.7662
CNN-3GRU 0.7392 0.5768 0.7612 0.7650
CNN-3BIGRU 0.7452 0.7620 0.7644 0.7634
CNN-LSTM 0.7418 0.5768 0.7603 0.7612
CNN-BILSTM 0.7426 0.7610 0.7617 0.7636
CNN-3LSTM 0.7295 0.5768 0.7620 0.7624
CNN-3BILSTM 0.7428 0.7625 0.7632 0.7608
4CNN-BILSTM [3] 0.7395 0.7597 0.7581 0.7546

Mathematics 2021, 9, 2722 19 of 23

Table 10. Experiments using the GLOVE embeddings of size 128. (Note: Bold marks the best accuracy
obtained for the combination of Algorithm and Doc2Vec/DocTopic2Vec)

Algorithm DOC2VEC
DOCTOPIC2VEC

LDA NMF LSI

LOGREG 0.7089 0.6587 0.7408 0.7432
GRU 0.7097 0.5769 0.7440 0.7461
BIGRU 0.7174 0.5768 0.7457 0.7457
3GRU 0.7255 0.5768 0.7450 0.7480
3BIGRU 0.7301 0.5768 0.7475 0.7525
LSTM 0.7156 0.5768 0.7415 0.7472
BILSTM 0.7199 0.5768 0.7454 0.7501
3LSTM 0.7264 0.5767 0.7458 0.7481
3BILSTM 0.7307 0.5767 0.7479 0.7532
CNN 0.7032 0.5745 0.7447 0.7426
CNN-GRU 0.7280 0.5768 0.7504 0.7424
CNN-BIGRU 0.7330 0.7420 0.7552 0.7541
CNN-3GRU 0.7248 0.5768 0.7450 0.7447
CNN-3BIGRU 0.7299 0.5768 0.7548 0.7560
CNN-LSTM 0.7242 0.5768 0.7496 0.7506
CNN-BILSTM 0.7293 0.7428 0.7543 0.7520
CNN-3LSTM 0.7256 0.5768 0.7489 0.7424
CNN-3BILSTM 0.7238 0.5768 0.7517 0.7474
4CNN-BILSTM [3] 0.7190 0.7423 0.7509 0.7453

The experimental results show that the polarity detection accuracy is improved if the
Topic Modeling algorithms meet at least one of the following two conditions:

(1) The document to dominant topic distribution is balanced and manages to group
context-related documents together;

(2) The importance of the terms that belong to the topic have a small value range in order
to enhance the document vectorization with the context-dependent terms.

Thus, depending on the used Topic Modeling algorithm, the overall performance of
the proposed model changes.

LSI manages to meet the first condition needed to improve the accuracy of the polarity
detection task. The importance of the relevant keywords for a topic detected with LSI
has values ≤1. These values influence the TOPIC2VEC values (Table 5). Thus, the final
DOCTOPIC2VEC’s values remain balanced for the entire encoding, and the context extracted
thought Topic Modeling in conjunction with the distribution of document to dominant
topic improves the classification task (Table 2).

NMF satisfies both conditions needed to improve the accuracy of the Sentiment
Analysis task. For NMF, the importance of the relevant keywords is not normalized and
has values in the range [0, 6.64], but the majority of the values are still ≤1 (Table 4). When
building the TOPIC2VEC for NMF, some dimensions are going to have higher values
which add more importance to the context-related words. During the training of the
model, the higher values introduce bias to these dimensions in the classification task
and manage to influence the accuracy of detecting the document-level polarity by better
grouping documents together. Moreover, the more balanced distribution of documents
to the dominant topic obtained by the NMF (Table 2) also influences the context-based
grouping of documents.

LSA does not meet any of the two conditions needed for an improved polarity detec-
tion model; thus, the accuracy decreases. When using LDA to build the DOCTOPIC2VEC,
LOGREG and RNN results are influenced by the importance of a word to a topic and the
distribution of the document to the dominant topic. The relevant words for some topics
have high importance (Table 3). Thus, the TOPIC2VEC values are larger than the DOC2VEC

Mathematics 2021, 9, 2722 20 of 23

values. Because the distributions of document to dominant topic is not balanced (Table 2),
the TOPIC2VEC with the highest values is assigned to the majority of documents. When
concatenating the DOCTOPIC2VEC, the second half of the embedding and the imbalanced
distribution of the document to dominant topic influences the classification task and the
results are similar to flipping a coin.

For the CNN with bidirectional RNNs models, we obtain better results for DOC-
TOPIC2VEC constructed with LDA, as the Deep Neural Network uses convolutions to
select values. Therefore, the impact of the second half of the TOPIC2VEC values, as well
as the imbalanced document grouping, are minimized, and for some tests, we obtain
better results.

We observe that, on average, we obtain better results when using bidirectional models
for both the fully connected (e.g., BIGRU, 3BIGRU, etc.) and convolutional architectures
(e.g., CNN-BIGRU, CNN-3BIGRU, etc.). We note that, on average, the proposed new
architectures perform better for this task. Furthermore, our models outperform the state
of the art 4CNN-BILSTM architecture. Stacking multiple layers of RNNs (e.g., 3GRU,
3BIGRU, 3GRU, etc.) with or without using a CNN brings very little improvement in
accuracy over the architectures with a single layer. In case they are better, they only bring
a ∼1% improvement. The same observations can be deducted for the architectures that
stacks multiple CNNs, i.e., 4CNN-BILSTM.

As a final remark, we compare our results with the results obtained on the same
dataset in [48] and in [40]. Our proposed Deep Neural Network architectures outperform
with ∼10% the Transformer-based models in [40] that obtained an accuracy of only 0.67.

5. Conclusions

In this paper, we propose DOCTOPIC2VEC, a novel embedding that incorporates
contextual cures through the use of Topic Modeling. We use a dataset with game reviews
to learn different WORDEMB models, i.e., WORD2VEC, FASTTEXT, and GLOVE. Applying
the different WORDEMB, we create DOC2VECs for each review and TOPIC2VECs for each
topic extracted by LDA, NMF, and LSI. A DOCTOPIC2VEC is constructed for each review
as the concatenation of its DOC2VEC with the TOPIC2VEC for its dominant topic. Both
DOC2VEC and TOPIC2VEC use the same WORDEMB when are concatenated into the
DOCTOPIC2VEC. To prove the efficiency of the new proposed DOCTOPIC2VEC in the task
of Document-Level Sentiment Analysis, we implement different Deep Neural Network
(DNN) Architectures using combinations of fully connected (i.e., GRU, LSTM, BIGRU,
BILSTM, DENSE) and convolutional (CNN) layers. Furthermore, we propose six novel
Convolutional-based Recurrent DNN Architectures that outperform the state of the art
4CNN-BILSTM architecture [3].

The experimental results show an improvement in accuracy in determining the document-
lever polarity of ∼5% when employing the new proposed context-enhanced DOCTOPIC2VEC

for the NMF- and LSI-based topic embeddings over the baseline, i.e., DOC2VEC with LOGREG.
These embeddings manage to improve the classification by:

(1) Grouping context-related documents together through the document to dominant
topic distribution;

(2) Enhancing the document vectorization with the importance of context-dependent
terms that belong to the topic.

Furthermore, we observe that if the Topic Modeling algorithm does not meet these
requirements, the polarity detection accuracy drops significantly, as in the case of LDA.
Finally, we want to note that our proposed CNN-(BI)RNN architectures outperform the
best performing state-of-the-art model with ∼10% applied on the same dataset in [40].

By combining Topic Modeling with the Sentiment Analysis task and by obtaining
better results, we manage to answer (Q1) and to fulfill objective (O1). We answer (Q2)
by adding local and global context through the novel DOCTOPIC2VEC embedding and
improving the accuracy of detecting the polarity of textual data, thus achieving objective
(O2). By introducing novel CNN-(BI)RNN Deep Learning Architectures that improve the

Mathematics 2021, 9, 2722 21 of 23

accuracy of the Sentiment Analysis task, we answer our final research question (Q3) and
complete objective (O3).

As future work, we aim to test other embeddings, e.g., MITTENS [49] which learns
domain-specific representations, MOE [50] which manages word misspellings, BERT [22]
which considers the word’s occurrence and position when computing its context. Further-
more, we plan to explore how the WORDEMBs used in this paper could be used with other
neural networks, such as Hierarchical Attention Networks or Deep Belief Networks.

Author Contributions: Conceptualization, C.-O.T., E.-S.A. and M.-L.S, .; methodology, C.-O.T., E.-S.A.
and M.-L.S, .; software, C.-O.T., E.-S.A. and M.-L.S, .; validation, C.-O.T., E.-S.A. and M.-L.S, .; formal
analysis, C.-O.T., E.-S.A., M.-L.S, . and A.P.; investigation, C.-O.T., E.-S.A., M.-L.S, . and A.P.; resources,
C.-O.T. and E.-S.A.; data curation, E.-S.A. and M.-L.S, .; writing—original draft preparation, C.-O.T.,
E.-S.A., M.-L.S, . and A.P.; writing—review and editing, C.-O.T., E.-S.A. and A.P.; visualization, C.-O.T.
and E.-S.A.; supervision, C.-O.T. and E.-S.A.; project administration, C.-O.T., E.-S.A. and A.P.; funding
acquisition, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The research presented in this paper was supported in part by the German
Federal Ministry of Education and Research (BMBF) through the project QURATOR (Grant No.
03WKDA1F) and PANQURA (Grant No. 03COV03F), and the German Academic Exchange Service
(DAAD) through the projects “Deep-Learning Anomaly Detection for Human and Automated Users
Behavior” (Grant No. 91809358) and “AWAKEN: content-Aware and netWork-Aware faKE News
mitigation” (Grant No. 91809005).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

WORDEMB Word Embedding
WORD2VEC Word to vector
GLOVE Global Vectors
DOC2VEC Document to Vector
CBOW Continuous Bag-of-Words
TOPIC2VEC Topic to Vector
DOCTOPIC2VEC Document-Topic to Vector
DNN Deep Neural Networks
RNN Recurrent Neural Networks
BIRNN Bidirectional Recurrent Neural Networks
GRU Gated Recurrent Unit
BIGRU Bidirectional Gated Recurrent Unit
LSTM Long Short-Term Memory
BILSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Networks
LDA Latent Dirichlet Allocation
LSI Latent Semantic Indexing
NMF Non-Negative Matrix Factorization
LOGREG Logistic Regression
TF Term Frequency
IDF Inverse Document Frequency
TFIDF Term Frequency–Inverse Document Frequency
ABCDM Attention-based Bidirectional CNN-RNN Deep Model

Mathematics 2021, 9, 2722 22 of 23

TP True Positive
FP False Positive
TN True Negative
FN False Negative

References
1. Naseem, U.; Razzak, I.; Musial, K.; Imran, M. Transformer based Deep Intelligent Contextual Embedding for Twitter sentiment

analysis. Future Gener. Comput. Syst. 2020, 113, 58–69. [CrossRef]
2. Rezaeinia, S.M.; Rahmani, R.; Ghodsi, A.; Veisi, H. Sentiment analysis based on improved pre-trained word embeddings. Expert

Syst. Appl. 2019, 117, 139–147. [CrossRef]
3. Rhanoui, M.; Mikram, M.; Yousfi, S.; Barzali, S. A CNN-BiLSTM Model for Document-Level Sentiment Analysis. Mach. Learn.

Knowl. Extr. 2019, 1, 832–847. [CrossRef]
4. Yusof, N.N.; Mohamed, A.; Abdul-Rahman, S. Context Enrichment Model Based Framework for Sentiment Analysis. In

International Conference on Soft Computing in Data Science; Springer: Singapore, 2019; pp. 325–335._26. [CrossRef]
5. Yadav, A.; Vishwakarma, D.K. Sentiment analysis using deep learning architectures: A review. Artif. Intell. Rev. 2020,

53, 4335–4385. [CrossRef]
6. Vijayaragavan, P.; Ponnusamy, R.; Aramudhan, M. An optimal support vector machine based classification model for sentimental

analysis of online product reviews. Future Gener. Comput. Syst. 2020, 111, 234–240. [CrossRef]
7. Nemes, L.; Kiss, A. Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 2020, 5, 1–15.

1790793. [CrossRef]
8. Mikolov, T.; Karafiát, M.; Burget, L.; Černockỳ, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings

of the Conference of the International Speech Communication Association, Chiba, Japan, 26–30 September 2010; pp. 1045–1048.
9. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1746–1751. [CrossRef]
10. Wang, R.; Li, Z.; Cao, J.; Chen, T.; Wang, L. Convolutional Recurrent Neural Networks for Text Classification. In Proceedings of

the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019; pp. 1–6. [CrossRef]
11. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the International Conference on

Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.
12. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
13. Arora, S.; Ge, R.; Moitra, A. Learning Topic Models—Going beyond SVD. In Proceedings of the Annual Symposium on

Foundations of Computer Science, New Brunswick, NJ, USA, 20–23 October 2012; pp. 1–10. [CrossRef]
14. Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci.

1990, 41, 391–407. [CrossRef]
15. D’Andrea, A.; Ferri, F.; Grifoni, P.; Guzzo, T. Approaches, tools and applications for sentiment analysis implementation. Int. J.

Comput. Appl. 2015, 125, 26–33. [CrossRef]
16. Aziz, M.N.; Firmanto, A.; Fajrin, A.M.; Ginardi, R.H. Sentiment Analysis and Topic Modelling for Identification of Government

Service Satisfaction. In Proceedings of the International Conference on Information Technology, Computer, and Electrical
Engineering, Semarang, Indonesia, 27–28 September 2018; pp. 125–130. [CrossRef]

17. Yoon, H.G.; Kim, H.; Kim, C.O.; Song, M. Opinion polarity detection in Twitter data combining shrinkage regression and topic
modeling. J. Inf. 2016, 10, 634–644. [CrossRef]

18. Usama, M.; Ahmad, B.; Song, E.; Hossain, M.S.; Alrashoud, M.; Muhammad, G. Attention-based sentiment analysis using
convolutional and recurrent neural network. Future Gener. Comput. Syst. 2020, 113, 571–578. [CrossRef]

19. Basiri, M.E.; Nemati, S.; Abdar, M.; Cambria, E.; Acharya, U.R. ABCDM: An Attention-based Bidirectional CNN-RNN Deep
Model for sentiment analysis. Future Gener. Comput. Syst. 2021, 115, 279–294. [CrossRef]

20. García-Pablos, A.; Cuadros, M.; Rigau, G. W2VLDA: Almost unsupervised system for Aspect Based Sentiment Analysis. Expert
Syst. Appl. 2018, 91, 127–137. [CrossRef]

21. Al-Janabi, O.M.; Malim, N.H.A.H.; Cheah, Y.N. Aspect Categorization Using Domain-Trained Word Embedding and Topic
Modelling. In Advances in Electronics Engineering; Springer: Singapore, 2020; pp. 191–198._18. [CrossRef]

22. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics,
Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

23. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:cs.CL/1907.11692.

24. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. In Proceedings of the International Conference on Learning Representations, Virtual Conference, 26
April–1 May 2020; pp. 1–17.

25. Biswas, E.; Karabulut, M.E.; Pollock, L.; Vijay-Shanker, K. Achieving Reliable Sentiment Analysis in the Software Engineering
Domain using BERT. In Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME),
Adelaide, Australia, 28 September–2 October 2020; pp. 162–173. [CrossRef]

http://doi.org/10.1016/j.future.2020.06.050
http://dx.doi.org/10.1016/j.eswa.2018.08.044
http://dx.doi.org/10.3390/make1030048
http://dx.doi.org/10.1007/978-981-15-0399-3_26
http://dx.doi.org/10.1007/s10462-019-09794-5
http://dx.doi.org/10.1016/j.future.2020.04.046
http://dx.doi.org/10.1080/24751839.2020.1790793
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1109/IJCNN.2019.8852406
http://dx.doi.org/10.1109/FOCS.2012.49
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.5120/ijca2015905866
http://dx.doi.org/10.1109/ICITACEE.2018.8576974
http://dx.doi.org/10.1016/j.joi.2016.03.006
http://dx.doi.org/10.1016/j.future.2020.07.022
http://dx.doi.org/10.1016/j.future.2020.08.005
http://dx.doi.org/10.1016/j.eswa.2017.08.049
http://dx.doi.org/10.1007/978-981-15-1289-6_18
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/ICSME46990.2020.00025

Mathematics 2021, 9, 2722 23 of 23

26. Zhao, L.; Li, L.; Zheng, X.; Zhang, J. A BERT based Sentiment Analysis and Key Entity Detection Approach for Online Financial
Texts. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), Dalian, China, 5–7 May 2021; pp. 1233–1238. [CrossRef]

27. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1, pp. 2227–2237. [CrossRef]

28. Alasadi, S.A.; Bhaya, W.S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 2017, 12, 4102–4107.
[CrossRef]

29. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the
International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013; pp. 1–12.

30. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146._a_00051. [CrossRef]

31. Mikolov, T.; Grave, E.; Bojanowski, P.; Puhrsch, C.; Joulin, A. Advances in Pre-Training Distributed Word Representations. In
Proceedings of the International Conference on Language Resources and Evaluation, Miyazaki, Japan, 7–12 May 2018; pp. 52–55.

32. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [CrossRef]

33. Niu, L.; Dai, X.; Zhang, J.; Chen, J. Topic2Vec: Learning distributed representations of topics. In Proceedings of the International
Conference on Asian Language Processing, Suzhou, China, 24–25 October 2015; pp. 193–196. [CrossRef]

34. Wang, Y.X.; Zhang, Y.J. Nonnegative matrix factorization: A comprehensive review. IEEE Trans. Knowl. Data Eng. 2012,
25, 1336–1353. [CrossRef]

35. Chen, Y.; Zhang, H.; Liu, R.; Ye, Z.; Lin, J. Experimental explorations on short text topic mining between LDA and NMF based
Schemes. Knowl.-Based Syst. 2019, 163, 1–13. [CrossRef]

36. Petrescu, A.; Truica, C.O.; Apostol, E.S. Sentiment Analysis of Events in Social Media. In Proceedings of the IEEE International
Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 5–7 September 2019; pp. 143–149.
[CrossRef]

37. Mitroi, M.; Truică, C.O.; Apostol, E.S.; Florea, A.M. Sentiment Analysis using Topic-Document Embeddings. In Proceedings
of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca,
Romania, 3–5 September 2020; pp. 75–82. [CrossRef]

38. Yi, D.; Ji, S.; Bu, S. An Enhanced Optimization Scheme Based on Gradient Descent Methods for Machine Learning. Symmetry
2019, 11, 942. [CrossRef]

39. Secui, A.; Sirbu, M.D.; Dascalu, M.; Crossley, S.; Ruseti, S.; Trausan-Matu, S. Expressing Sentiments in Game Reviews. In
Proceedings of the 17th International Conference on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA
2016), Varna, Bulgaria, 7–10 September 2016; pp. 352–355._35. [CrossRef]

40. Ruseti, S.; Sirbu, M.D.; Calin, M.A.; Dascalu, M.; Trausan-Matu, S.; Militaru, G. Comprehensive Exploration of Game Reviews
Extraction and Opinion Mining Using NLP Techniques. In Advances in Intelligent Systems and Computing; Springer: Singapore,
2019; pp. 323–331._27. [CrossRef]

41. Linzen, T. Issues in evaluating semantic spaces using word analogies. In Proceedings of the Workshop on Evaluating Vector-Space
Representations for NLP, Berlin, Germany, 7–12 August 2016; pp. 13–18. [CrossRef]

42. Honnibal, M.; Montani, I. spaCy 3: Industrial-Strength Natural Language Processing. 2020. Available online: https://spacy.io/
(accessed on 13 October 2021).

43. Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50.

44. Kula, M. glove-python. 2020. Available online: https://github.com/maciejkula/glove-python (accessed on 13 October 2021).
45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
46. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 8 October 2021).
47. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 13
October 2021).

48. Sirbu, D.; Secui, A.; Dascalu, M.; Crossley, S.A.; Ruseti, S.; Trausan-Matu, S. Extracting Gamers’ Opinions from Reviews. In
Proceedings of the 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, Romania, 24–27 September 2016; doi:10.1109/SYNASC.2016.044. [CrossRef]

49. Dingwall, N.; Potts, C. Mittens: An Extension of GloVe for Learning Domain-Specialized Representations. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics, New Orleans, LA, USA, 1–6 June
2018; pp. 212–217. [CrossRef]

50. Piktus, A.; Edizel, N.B.; Bojanowski, P.; Grave, E.; Ferreira, R.; Silvestri, F. Misspelling Oblivious Word Embeddings. In
Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis,
MN, USA, 2–7 June 2019; pp. 3226–3234. [CrossRef]

http://dx.doi.org/10.1109/CSCWD49262.2021.9437616
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.36478/jeasci.2017.4102.4107
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.1109/IALP.2015.7451564
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.1016/j.knosys.2018.08.011
http://dx.doi.org/10.1109/iccp48234.2019.8959677
http://dx.doi.org/10.1109/ICCP51029.2020.9266181
http://dx.doi.org/10.3390/sym11070942
http://dx.doi.org/10.1007/978-3-319-44748-3_35
http://dx.doi.org/10.1007/978-981-15-0637-6_27
http://dx.doi.org/10.18653/v1/W16-2503
https://spacy.io/
https://github.com/maciejkula/glove-python
https://keras.io
https://www.tensorflow.org/
http://dx.doi.org/10.1109/SYNASC.2016.044
http://dx.doi.org/10.18653/v1/N18-2034
http://dx.doi.org/10.18653/v1/N19-1326

	Introduction
	Related Work
	Methodology
	Data Preprocessing Module
	Word Embedding Module
	Word2Vec
	FastText
	GloVe

	Document Embedding Module
	TFIDF Vectorization
	Topic Modeling Module.
	Latent Dirichlet Allocation
	Non-Negative Matrix Factorization
	Latent Semantic Indexing

	Topic Embedding Module
	Document-Topic Embedding Module
	Classification Module
	Logistic Regression
	Deep Neural Network

	Evaluation Module

	Experimental Results
	Dataset
	Word Embedding
	Document Embeddings
	Topic Modeling
	Topic to Vector
	Document-Topic to Vector
	Classification Algorithms
	Implementation
	Results

	Conclusions
	References

