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Abstract: Estimation of probability density functions (pdf) is considered an essential part of statistical
modelling. Heteroskedasticity and outliers are the problems that make data analysis harder. The
Cauchy mixture model helps us to cover both of them. This paper studies five different significant
types of non-parametric multivariate density estimation techniques algorithmically and empirically.
At the same time, we do not make assumptions about the origin of data from any known parametric
families of distribution. The method of the inversion formula is made when the cluster of noise is
involved in the general mixture model. The effectiveness of the method is demonstrated through
a simulation study. The relationship between the accuracy of evaluation and complicated multidi-
mensional Cauchy mixture models (CMM) is analyzed using the Monte Carlo method. For larger
dimensions (d ~ 5) and small samples (n ~ 50), the adaptive kernel method is recommended. If
the sample is n ~ 100, it is recommended to use a modified inversion formula (MIDE). It is better
for larger samples with overlapping distributions to use a semi-parametric kernel estimation and
more isolated distribution-modified inversion methods. For the mean absolute percentage error,
it is recommended to use a semi-parametric kernel estimation when the sample has overlapping
distributions. In the smaller dimensions (d = 2) and a sample is with overlapping distributions, it is
recommended to use the semi-parametric kernel method (SKDE) and for isolated distributions, it is
recommended to use modified inversion formula (MIDE). The inversion formula algorithm shows
that with noise cluster, the results of the inversion formula improved significantly.

Keywords: Cauchy mixture model; nonparametric density estimation; density estimation algorithms;
adapted kernel density estimate; logspline estimation

MSC: 62G05; 62G07; 62G30

1. Introduction

Estimation of probability density functions (pdf) is considered an essential part of
statistical modelling. It expresses random variables as functions of other variables, making
it possible to detect hidden relationships between data [1]. In a significant number of
machine learning algorithms, it is essential to determine a previously unknown function of
the distribution density of the data. The function of the distribution density is applied in the
Bayesian classifier [2,3], in density-based clustering algorithms [4–6], or information-based
feature selection algorithms [7,8]. Effective density estimates must be carefully created in
advance to obtain unknown functions of probability density. Nowadays, there is still much
focus on developing innovative density estimation procedures [9,10]. Density estimation
is an open research topic in the fast-growing area of deep learning. Scientists have begun
proposing robust density estimators based on neural networks such as Parzen neural
networks [11], soft-constrained neural networks [12], and others [13].

Let us say that the random vector X∈Rd satisfies the distribution mixture model if
its distribution density f (x) satisfies the equation f (x) = ∑

q
k=1 pk fk(x) = f (x, θ). The
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parameter q is the number of mixture clusters, and pk is the a priori probability. These
conditions must also be met: pk > 0 and ∑

q
k=1 pk = 1. The function fk(x) is a function of

the distribution density, and θ is a multidimensional parameter of the model. Suppose X is
a d-dimensional random vector with a distribution density f (x), and there is a sample of
independent copies of X, where X = (X(1), . . . , X(n)). It can be argued that the sample
satisfies the mixture model if X(t) satisfies f (x) = ∑

q
k=1 pk fk(x) = f (x, θ).

One of the statistical tasks is to estimate the density of the observed random variable.
Suppose the available sample’s distribution type is known (Normal, Poisson, and others).
In that case, the distribution density of the data can be estimated simply using mean
and covariance matrix estimates, fitting them to a defined distribution [14–16]. Thus, the
standard parametric method is applied when the assumptions about the density form are
met. When estimating density in a parametric way, the value of the multidimensional
distribution parameter θ needs to be found, which is not straightforward because the
number of parameters increases rapidly as the dimension d increases. For example, in
the case of a mixture of Gaussian distributions, dimθ = 1

2qd(d+1) + qd + q− 1, and even
with a small dimension d = q = 5, the model will consist of dim(θ) = 104 parameters.
When searching for parameter estimates, it may be necessary to solve the optimization
problem in the 104-dimensional space. In practice, the number of clusters q may also be
unknown, and it needs to be estimated. The parametric method is not proper when the
random size distribution is unknown. In this case, non-parametric methods are used to
determine certain forms of density estimates [17–19].

The histogram is one of the simplest and oldest estimates of density. To the best of
our knowledge, data in the form of histograms (without graphical representation) were
first presented in 1661 to determine mortality probabilities in different age groups [20]. To
approximate the density f (x) in the area Ω, the number of observations X(t) falling into Ω
is calculated and divided by n and the volume of the area Ω. The area of space to which all
observations fall is first found. That means the fluctuation intervals of all X projections
on the axes X(1),X(2), . . . , X(d) are found. The fluctuation intervals of the observations are
divided into l partial intervals and in the hypercubes Ωj(j = 1, . . . , r) bounded by them,
the density estimate is calculated as

f̂ (x) =
n
(
Ωj
)

n · h1 · h2 . . . · hd
. (1)

Here n
(
Ωj
)

is the number of observations entering the hypercube Ωj and hj, j = 1, . . . , d
are the edges of the hypercube [21,22]. It is recommended to select the number of hyper-
cubes [17,23,24], and to choose r ∼= 1+ 3.32 log(n), and l = d

√
r has to be an integer number,

so r is chosen that
⌈

d
√

1 + 3.32logn d
⌉

.
A histogram is one of the simplest means of presenting data that is easy to understand

and convenient. This estimate is a function that acquires non-negative values, and its
integral is equal to one. However, it is not continuous. That poses problems when knowing
the density estimate derivatives is essential, mainly when density estimation is used in
intermediate steps of other methods, such as clustering using a gradient algorithm or
plotting high-measurement data-level lines. Remarkably, the histogram stood as the only
non-parametric density estimator until the 1950’s when substantial and simultaneous
progress was made in density estimation and spectral density estimation. In 1951, in a
little-known paper, Fix and Hodges [25] introduced the basic algorithm of non-parametric
density estimation; an unpublished technical report was formally published as a review by
Silverman and Jones in 1989 [26]. They addressed the problem of statistical discrimination
when the parametric form of the sampling density was not known. During the following
decade, several general algorithms and alternative theoretical modes of analysis were
introduced by Rosenblatt in 1956 [27], Parzen in 1962 [28], and Cencov in 1962 [29]. Then
followed the second wave of essential and primarily theoretical papers by Watson and
Leadbetter in 1963 [30], Loftsgaarden and Quesenberry in 1965 [31], Schwartz in 1967 [32],
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Epanechnikov in 1969 [33], Tarter and Kronmal in 1970 [34], and Kimeldorf and Wahba in
1971 [35]. Next, Cacoullos introduced the natural multivariate generalization in 1966 [36].
Finally, in the 1970s, the first papers focusing on the practical application of these methods
were published by Scott et al. in 1979 [24] and Silverman in 1978 [37]. These and later
multivariate applications awaited the computing revolution.

Modern data analysis uses several non-parametric methods for statistically estimating
the distribution density of multivariate random variables. Kernel estimates are particularly
prevalent [38,39]. Quite popular and spline [40,41] and semi-parametric [42–46] algorithms.
However, detailed comparisons of the effectiveness of existing popular estimates for multi-
modal density are lacking. With the most popular non-parametric estimation procedures,
optimal selection of their parameters is encountered in practice. The most crucial element
in the design of kernel estimates is the width of the smoothing. It is not easy to select
the nodes of the spline estimates. Although several adaptive procedures for the selec-
tion of these parameters have been developed [39,47–52], however, they are not efficient
enough when the sample volume is not large, especially then the observational dimension
is large. In the latter case, it is appropriate to apply data design [53–56] because of the more
extensive the dimension of the observed random vectors, the more complex the task of
parameter selection.

The main idea of this paper is to estimate the performance of different density estima-
tors by using density mixtures to show another type of problem, which may result from
data heteroscedasticity and outliers. The relationship between the accuracy of evaluation
and complicated multidimensional Cauchy mixture models (CMM) is analyzed using the
Monte Carlo method. For example, Kalantan and Einbeck [57] used engineering data and,
for computer vision, used CMM, comparing it with the Gaussian mixture model. Azzari
and Foi [58] used harmony between Gauss and heavy-tailed Cauchy to find noise-model
parameters that make outlier estimation robust when imaged dominated by texture. Fi-
nally, Teimouri [59] analyzed patients with Cushing’s syndrome and their diagnostic tests.
The focus was on the tetra hydrocortisone urine release rate (mg/24 h) and evaluating
parameters in the EM algorithm and Cauchy mixture model.

Scientific novelty. Evaluation accuracy comparative analysis is made by using different
probability density estimation procedures. Density function estimates are chosen as popular
different technique estimates, which other researchers have already analyzed. This research
is essential because it focuses on Cauchy distributions.

2. The Density Estimation Algorithms

This section aims to present the density estimation algorithms used in the study
theoretically. All algorithms are presented with algorithms theoretical substantiation.
When making the histogram, each X(t) can be imagined as a separate column with a height
of 1/n. Then it makes sense to change the centre of the column to X(t) itself and get the
following function:

f̂ (x) =
1

n · h1 · h2 . . . · hd
∑ n

t=1 ICh(X(t))(x). (2)

Here Ch is a hypercube with centre X(t), and the lengths of the edges are h1, . . . , hd. In
summary, instead of the indicator function, a smooth “prominence”—the kernel function—
can be used at each observed point. The multidimensional fixed-width bandwidth estimate
with the kernel function K and the fixed (global) kernel width parameter h, which can
be used to estimate the density f̂ (x) of the multidimensional data X∈Rd, is then defined
as follows:

f̂ (x) =
1

nhd ∑n
t=1K

(
x− X(t)

h

)
. (3)

These are some of the most common non-parametric estimates of distribution den-
sity [38,39,60,61]. The kernel function is selected to meet the following condition:∫

Rd
K(x)dx = 1. (4)
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The standard normal distribution density function ϕ is often used as the kernel [62,63]:

Φ(x) = (2π)−d/2 exp(−1
2

x′x). (5)

Often the observations are not evenly distributed in all directions. Therefore, it is
desirable to scale the data by eliminating the most significant dispersion differences in
the different coordinate directions. One suitable method for this [64] is data standard-
ization. That means the sample’s effect on a linear transformation. The mean of the
transformed data is zero, the covariance matrix is unitary, and (3) apply the Equation to
already standardized data. For example, suppose Z is a standardized random vector,

Z = S−
1
2
(
X− X

)
, (6)

here X is the empirical mean of the sample, and S∈Rd×d is the empirical covariance matrix.
Based on the fixed kernel width density estimate (3), a more complex standardized data
density estimate has been constructed:

f̂z(z) =
1

nhd ∑ n
t=1K

(
z− Z(t)

h

)
. (7)

f́ (x) =
(detS)−1/2

nhd ∑ n
t=1K

(
S−1/2 x− X(t)

h

)
. (8)

The optimal kernel width h∗ for a fixed core width is determined by minimizing the
average integral root mean square error (MISE) [65]. For example, when the distribution of
observations is normal with a unit covariance matrix in Gaussian kernel, the expression

h∗ proposed by [65] is h∗ = An−
1

d+4 , here A = [4/(2d + 1)]
1

d+4 . More sophisticated kernel
width selection methods (such as the least-squares cross-checking method) are obtained by
more complex and lengthy calculations [66–70].

In practical research, the kernel width is often selected experimentally. If the value of
h is small, the density function estimate has more modes that correspond to the layout of
the observed data. A higher value of h means more significant smoothing of the estimate.

Although fixed-core width density estimates are widely used to estimate non-parametric
densities, they often have some practical drawbacks [65]. For example, fixed-core width
density estimates do not ensure the distribution ends’ integrity without over-smoothing
the underlying bulk density.

2.1. Adapted Kernel Density Estimate (AKDE)

A good improvement on the fixed kernel width density estimate is the adapted kernel
density estimate [65]. The adapted kernel density estimate is constructed similarly to the
fixed kernel width density estimate. The kernel describes the density at each observed point.
In this case, the kernel width is already considered when moving from one observation to
another. In areas of different smoothness, it is appropriate to take different kernel widths.
This method consists of two steps: estimation of the adapted kernel width and density
estimation by the kernel method, using the information obtained in the first step. The
algorithm can be summarized as follows:

Step 1: The elements of sample X = (X(1), . . . , X(n)) are standardized to
Z = (Z(1), . . . , Z(n)) such that Ê[Z] = 0 and Ê[ZZ′] = I.

Step 2: Estimates f̃Z(z) of the fixed kernel density estimate (3) satisfying the condition
f̃Z(Z(t)) > 0, ∀t.

Step 3: The local width parameter is determined λt =

(
f̃Z(Z(t))

g

)−γ

, where g is

f̃Z(z) the geometric mean, log g = 1
n

n
∑

i=1
log f̂Z(Z(t)) and γ is the sensitivity parameter:

0 ≤ γ ≤ 1.
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Step 4: An adapted kernel estimate is made with variable-width kernels:
f̂Z(z) = 1

n ∑n
t=1 h−dλ−d

t K
(

z−Z(t)
hλt

)
.

Where h is the same global smoothness parameter as in Equation (3), the higher γ, the
more sensitive the density selection. Quite often, the parameter value is selected as follows
γ = 1

2 [65,71].

2.2. Semi-Parametric Kernel Density Estimate (SKDE)

When data are scarce, parametric estimates are often applied even when the unknown
density is not parameterized. Therefore, it is essential to mention the combination of para-
metric and non-parametric estimates. For example, one of the semi-parametric estimates of
kernel density was examined by F. Hoti and L. Holmström [46]. This estimate divides the
random vector into two subvectors and estimates the distribution density of one of them
by the kernel method. Afterward, another relative density is approximated by the Normal
distribution density [46]. For example, suppose d and s are positive integers d ≥ 2, 1 ≤ s ≤
d − 1. Using this method, the d-dimensional vector X∈Rd is decomposed into two s and

(d–s) dimensioned subvectors X =

(
Y
Z

)
, and the sample is decomposed accordingly:

X =

(
Y
Z

)
, where Y∈Rs, Z∈Rd-s. The evaluated density function is expressed as the

product of the distribution density of the random vector Y and the conditional distribution

density of the random vector Z: fX(x) = f(Y,Z)(y, z) = fY(y) fZ|Y=y(z
∣∣∣y) , x =

(
y
z

)
∈ Rd.

Here fX and fY are the densities of X and Y. fZ|Y=y is the density of Z when Y = y.
Suppose that the relative density Y = y is multidimensional normal Gaussian, but the

density fY does not belong to any family of parametric functions. The density fX is then
obtained by estimating fY in a non-parametric manner and applying a multidimensional
Normal density to each fZ|Y=y. The density function fY(y), as with (8), is evaluated by
the kernel method [65]. Since the sample elements are not standardized, the smoothness
parameter is not the same in all directions. Therefore, using the kernel method, it is replaced
by the s-dimensional matrix H:

f̂ (y) =
1
n ∑ n

t=1
1

det(H)
K
(

H−1(y−Y(t))
)

. (9)

Usually, the shape of H is chosen diagonally—H = diag(h1, . . . , hs), and the smooth-
ness parameters are calculated as follow

hj =

(
4

s + 2

)1/(s+4)
n−1/(s+4)σj. (10)

It should be noted that this form, when s = 1, was proposed by B. W. Silverman [65].

Replacing the standard deviation σj of the component Yj with its estimate σ̂j =

√
∑(Xj−Xj)

2

nj

and by the rule of D. W. Scott [39] first multiplier is always between 0.924 and 1.059 ĥj can
be calculated as follows

ĥj = n−1/(s+4)σ̂j. (11)

This Scott’s rule is easy to summarize for the smoothness matrix H:

Ĥ = n−1/(s+4) Σ̂ 1/2. (12)

Here Σ̂ = diag
(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

s
)

is the diagonal matrix of Y empirical variances.

The conditional density fZ|Y(·
∣∣∣y) is approximated by the Gaussian distribution N(m(y),

C(y)), where m(y), C(y) denote the conditional mean of the vector Y and the conditional
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covariance matrix: m(y) = E(Z|Y = y) , y∈Rs, C(y) = E
[
(Z−m(y))′(Z−m(y))

∣∣∣Y = y
]
,

y∈Rs. For the estimation of m(y) and C(y), it is proposed to apply the kernel smoothing:

m̂(y) =
∑n

t=1 KH2(y−Y(t))Z(t)
∑n

j=1 KH2(y−Y(j))
= ∑ n

t=1WH2(y−Y(t))Z(t), y ∈ Rs. (13)

Here are the weights WH2(y−Y(t)) =
KH2 (y−Y(t))

∑n
j=1 KH2 (y−Y(j)) .

The sum of which is equal to one. The formula (13) can be understood as a regression
estimate of the conditional mean function m of Nadaraya and Watson [72,73]. The condi-
tional covariance matrix can be evaluated similarly Ĉ(y) = ∑n

t=1 WH3(y−Y(t))(Z(t)− m̂(y))′

(Z(t)− m̂(y)), y∈Rs. The parametric estimate of the relative density f (Z|Y) = y looks akin

to this f̂Z|Y=y(z) = [(2π)d−s ˆdetC(y)]
−1/2

exp
{
− 1

2 (z− m̂(y))Ĉ(y)−1(z− m̂(y))′
}

, z∈Rd-s.

The estimate of the distribution density fX of X then is: f̂X(x) = f̂(Y,Z)(y, z) = f̂Y(y) f̂Z|Y=y(z),
x = (y,z)∈Rd.

The procedure described above is called the semi-parametric kernel density estimate.
In practice, even if the conditional assumption of the normality of several random vector
components is satisfied. The decomposition dimensions also influence the accuracy of the
density estimation results, and the choice of the coordinates influences the accuracy of the
density estimation results. One way to select them is to use the least-squares method or the
maximum likelihood cross-entropy method recommended by original method authors [46].
The authors propose the parameters H2 and H3 [46] to select 2H.

2.3. Logspline Estimation (LSDE)

This subsection describes the logspline estimation (LSDE) calculation. One-dimensional
polynomial splines are called partial polynomials of a certain degree. Breakpoints that con-
tain a transition from one polynomial to another are called nodes. Suppose that the vector
t = (t1, . . . , tK) ∈ RK defines a set of such K points. Splines describe smooth connections,
showing how different areas are separated by nodes [74]. These constraints are precisely
defined by expressing partial polynomials in the number of continuous derivatives s. These
include partially linear curves. If there are no restrictions, breakpoints are allowed in the
nodes of these functions. Assuming that the functions are globally continuous, it is required
that the individual linear parts meet at each node. If greater smoothness is needed (for con-
tinuous first-order derivatives), then the flexibility of the nodes is lost. Moreover, the curves
are considered simple linear functions. The term “linear spline” is applied to a continuous
partial linear function in the literature on approximation theory. Accordingly, the term
“cubic spline” is assigned to continuous cubic functions with second-order continuous
derivatives and nodes that allow jumps of third-order derivatives. If the polynomial degree
is b and the vector of the nodes is t, then the set of polynomial splines with s continuous
derivatives forms a linear space. For example, a set of linear splines with nodes in the
sequence t is defined by function

1, x, (x− t1)+, . . . , (x− tK) + . (14)

Here (0)+ = max(0,0). We will rely on this set as the base of space. The base of the

spline space of degree b and s smoothness consists of monomial whose form (x− tk)
s+j
+ ,

here 1 ≤ j ≤ b − s. Using this formula, in the case of classical cubic splines, where b = 3 and
s = 2, the base consists of elements

1, x, x2, x3, (x− t1)
3+, . . . , (x− tK)

3 + . (15)

From the model point of view, this base is convenient because the individual functions
at the nodes are merged. In expressions (14) and (15), each function is precisely associated
with one of the nodes, and removing this function essentially corresponds to removing the
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node itself. It is known that the numerical properties of functions (14) and (15) are poor. For
example, the solution matrix deteriorates as rapidly as the number of nodes decreases in lin-
ear regression problems. A practical alternative is the so-called B-spline base [75,76]. These
functions are designed to be supported in several contiguous intervals defined by nodes
(b + 1 contiguous intervals are used for the smoothest splines). Suppose we can find the
basis for splines of space B1(x; t), . . . , BJ(x; t) b with smoothness s and a sequence of nodes
t so that any function in space can be written as g(x; β, t) = β1B1(x; t) + . . . + β J BJ(x; t).
Where the corresponding coefficient vector is β = (β1, . . . , βJ)′. As seen from (14) and (15),
then spline spaces of maximum smoothness are used J = K + b + 1.

According to the title of the subsection, the object of this analysis is the logarithmic
density. Suppose X is a random vector that takes values from the interval (L, U). In the
individual case, L and U can be ±∞. The parameters L and U are set to 2t1 − t2 and
2tK − tK − 1, respectively. If β1 ≥ 0 or βK − 1≥0, then the adjustment is made 2Lold − t1
and Unew = 2Uold − tK is performed. The method of Kooperberg and Stone [52,77–79],
known as logspline, is implemented with cubic spline. The cubic spline is described in
(15). These functions are also continuously differentiated, and the partial polynomials are
defined accordingly in the sequence of nodes t = (t1, . . . , tK). In each interval [t1, t2], . . . ,
[tK−1, tK] cubic splines are also cubic polynomials, but at the edges (L, t1] and [tK, U) are
linear functions. The minimum number of nodes is K ≥ 3 (otherwise, a linear function or
constant can be obtained). The basis form is 1, B1(x; t), . . . , BJ(x; t), where J = K − 1.

It is said that the vector β = (β1, . . . , βJ)′∈RJ exists then C(β, t) = log(∫ U
L exp(β1B1(x; t) + . . . + β J BJ(x; t))dx

)
< ∞. Suppose B denotes a set of such possi-

ble vectors. After selecting β∈B, the family of positive density functions in the interval (L,
U) is defined the form of which is

g(x; β, t) = exp(β1B1(x; t) + . . . + β J BJ(x; t)− C(β, t)), L < x < U. (16)

Now, having a random sample n of magnitude X(1), . . . , X(n) from the interval (L, U)
with an unknown density function f, the logical probability function corresponding to the
model of logsplines (16) is

l(β, t) = ∑ ilog(g(Xi; β, t)) = ∑ i ∑ jβ jBj(Xi; t)− nC(β, t), β ∈ B. (17)

where estimation of maximum likelihood β̂ = argmaxβ∈Bl(β, t) and an estimate of density
f̂ = g

(
x; β̂, t

)
, L < x < U.

Let us say that during the stepwise determination procedure, the sequence of models
is denoted by v, the vth model has Jv base functions. The Generalized Akaike Information
Criterion (AIC) selects the best model [80]. Suppose that l̂v defines the estimate of the logic-
likelihood function (17) for the vth model. The Equation defines the Akaike information
criterion AICa,v(t) = −2l̂v(t) + aJv for which the model has a loss parameter a. From many
models, the one whose value of v minimizes AICa,v. Stone [52] recommends the use of
a = log n.

2.4. PPDE Algorithm. Estimation of the Projection Density of the Target

The projection pursuit density estimator (PPDE) proposed by Friedman is based
on the target projection and consistent projection Gaussianization. The essence of J. H.
Friedman and coauthors [54,55,81] in estimating the target projection density is to search
for “interesting”, small-measurement data projections. The distribution structures, where
the projections have distributions that are very different (in the sense of some projection
index) from Gaussian. Huber [82] made a heuristic proposal to consider the Gaussian
distribution as the least interesting. This proposal is based on the facts that:

• The multidimensional Gaussian distribution is entirely defined by its linear structure
(mean and covariance matrices). Therefore, it is desired to feel a data structure
independent of the correlation and linear transformations such as the scale parameter.
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• All projections of a multidimensional Gaussian distribution are also Gaussian distri-
butions. Thus, if the projection differs insignificantly from the Gaussian distribution,
it indicates that distribution is also close to the Gaussian.

• For multidimensional data with a structure in multiple projection directions, many
projections will have a distribution close to normal. This statement follows from the
central limit theorem.

• In the case of constant variance, the Gaussian distribution is considered to be the least
informative.

Friedman developed Huber’s idea and proposed an algorithm called exploratory
target projection to estimate multidimensional non-parametric density. This procedure
consists of five steps:

(1) Data standardization simplifies layout, scalability, and correlation structures;
(2) Projection index: the degrees of ‘interest’ in various directions are determined.
(3) Optimization strategy: search for the direction in which the projection index is the

largest.
(4) Data transformation: the one-dimensional density is calculated in the chosen direction,

and the data are multiplied.
(5) Density formation: multidimensional density is formed from the calculated one-

dimensional densities. Multidimensional density is a function of one-dimensional
densities.

The following projection index construction has been proposed. It is known that all
projections of a multidimensional Gaussian distribution are one-dimensional Gaussian
distributions. If the distribution in one direction is not Gaussian, then the multidimen-
sional distribution is also not Gaussian. Therefore, the projection index I(τ) shows how
far the one-dimensional density fτ(y) is in the direction τ(Y = τ′Z) from the Gaussian
distribution when Z is a standardized quantity [83]:

Ĩ(τ) =
∫ ∞

−∞
( fτ(y)−Φ(y))2dy, where Φ(y) =

1√
2π

e
−y2

2 . (18)

The projection direction τ, which maximizes the projection of a distribution Ĩ(τ), is
chosen to highlight the multimodal or other nonlinear structure of that distribution. We
transform the data y by equality R = 2Φ(Y)− 1 = 2Φ(τ′Z)− 1, R ∈ [−1, 1], where Φ(u)

is a function of the standard normal distribution Φ(u) = 1√
2π

∫ u
−∞ e

−t2
2 dt. The distribution

density of the transformed quantity R, function fR(r) can be rewritten as

fR(r) =
fτ(y)∣∣∣ ∂r

∂y

∣∣∣ =
fτ(y)

2Φ(y)
. (19)

Equation (18) can be rewritten by changing the variable y to r : Ĩ(τ) =
∫ 1
−1 2Φ(y)

( fR(r)− 1/2)2dr =
∫ 1
−1 2Φ

(
Φ−1

(
R+1

2

))
( fR(r)− 1/2)2dr. Friedman [55] proposed a slightly

different form of the projection index I(τ), taking the integrated square error as a measure of
R inequality:

I(τ) =
∫ 1

−1
( fR(r)− 1/2)2dr =

∫ 1

−1
f 2
R(r)dr− 1/2. (20)

Note that if the distribution of Y is Gaussian, then fR(r) = 1
2 , ∀r, and the projection

index I(τ) is zero. The more the Y distribution differs from the normal, the higher the value
of the index I(τ). Since R ∈ [−1, 1], fR(r) can be decomposed by orthogonal Lagrangian
polynomials,

{
ψj
}∞

j=0, i.e., fR(r) = ∑∞
j=0 bjψj(r):

I(τ) =
∫ 1

−1
f 2
R(r)dr− 1/2 =

∫ 1

−1

[
∑ ∞

j=0bjψj(r)
]

fR(r)dr− 1/2. (21)
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An iterative expression defines orthogonal Lagrangian polynomials. ψ0(r) = 1 and

ψ1(r) = r. ψj(r) =
(2j−1)rψj−1(r)−(j−1)ψj−2(r)

j , then j ≥ 2. It follows from the orthogonality

property that the coefficients bj can be calculated as follows bj =
2j+1

2

∫ 1
−1 ψj(r) fR(r)dr =

2j+1
2 ER

[
ψj(r)

]
= 2j+1

2
1
n ∑n

t=1 ψj(2Φ(Y(t))− 1), where
∫ 1
−1 ψj(r) fR(r)dr = ER

[
ψj(r)

]
is the

mean of the sample approximates the expression. Thus, equality can be written as

I(τ) =
∫ 1

−1
f 2
R(r)dr− 1/2 = ∑ s

j=1
2j + 1

2
E2

R
[
ψj(r)

]
. (22)

It should be noted that the infinite amount has been changed to finite. Such a change
has advantages: the sum is calculated faster, giving robustness to the projection index.
By summing only a finite number of members, the slowly fading “tails” of the projection
distributions have a more negligible effect on the value of the projection index. Therefore,
it is suggested to choose 4 ≤ s ≤ 7.

There are many methods for finding “interesting” projections. The method used in
this research for finding the ‘most interesting’ projection direction is a mixed optimization
strategy [55,64,84]. After defining the analytical expression of the projection index, its
gradient in the projection direction τ is obtained as follows

∂I
∂τ

=
2√
2π

∑ s
j=1(2j + 1)E

[
ψj(r)]E[ψ′j(r)e

−y2/2(z− τy)
]
. (23)

Here, the Lagrangian polynomial derivative is calculated by an iterative formula:
ψ′1(r) = 1, then ψ′j(r) = rψ′j−1(r) + jψj−1(r), then j ≥ 1. Initially, an approximate step
optimizer is found by searching in the directions of the main components and their com-
binations so that the initial convergence to the maximum can be achieved quickly. Then,
the approximate step optimizer (steepest ascent) quickly selects the projections required
to ascend to the (local) maximum of the projection index. The projection index is used to
search for ‘interesting’ data projections. However, it is usually not enough to find a single
projection to reasonably estimate the multidimensional density. In general, “interesting”
directions do not have to be orthogonal and may require more projection directions than the
data dimension. Therefore, when estimating density by targeted projection, the so-called
deletion of the data structure is applied. A nonlinear scale transformation is performed,
found in the projection direction, so the distribution of the transformed data becomes
normal. This operation ensures that the same direction as before was not found when
searching for another projection direction.

The deletion of the data structure is based on the fact that if the projection of one-
dimensional data projection τ′Z has a distribution density fτ(y) and a corresponding
distribution function Fτ , then the random variable is equal to

Ỹ = Φ−1(Fτ(Y)), (24)

where Φ−1 is the inverse of the standard normal distribution. Friedman [55] proposed to
calculate the empirical estimate of the distribution function as follows F̂τ(y) = rank(Y)
/n− 1

2n , where rank(y) is the rank of Y in the whole sample of size n. Unfortunately, this
estimate is not accurate and often results in a very uneven density function. By denoting
Z(0) = Z, we will discuss how Z(k−1) is obtained from Z(k). Based on Equation (14), Z(k)

can be defined as

Z(k) = Z(k−1) +
[
Φ−1

(
Fτ

(
τ′Z(k−1)

))
− τ′Z(k−1)

]
τ. (25)

The same procedure is performed to find the ‘most interesting’ projection with Z(k)

searching for a new direction. This sequence is repeated until the multidimensional
distribution becomes close to the Gaussian distribution in all directions. It has been
observed [55] that gaussianization in one direction disrupts normalcy in the directions
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previously studied so that their projection index I(τ) is no longer zero. However, studies
show [54] that the changes in results are minimal. Multidimensional density is calculated
from one-dimensional density estimates.

The relationship between the multidimensional densities Z(k) and Z(k−1) (where
Z(k) is the structure of the distant data Z(k−1) along the k-th projection τ(k)) is

fτ(k)

(
z(k)
)
=

fτ(k−1)(z(k−1))
|Jk(z(k−1))| and fτ(k−1)

(
z(k−1)

)
= fτ(k)

(
z(k)
)∣∣∣Jk

(
z(k−1)

)∣∣∣, here is the Jaco-

bian Jk

(
z(k−1)

)
= ∂z(k)

∂z(k−1) =
∂(Uz(k))

∂(Uz(k−1))
= ∂y(k)

∂y(k−1) =
fτ(k)(y(k−1))

Φ(y(k))
=

fτ(k)(τ′(k)z(k−1))
Φ(τ′(k)z(k))

≥ 0.

Starting from the initial multidimensional data Z(0) gaussianization procedure is
performed for each “interesting” projection found by I(τ). After a certain number, the pro-
jections’ multidimensional data Z(M) differ slightly from the normal distribution. Density
Z(0) can be calculated as follows

f
(

z(0)
)
= fτ(1)

(
z(1)
)

J1

(
z(0)
)
= fτ(2)

(
z(2)
)

J2

(
z(1)
)

J1

(
z(0)
)
= fτ(M)

(
z(M)

) M
∏

k=1
Jk

(
z(k−1)

)
≈ Φ

(
z(M)

) M
∏

k=1
Jk

(
z(k−1)

)
= Φ

(
z(M)

) M
∏

k=1

fτ(k)(τ′(k)z(k−1))
Φ(τ′(k)z(k))

.

(26)
The one-dimensional density of the projected data fτ(k)

(
τ′(k)z(k−1)

)
is calculated according to

Equation (18) or more precisely

fτ(k)

(
τ′(k)z(k−1)

)
= Φ

(
τ′(k)z(k−1)

) s

∑
j=0

2j + 1
n

n

∑
t=1

ψj

(
r(k−1)

t

)
ψj

(
r(k−1)

)
. (27)

Then, replacing the unknown one-dimensional distribution densities on the right-hand side
(26) with their statistical estimates, we obtain

f̂ (z) = Φ
(

z(M)
) M

∏
k=1

f̂τ(k)

(
τ′(k)z(k−1)

)
Φ
(

τ′(k)z(k)
) . (28)

The target projection density estimate is calculated relatively quickly because of the shape of
the multivariate projection index and the iterative relationship between polynomials.

2.5. Inversion Formula
When examining approximations of parametric methods, it should be emphasized that as the

data dimension increases, the number of model parameters increases rapidly, making it more difficult
to find accurate parameter estimates. One-dimensional data projections Xτ = τ′X density fτ is much
easier to find than multidimensional data density f because there exists a mutually unambiguous

correspondence, f ↔
{

fτ , τ ∈ Rd
}

. It is quite natural to try to find the multidimensional density f

using the density estimates f̂τ of one-dimensional observational projections. It should be noted that
in the case of the mixture, when the distributions are Gaussian, the projections of observations are
also distributed according to the (one-dimensional) Gaussian mixture model

fτ(x) = ∑q
k=1 pk,τ ϕk,τ(x) = fτ(x, θτ). (29)

Here ϕk,τ(x) = ϕ
(

x; mk,τ , σ2
k,τ

)
– one-dimensional Gaussian density. The parameter θ of the

multidimensional mixture. The distribution parameters of the data projections θτ =
(

pk,τ , mk,τ , σ2
k,τ

)
,

k = 1, . . . , q are related by equations: pj,τ = pj, mj,τ = τ′Mj and σ2
j,τ = τ′Rjτ. Using the inversion

formula

f (x) =
1

(2π)d

∫
Rd

e−it′xψ(t)dt, (30)
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where ψ(t) = Eeit′x denotes the characteristic function of the random variable X. Marking u = |t|,
τ = t/|t| and changing the variables to a spherical coordinate system, density is written

f (x) =
1

(2π)d

∫
τ: |τ|=1

ds
∫ ∞

0
e−iuτ′xψ(uτ)ud−1du. (31)

Here, the first integral is understood as the surface integral of the unit sphere. After noting the
characteristic function of the projection of the observed random variable as ψτ(u) = Eeiuτ′X . Then
equality ψ(uτ) = ψτ(u) holds. By selecting the set T of projection directions evenly spaced on the
sphere and replacing the characteristic function with its estimate ( f̂ (x)) a formula

f̂ (x) =
A(d)
#T ∑

τ∈T

∞∫
0

e−iuτ′xψ̂τ(u)ud−1e−hu2
du, (32)

is obtained to calculate the estimate [85,86]. Here and # continue to denote the number of elements in
the set T. Using the d-meter ball volume

Vd(R) =
π

d
2 Rd

Γ
(

d
2 + 1

) =


π

d
2 Rd

( d
2 )!

, then d mod 2 ≡ 0

2
d+1

2 π
d−1

2 Rd

d!! , then d mod 2 ≡ 1
, (33)

the constant A(d) depending on the data dimension can be calculated using

A(d) =
(Vd(1))

′
R

(2π)d =
d2−dπ−

d
2

Γ
(

d
2 + 1

) . (34)

Computer simulation studies have shown that the density estimates obtained using the inver-
sion formula are not smooth. Therefore, in formula (32), an additional multiplier e−hu2

is used below
the integral sign. This multiplier further smoothes the estimate f̂ (x) (32) with the Gaussian kernel
function. This form of the multiplier allows the value of the integral to be calculated analytically. The
number of clusters and Gaussian mixture parameters was selected using the constructive procedure
and software developed at the Lithuanian Institute of Mathematics and Informatics, applying the w2

type criterion [87]. Formula (32) can be used for various estimates of the characteristic function of the
projected data. We will discuss the two methods used in this work.

One of them is based on the density approximation of the Gaussian distribution mixture model.
In the present case, after replacing the parameters of the Gaussian mixture with their statistical
estimates (p̂k,τ = pk, m̂k,τ = τ′Mk, σ2

k,τ = τ′Rkτ) (Page 10), the following parametric estimate

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ /2 (35)

of the characteristic function is used, and adding (32) to (35) gives

f̂ (x) = A(d)
#T ∑

τ∈T

q̂τ

∑
k=1

p̂k,τ

∞∫
0

eiu(m̂k,τ−τ′x)−u2(h+σ̂2
k,τ /2)ud−1du

=
A(d)
#T ∑

τ∈T

q̂τ

∑
k=1

p̂k,τ Id−1

(
m̂k,τ−τ′x√

σ̂2
k,τ+2h

)(√
σ̂2

k,τ + 2h
)−d

(36)

and where Ij(y) can be written as

Ij(y) = Re

 ∞∫
0

eiyz−z2/2zjdz

. (37)

It should be noted that only the real part of the expression can be considered here. The sum of
the imaginary parts must be equal to zero. Because the density estimate f̂ (x) can acquire only real
values. The chosen form of the smoothing multiplier e−hu2

allows relating the smoothing parameter
h to the variances of the projection clusters—in the calculations, the variances are increased by 2h.
How to calculate expression (37) is given in Appendix B.
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2.6. Modified Density Estimate of the Inversion Formula
One of the disadvantages of the inversion formula method defined in (32) is that the Gaussian

distribution mixture model described by this estimate (where fk = ϕk) evaluates well only the density
of observations close to it. However, when approximating the density under study with a mixture
of Gaussian distributions, the estimation of the density of the inversion formula often becomes
complicated due to a large number of components with low a priori probabilities. Their number can
be reduced by introducing a noise cluster—the modified algorithm based on a multidimensional
Gaussian distribution mixture model. Let us use the inversion formula (30). The parametric estimate
of the characteristic function of uniform distribution density can be calculated as follows

ψ̂(u) =
2

(b− a)u
sin

(b− a)u
2

·e
iu(a+b)

2 . (38)

In uniform distribution density function (38), b is the maximum value, and a is the minimum
value. In the density estimate calculation formula (32), construct the estimation of the characteristic
function as a union of the characteristic functions of a mixture of Gaussian distributions and a
uniform distribution with corresponding a priori probabilities as follows

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ /2 + p̂0,τ

2
(b(τ)− a(τ))u

sin
(b(τ)− a(τ))u

2
·e

iu(a(τ)+b(τ))
2 . (39)

Here the second term describes a uniform distributed noise cluster and p̂0 is the weight of
the noise cluster. Based on the parameters of the uniform distribution and the projected data, we
can write

a(τ) =
(
τ′x
)

min −
(τ′x)max − (τ′x)min

2(n− 1)
and (40)

b(τ) =
(
τ′x
)

max +
(τ′x)max − (τ′x)min

2(n− 1)
. (41)

Using notations such as (36), we can write

f̂ (x) = A(d)
#T ∑

τ∈T

[
q̂τ

∑
k=1

p̂k,τ Id−1

(
m̂k,τ−τ′x√

σ̂2
k,τ+2h

)(
σ̂2

k,τ + 2h
)− d

2

+
2p̂0,τ

b(τ)−a(τ) Jd−2

(
a(τ)+b(τ)−2τ′x

2
√

2h
, b(τ)−a(τ)

2
√

2h

)
·(2h)−

d−1
2

]
.

(42)

where the expression Ij(y) is the same as (37) and its value is Ij(y) = Cj(y) and

Jj(y, z) = Re

 ∞∫
0

eiyu−u2/2· sin zu·ujdu

. (43)

By integrating, we get

∞∫
0

eiyu−u2/2· sin zu·ujdu =
∞∫
0
(cos yu + i sin yu)· sin zu·e−u2/2·ujdu

=
∞∫
0

(
sin(y+z)u+sin(z−y)u

2 + i cos(y−z)u−cos(y+z)u
2

)
·e−u2/2·ujdu

= 1
2 Sj(y + z) + 1

2 Sj(z− y) + i 1
2 Cj(y− z)− i 1

2 Cj(y + z).

(44)

the above formula uses the variables Sj(y) and Cj(y), the calculation of which is given in formulas
(52) and (53) in Appendix B.

3. Materials and Methods
Density estimation algorithms were presented in the previous section. The Monte Carlo method

was used in this study. Such a comparison of algorithms allows us to measure the real observation
density values and evaluate algorithms’ efficiency. For the research, we used multidimensional (d = 2,
5, 10, 15) distributions of the Cauchy mixture

∑q
j=1 pjC

(
x, mj, uj

)
. (45)
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Additionally, C
(

x, mj, uj

)
is defined as follows

C
(

x, mj, uj

)
= ∏d

k=1
ujk

π[u2
jk +

(
xk −mjk)2

] . (46)

Calculations were performed using sample sizes of n = 50, 100, 200, 400, 800 while changing
the number of distributions, their weights, and centers (see. Table 1). In each case, 100,000 samples
were generated.

Table 1. Parameters table.

Number
of Compo-

nents

Proportions of
Components Location Parameters Separation Size

of Locations

q = 2 p1 = (1 − p2),
p2 = 0.1, 0.3, 0.5

m1 = (0, 0),
m2 = (0.5i, 0.5i) i = 1, 2, . . . , 6

q = 3 p1 = p2 = (1 − p3)/2,
p3 = 0.1, 1/3, 0.8

m1 = (0, 0),
m2 = (0.5i, 0.5i),

m3 = (0.5i, 0)
i = 1, 2, . . . , 6

q = 4 p1 = p2 = p3 = (1 − p4)/3,
p4 = 0.1, 0.25, 0.7

m1 = (0, 0),
m2 = (0.5i, 0.5i),

m3 = (0.5i, 0),
m4 = (0, 0.5i)

i = 1, 2, . . . , 6

q = 2 p1 = (1 − p2),
p2 = 0.1, 0.2, 0.3, 0.4, 0.5

m1 = (0, 0, 0, 0, 0),
m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i) i = 1, 2, . . . , 6

q = 3
p1 = p2 = (1 − p3)/2,
p3 = 0.1, 0.2, 1/3, 0.4,

0.6, 0.8

m1 = (0, 0, 0, 0, 0),
m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i),

m3 = (0.5i, 0.5i, 0, 0, 0)
i = 1, 2, . . . , 6

q = 4 p1 = p2 = p3 = (1 − p4)/3,
p4 = 0.1, 0.16, 0.25, 0.4, 0.7

m1 = (0, 0, 0, 0, 0),
m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i),

m3 = (0.5i, 0.5i, 0, 0, 0),
m4 = (0, 0, 0.5i, 0.5i, 0.5i)

i = 1, 2, . . . , 6

In cases of d = 10, 15, the same weights were used as in d = 5. Additionally, centres are located
on the apexes of the hypercube.

Algorithms used in the research: AKDE—adaptive kernel, PPDE—projection pursuit, LSDE—
logspline, SKDE—semi-parametric kernel, IFDE—inversion formula, MIDE—inversion formula with
noise cluster. In IFDE and MIDE methods are used mixture parameters, calculated with a program
made in an institute of Mathematics and Informatics (Vilnius) [87].

Selection of parameters in the density estimation procedure. In this study, the Monte Carlo
method aimed to perform the accuracy of the non-parametric estimates of distribution density
previously described in the methodological sections (AKDE, PPDE, LSDE, SKDE, IFDE, MIDE)
comparative analysis. The authors [34] propose to collect the value of the sensitivity parameter (γ,
see. AKDE method step 3) used in the AKDE method from the set {0.2; 0.4; 0.6; 0.8}. The specific
value of the parameter is determined by a probabilistic cross-check [88,89]. In the SKDE, all possible
values of the sub-vector Y dimension s (1≤ s ≤ d − 1, where d is dimensions, see page 5) and
their corresponding coordinates were reselected. The most factual errors were used to compare the
results with other studied methods. The LSDE method minimizes the Akaike information criterion
by selecting the number of baseline spline points [78]. The computer program for calculating this
estimate is provided in the R package and was used in the study. Akaike information criterion
AIC = −2l(t) + aJ(t), J—degree of spline, a = log(n), l—probability function used to select
the spline coefficients. The MIDE method has a smoothing parameter, h. The chosen form of
the smoothing multiplier e−hu2

allows relating the smoothing parameter h to the variances of the
projection clusters. Modelling studies have shown that this method is sensitive to parameter selection.
If h is set too low, the estimate becomes very slick and has large errors. Excessive smoothing of the
density estimate does not greatly affect its quality. In the studies, it was observed that the estimation
becomes uneven due to the similarity of the values of the observations projected in some directions,
thus distinguishing low-weight components with small dispersions. The smoothing parameter (h) as
well as the specific value of the noise cluster weight (probability) from the set {0.05; 0.1; 0.15; 0.2; 0.3;
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0.4} are selected by cross-checking the least squares [65]. The vector of the estimate parameters is
searched for in such a way that it minimizes the integrated square error

Θ = argmin
Θ

∞∫
−∞

(
ˆfΘ(x)− f (x)

)2
dx = argmin

Θ

{
ˆ‖ fΘ(x)‖2

2 −
2
n

n

∑
t=1

ˆfΘ(X(t))

}
, (47)

where Θ is the evaluated parameter and F(x) is the observed random variable distribution function.
Changing an unknown distribution function to an empirical distribution function yields an expression
for the parameter estimate

Θ̂ = argmin
Θ

( ˆ‖ fΘ(x)‖2
2 −

2
n

n

∑
t=1

ˆfΘ(X(t)|t), (48)

where ˆfΘ(x|t) is the value of the estimate at point x, which is calculated by subtracting the value
of X(t) from the observations. In addition, empirical research suggests that it is better to look for
a maximum local minimum point rather than a global minimum [90]. Using PPDE method and
following the recommendation of the paper [38], the order of the spread was 4 ≤ s ≤ 6 (see Page 9),
and the projection directions were chosen to maximize the value of the estimate of the design index
(2) recommended by J. H. Friedman

I(α) =
∫ 1

−1
f 2
r (r)dr− 1

2
= ∑ J

j=1
2j + 1

2
E2

r

[
ψj(r)

]
. (49)

4. Results and Discussion
This section presents the main results obtained during the simulations. We calculate the mean

absolute error and (50) mean absolute percentage error (51) to evaluate the accuracy.

δ1 =
1
n ∑n

t=1

∣∣∣ f (x(t))− f̂ (x(t))
∣∣∣ ∼= ∫ ∣∣∣ f (x)− f̂ (x)

∣∣∣ f (x)dx. (50)

δ2 =
2
n ∑n

t=1

∣∣∣∣∣ f (x(t))− f̂ (x(t))
f (x(t)) + f̂ (x(t))

∣∣∣∣∣ ∼=
∫ ∣∣∣ f (x)− f̂ (x)

∣∣∣dx. (51)

The result tables (Tables 2 and A1, Tables A2–A10) provide 100,000 samples densities mean
absolute percentage error. The values in parentheses provide information about the standard devia-
tion of errors. The best results in these tables are bolded and underlined. According to Table 2, it is
concluded that when n = 100, d = 5, the best results are obtained by SKDE and MIDE methods. Based
on Table A2, it can be observed that when q = 2, n = 200, the best results are obtained using SKDE
and MIDE methods. According to Table A3, it is concluded that when q = 3, n = 200, in the case of
highly overlapping distributions (i = 1, 2), the best results are obtained by the SKDE method, and
in the case of more isolated distributions (i ≥ 3)—by the MIDE method. Based on Table A4, it can
be observed that when q = 3, n ≥ 400, the best results are obtained by SKDE, while the second-best
method is MIDE. According to Table A5, it is concluded that when q = 4, n = 400, in the case of highly
overlapping distributions (i ≤ 3), the best results are obtained by the SKDE method and in the case of
more isolated distributions (i ≥ 4)—by the MIDE method. Table A6 shows results of q = 4, n ≥ 400,
it can be noticed that, in the case of highly overlapping or average isolated distributions (i ≤ 5),
the best results are obtained by the SKDE method and in the case of more isolated distributions
(i = 6)—by the MIDE method. Tables A7 and A8 show results of q = 2 and n = 50, It can be noticed
that in all cases highly overlapping or isolated distributions, the best results are obtained by AKDE
method and in the case of more isolated distributions (i = 6) with p1 = 0.6; p2 = 0.4— by the MIDE
method. Tables A9 and A10 show results q = 3 and n = 50; the best results are obtained by the
AKDE method in all cases (highly overlapping or isolated distributions).The LSDE method with
huge outliers (|x −mj| > 100 uj) is grouped with a more significant number of values closer to the
centre of the distribution. With the help of the calculated spline coefficients, the density in the outliers
is estimated at a value close to 10100. That is incorrect, and in such cases, the use of this method is not
recommended.
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Table 2. An example of mean absolute percentage error.

Evaluation
Methods

Density
d = 5; p1 = p2 = p3 = 1/3; n = 100

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.8268 0.8257 0.8198 0.8128 0.8066 0.8075

SD (0.0760) (0.0814) (0.0848) (0.0827) (0.0788) (0.0731)

PPDE
Mean 0.9243 0.9319 0.9303 0.9300 0.9284 0.9250

SD (0.0500) (0.0364) (0.0375) (0.0387) (0.0410) (0.0433)

LSDE
Mean 0.8043 0.8162 0.8583 0.8611 0.8613 0.8711

SD (0.0534) (0.0540) (0.0490) (0.0349) (0.0434) (0.0577)

SKDE
Mean 0.7158 0.7144 0.7088 0.7071 0.7179 0.7227

SD (0.0260) (0.0905) (0.0905) (0.0830) (0.0631) (0.0499)

IFDE
Mean 0.94593 0.8886 0.7857 0.8463 0.8761 0.8312

SD (0.0362) (0.1318) (0.0706) (0.0380) (0.1110) (0.0538)

MIDE
Mean 0.7389 0.7332 0.7235 0.7149 0.7121 0.7219

SD (0.0280) (0.0221) (0.0338) (0.0195) (0.0208) (0.0203)

The results for the smaller dimensions (d = 2) are presented in Table A1. It can be seen that the
best results are obtained using the SKDE method, both in large- and small-scale overlapping cases
(i < 4). On the other hand, in the case of isolated distributions (i ≥ 5), good results were obtained by
the MIDE method.

In the case of mean absolute percentage error, recommended using the semiparametric kernel
when the sample has overlapping distributions. In the case of two dimensions (d ~ 2) and a sample is
with overlapping distributions, it is recommended to use the semiparametric kernel method and for
isolated distributions, to use the adaptive kernel method.

5. Conclusions
This paper reviewed the most popular and most often used nonparametric density estimation

algorithms. The density estimation inversion formula was also presented in this article. It was
observed that when a noise cluster is included, the results of the inversion formula improved
statistically significantly. Based on the mean absolute error, in the case of higher dimension (d ~ 5)
and small samples (n ~ 50), it is recommended to use the adaptive kernel method. If the sample is
n ~ 100, then the modified inversion formula method showed the best results. For larger samples
with overlapping distributions it is recommended to use a semi-parametric kernel and for more
isolated distribution—modified inversion methods. Based on the mean absolute percentage error, it is
recommended to use the semiparametric kernel when the sample is with overlapping distributions. In
the case of two dimensions (d ~ 2) and a sample is with overlapping distributions, it is recommended
to use the semiparametric kernel method. For isolated distributions, it is recommended to use the
adaptive kernel method.
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and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to the area editor and the reviewers for giving valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 2717 16 of 22

Appendix A

Table A1. 102 times upscaled mean absolute error with d = 2; p1 = 0.5; p2 = 0.5; n = 100.

Evaluation
Methods

Density
d = 2; p1 = 0.5; p2 = 0.5; n = 100

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 1.74 1.41 1.16 1.08 1.02 0.99

SD (0.94) (0.80) (0.70) (0.59) (0.54) (0.50)

PPDE
Mean 2.21 1.85 1.52 1.32 1.25 1.21

SD (0.49) (0.41) (0.40) (0.44) (0.37) (0.31)

LSDE
Mean 0.87 0.71 0.78 0.63 0.69 0.69

SD (0.43) (0.20) (0.08) (0.08) (0.04) (0.09)

SKDE
Mean 0.63 0.61 0.52 0.52 0.51 0.51

SD (0.12) (0.17) (0.07) (0.05) (0.06) (0.04)

IFDE
Mean 1.69 1.31 0.97 0.75 0.61 0.53

SD (0.06) (0.10) (0.08) (0.01) (0.04) (0.06)

MIDE
Mean 0.69 0.66 0.57 0.55 0.51 0.51

SD (0.06) (0.10) (0.08) (0.01) (0.04) (0.06)

Table A2. 104 times upscaled mean absolute error with d = 5; p1 = 0.7; p2 = 0.3; n = 200.

Evaluation
Methods

Density
d=5; p1 = 0.7; p2 = 0.3; n = 200

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.979 0.801 0.703 0.664 0.655 0.654

SD (0.171) (0.146) (0.145) (0.155) (0.158) (0.159)

PPDE
Mean 1.001 0.822 0.722 0.681 0.671 0.669

SD (0.174) (0.152) (0.151) (0.160) (0.163) (0.163)

LSDE
Mean 5.039 4.185 2.632 0.944 0.665 0.660

SD (1.265) (6.747) (1.081) (0.138) (0.140) (0.112)

SKDE
Mean 0.857 0.759 0.705 0.658 0.649 0.638

SD (0.087) (0.069) (0.076) (0.085) (0.083) (0.083)

IFDE
Mean 0.912 0.801 0.721 0.681 0.667 0.666

SD (0.133) (0.149) (0.151) (0.160) (0.162) (0.163)

MIDE
Mean 0.956 0.788 0.694 0.661 0.657 0.640

SD (0.162) (0.154) (0.144) (0.152) (0.158) (0.163)

Table A3. 104 times upscaled mean absolute error with d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n= 200.

Evaluation
Methods

Density
d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 200

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.970 0.725 0.576 0.533 0.504 0.500

SD (0.127) (0.089) (0.078) (0.073) (0.069) (0.066)

PPDE
Mean 0.992 0.746 0.594 0.528 0.506 0.500

SD (0.137) (0.092) (0.077) (0.072) (0.069) (0.066)

LSDE
Mean 1.057 0.775 0.652 0.590 0.508 0.503

SD (0.164) (0.203) (0.650) (0.491) (0.067) (0.081)

SKDE
Mean 0.6245 0.6274 0.6312 0.629 0.630 0.628

SD (0.072) (0.025) (0.027) (0.049) (0.049) (0.050)

IFDE
Mean 0.990 0.743 0.589 0.525 0.497 0.499

SD (0.136) (0.091) (0.076) (0.071) (0.071) (0.067)

MIDE
Mean 0.993 0.746 0.574 0.525 0.496 0.490

SD (0.137) (0.092) (0.077) (0.072) (0.069) (0.066)
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Table A4. 104 times upscaled mean absolute error with d = 5; p1 = 0.4; p2 = 0.4; p3 = 0.2; n = 400.

Evaluation
Methods

Density
d = 5; p1 = 0.4; p2 = 0.4; p3 = 0.2; n = 400

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.916 0.689 0.527 0.445 0.410 0.396

SD (0.099) (0.068) (0.048) (0.044) (0.048) (0.052)

PPDE
Mean 0.937 0.709 0.545 0.461 0.423 0.407

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052)

LSDE
Mean 0.815 0.549 0.511 0.443 0.404 0.401

SD (0.007) (0.063) (0.151) (0.094) (0.040) (0.030)

SKDE
Mean 0.655 0.499 0.413 0.388 0.385 0.384

SD (0.064) (0.049) (0.034) (0.031) (0.028) (0.027)

IFDE
Mean 0.937 0.709 0.544 0.460 0.423 0.404

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052)

MIDE
Mean 0.757 0.509 0.415 0.391 0.391 0.388

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052)

Table A5. 104 times upscaled mean absolute error with d = 5; p1 = 0.25; p2 = 0.25; p3 = 0.25; p4 = 0.25;
n = 400.

Evaluation
Methods

Density
d = 5; p1 = 0.25; p2 = 0.25; p3 = 0.25; p4 = 0.25; n = 400

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.912 0.645 0.447 0.351 0.309 0.290

SD (0.128) (0.068) (0.029) (0.019) (0.026) (0.030)

PPDE
Mean 0.934 0.665 0.464 0.365 0.321 0.299

SD (0.145) (0.089) (0.048) (0.031) (0.033) (0.035)

LSDE
Mean 0.934 0.676 0.464 0.365 0.321 0.293

SD (0.145) (0.064) (0.048) (0.031) (0.033) (0.039)

SKDE
Mean 0.658 0.472 0.372 0.345 0.316 0.290

SD (0.071) (0.031) (0.020) (0.017) (0.019) (0.018)

IFDE
Mean 0.933 0.665 0.464 0.365 0.321 0.299

SD (0.145) (0.089) (0.048) (0.031) (0.033) (0.035)

MIDE
Mean 0.889 0.622 0.433 0.341 0.307 0.281

SD (0.118) (0.074) (0.037) (0.026) (0.019) (0.027)

Table A6. 104 times upscaled mean absolute error with d = 5; p1 = 0.1; p2 = 0.1; p3 = 0.1; p4 = 0.7;
n = 400.

EvaluationMethods
Density

d = 5; p1 = 0.1; p2 = 0.1; p3 = 0.1; p4 = 0.7; n = 400
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 0.957 0.800 0.678 0.617 0.587 0.571

SD (0.131) (0.127) (0.103) (0.090) (0.087) (0.087)

PPDE
Mean 0.979 0.821 0.697 0.634 0.603 0.586

SD (0.141) (0.137) (0.112) (0.099) (0.094) (0.093)

LSDE
Mean 0.979 0.821 0.697 0.634 0.596 0.586

SD (0.141) (0.137) (0.112) (0.099) (0.098) (0.093)

SKDE
Mean 0.687 0.580 0.514 0.496 0.491 0.489

SD (0.076) (0.070) (0.058) (0.058) (0.058) (0.056)

IFDE
Mean 0.979 0.820 0.697 0.634 0.602 0.585

SD (0.141) (0.137) (0.112) (0.098) (0.094) (0.093)

MIDE
Mean 0.924 0.770 0.652 0.597 0.533 0.488

SD (0.135) (0.131) (0.108) (0.093) (0.092) (0.091)
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Table A7. 104 times upscaled mean absolute error with d = 5; p1 = 0.5; p2 = 0.5; n = 50.

Evaluation
Methods

Density
d = 5; p1 = 0.5; p2 = 0.5; n = 50

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 1.093 0.828 0.758 0.741 0.739 0.740

SD (0.095) (0.099) (0.114) (0.123) (0.130) (0.134)

PPDE
Mean 1.147 0.872 0.794 0.770 0.764 0.762

SD (0.157) (0.150) (0.157) (0.156) (0.159) (0.160)

LSDE
Mean 2.100 1.997 2.002 2.010 2.013 2.014

SD (0.078) (0.028) (0.017) (0.019) (0.024) (0.025)

SKDE
Mean 1.149 0.875 0.797 0.773 0.765 0.763

SD (0.160) (0.154) (0.160) (0.160) (0.161) (0.162)

IFDE
Mean 1.145 0.864 0.780 0.765 0.763 0.757

SD (0.163) (0.137) (0.140) (0.150) (0.163) (0.156)

MIDE
Mean 1.094 0.860 0.759 0.767 0.742 0.752

SD (0.142) (0.167) (0.160) (0.156) (0.163) (0.160)

Table A8. 104 times upscaled mean absolute error with d = 5; p1 = 0.6; p2 = 0.4; n = 50.

Evaluation
Methods

Density
d = 5; p1 = 0.6; p2 = 0.4; n = 50

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 1.138 0.872 0.770 0.748 0.745 0.746

SD (0.105) (0.085) (0.126) (0.143) (0.152) (0.155)

PPDE
Mean 1.192 0.918 0.808 0.778 0.771 0.769

SD (0.150) (0.136) (0.172) (0.178) (0.181) (0.182)

LSDE
Mean 2.114 1.995 1.977 1.983 1.986 1.987

SD (0.101) (0.083) (0.080) (0.079) (0.082) (0.084)

SKDE
Mean 1.195 0.919 0.810 0.780 0.772 0.770

SD (0.154) (0.138) (0.174) (0.182) (0.183) (0.183)

IFDE
Mean 1.183 0.906 0.802 0.778 0.765 0.769

SD (0.142) (0.125) (0.163) (0.185) (0.176) (0.185)

MIDE
Mean 1.152 0.882 0.782 0.754 0.747 0.742

SD (0.136) (0.124) (0.155) (0.175) (0.176) (0.180)

Table A9. 104 times upscaled mean absolute error with d = 5; p1 = 0.33; p2 = 0.33; p3 = 0.33; n = 50.

Evaluation
Methods

Density
d = 5; p1 = 0.33; p2 = 0.33; p3 = 0.33; n = 50

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 1.166 0.828 0.634 0.547 0.512 0.500

SD (0.120) (0.086) (0.057) (0.064) (0.074) (0.080)

PPDE
Mean 1.224 0.879 0.677 0.581 0.540 0.523

SD (0.184) (0.128) (0.107) (0.108) (0.108) (0.109)

LSDE
Mean 2.075 1.934 1.921 1.939 1.938 1.937

SD (0.127) (0.094) (0.058) (0.054) (0.048) (0.044)

SKDE
Mean 1.226 0.881 0.678 0.583 0.542 0.524

SD (0.186) (0.130) (0.109) (0.110) (0.110) (0.110)

IFDE
Mean 1.215 0.839 0.649 0.554 0.522 0.513

SD (0.175) (0.099) (0.110) (0.102) (0.110) (0.111)

MIDE
Mean 1.182 0.834 0.638 0.545 0.518 0.501

SD (0.167) (0.124) (0.097) (0.101) (0.106) (0.106)
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Table A10. 104 times upscaled mean absolute error with d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 50.

Evaluation
Methods

Density
d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 50

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

AKDE
Mean 1.126 0.838 0.690 0.633 0.618 0.615

SD (0.112) (0.126) (0.063) (0.053) (0.061) (0.067)

PPDE
Mean 1.182 0.882 0.727 0.660 0.640 0.634

SD (0.156) (0.132) (0.091) (0.085) (0.087) (0.088)

LSDE
Mean 2.101 2.002 1.985 2.010 2.014 2.015

SD (0.105) (0.063) (0.012) (0.029) (0.028) (0.025)

SKDE
Mean 1.183 0.885 0.729 0.663 0.642 0.635

SD (0.157) (0.134) (0.094) (0.089) (0.090) (0.090)

IFDE
Mean 1.170 0.859 0.702 0.649 0.624 0.619

SD (0.142) (0.129) (0.074) (0.088) (0.083) (0.086)

MIDE
Mean 1.142 0.850 0.696 0.639 0.620 0.618

SD (0.141) (0.125) (0.080) (0.084) (0.083) (0.087)

Appendix B

Calculate expression (36). Marked

Cj(y) =
∞∫

0

cos yz·e−z2/2·zjdz and (A1)

Sj(y) =
∞∫

0

sin yz·e−z2/2·zjdz. (A2)

The Equation holds
∞∫

0

e−iyz−z2/2zjdz = Cj(y) + iSj(y). (A3)

Integration in parts results in

Cj(y) = e−
z2
2 zj−1 cos yz

∣∣∣∣∞
0
+

∞∫
0

e−
z2
2

(
(j− 1)zj−2 cos yz− yzj−1 sin yz

)
dz =

= 1{j=1} + (j− 1)Cj−2(y)− ySj−1(y), j ≥ 1.
(A4)

Analogously expressing Sj(y) and taking into account the constraints of the j index, recursive
equations are obtained

Cj(y) = (j− 1)Cj−2(y)− ySj−1(y), j ≥ 2 and (A5)

C1(y) = 1− yS0(y) also (A6)

Sj(y) = (j− 1)Sj−2(y)− yCj−1(y), j ≥ 2 and (A7)

S1(y) = yC0(y) , then j = 1. (A8)

To calculate the functions C0(y) and S0(y) it is used that

(S0(y))
′
y =

∞∫
0

z cos yz·e−z2/2dz = C1(y). (A9)

From (A7) and (A10), it is obtained that S0 satisfies the differential equation S′0(y) = 1− yS0(y).
This Equation is solved by spreading S0 by Taylor series

S′0(y) =
∞

∑
l=0

cl+1(l + 1)yl+1 = 1−
∞

∑
l=2

cl−1yl . (A10)
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Comparing the coefficients to similar members, their values are found c0 = 0, c1 = 1, cl = −cl−2/l,
l ≥ 2. Thus,

S0(y) =
∞

∑
l=0

(−1)ly2l+1

(2l + 1)!!
= y− y3

3!!
+

y5

5!!
− y7

7!!
+ . . . . (A11)

C0 is found from expression (50)

C0(y) =
∞∫
0

cos yz·e−z2/2dz = 1
2

∞∫
−∞

cos yz·e−z2/2dz

= 1
2

∞∫
−∞

(cos yz− i sin yz)·e−z2/2dz =
√

π
2 e−y2/2.

(A12)

Seeking integral (32) value Ij(y) = Cj(y).
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