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Abstract: Estimation of probability density functions (pdf) is considered an essential part of statis-
tical modelling. Heteroskedasticity and outliers are the problems that make data analysis harder. 
The Cauchy mixture model helps us to cover both of them. This paper studies five different signifi-
cant types of non-parametric multivariate density estimation techniques algorithmically and empir-
ically. At the same time, we do not make assumptions about the origin of data from any known 
parametric families of distribution. The method of the inversion formula is made when the cluster 
of noise is involved in the general mixture model. The effectiveness of the method is demonstrated 
through a simulation study. The relationship between the accuracy of evaluation and complicated 
multidimensional Cauchy mixture models (CMM) is analyzed using the Monte Carlo method. For 
larger dimensions (d ~ 5) and small samples (n ~ 50), the adaptive kernel method is recommended. 
If the sample is n ~ 100, it is recommended to use a modified inversion formula (MIDE). It is better 
for larger samples with overlapping distributions to use a semi-parametric kernel estimation and 
more isolated distribution-modified inversion methods. For the mean absolute percentage error, it 
is recommended to use a semi-parametric kernel estimation when the sample has overlapping dis-
tributions. In the smaller dimensions (d = 2) and a sample is with overlapping distributions, it is 
recommended to use the semi-parametric kernel method (SKDE) and for isolated distributions, it is 
recommended to use modified inversion formula (MIDE). The inversion formula algorithm shows 
that with noise cluster, the results of the inversion formula improved significantly. 
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1. Introduction 
Estimation of probability density functions (pdf) is considered an essential part of 

statistical modelling. It expresses random variables as functions of other variables, mak-
ing it possible to detect hidden relationships between data [1]. In a significant number of 
machine learning algorithms, it is essential to determine a previously unknown function 
of the distribution density of the data. The function of the distribution density is applied 
in the Bayesian classifier [2,3], in density-based clustering algorithms [4–6], or infor-
mation-based feature selection algorithms [7,8]. Effective density estimates must be care-
fully created in advance to obtain unknown functions of probability density. Nowadays, 
there is still much focus on developing innovative density estimation procedures [9,10]. 
Density estimation is an open research topic in the fast-growing area of deep learning. 
Scientists have begun proposing robust density estimators based on neural networks such 
as Parzen neural networks [11], soft-constrained neural networks [12], and others [13]. 

Citation: Ruzgas, T.; Lukauskas, M.; 

Čepkauskas, G. Nonparametric  

Multivariate Density Estimation: 

Case Study of Cauchy Mixture 

Model. Mathematics 2021, 9, 2717. 

https://doi.org/10.3390/math9212717 

Academic Editor: Antonio Di 

Crescenzo 

Received: 1 September 2021 

Accepted: 21 October 2021 

Published: 26 October 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Mathematics 2021, 9, 2717 2 of 23 
 

 

Let us say that the random vector X∈Rd satisfies the distribution mixture model if its 
distribution density f(x) satisfies the equation 𝑓𝑓(𝑥𝑥) = ∑ 𝑝𝑝𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)𝑞𝑞

𝑘𝑘=1 = 𝑓𝑓(𝑥𝑥,𝜃𝜃). The param-
eter q is the number of mixture clusters, and pk is the a priori probability. These conditions 
must also be met: 𝑝𝑝𝑘𝑘 > 0 and ∑ 𝑝𝑝𝑘𝑘

𝑞𝑞
𝑘𝑘=1 = 1. The function 𝑓𝑓𝑘𝑘(𝑥𝑥) is a function of the distri-

bution density, and 𝜃𝜃 is a multidimensional parameter of the model. Suppose 𝑋𝑋 is a d-
dimensional random vector with a distribution density 𝑓𝑓(𝑥𝑥), and there is a sample of in-
dependent copies of 𝑋𝑋, where 𝑋𝑋 = (𝑋𝑋(1), … ,𝑋𝑋(𝑛𝑛)). It can be argued that the sample sat-
isfies the mixture model if 𝑋𝑋(𝑡𝑡) satisfies 𝑓𝑓(𝑥𝑥) = ∑ 𝑝𝑝𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)𝑞𝑞

𝑘𝑘=1 = 𝑓𝑓(𝑥𝑥,𝜃𝜃). 
One of the statistical tasks is to estimate the density of the observed random variable. 

Suppose the available sample’s distribution type is known (Normal, Poisson, and others). 
In that case, the distribution density of the data can be estimated simply using mean and 
covariance matrix estimates, fitting them to a defined distribution [14–16]. Thus, the 
standard parametric method is applied when the assumptions about the density form are 
met. When estimating density in a parametric way, the value of the multidimensional dis-
tribution parameter θ needs to be found, which is not straightforward because the number 
of parameters increases rapidly as the dimension d increases. For example, in the case of 
a mixture of Gaussian distributions,  dim𝜃𝜃 = 1

2𝑞𝑞𝑞𝑞(𝑑𝑑+1)
+ 𝑞𝑞𝑞𝑞 + 𝑞𝑞 − 1, and even with a small 

dimension 𝑑𝑑 = 𝑞𝑞 = 5, the model will consist of dim(𝜃𝜃) = 104 parameters. When search-
ing for parameter estimates, it may be necessary to solve the optimization problem in the 
104-dimensional space. In practice, the number of clusters 𝑞𝑞 may also be unknown, and 
it needs to be estimated. The parametric method is not proper when the random size dis-
tribution is unknown. In this case, non-parametric methods are used to determine certain 
forms of density estimates [17–19]. 

The histogram is one of the simplest and oldest estimates of density. To the best of 
our knowledge, data in the form of histograms (without graphical representation) were 
first presented in 1661 to determine mortality probabilities in different age groups [20]. To 
approximate the density 𝑓𝑓(𝑥𝑥) in the area Ω, the number of observations 𝑋𝑋(𝑡𝑡) falling into 
Ω is calculated and divided by n and the volume of the area Ω. The area of space to which 
all observations fall is first found. That means the fluctuation intervals of all 𝑋𝑋 projections 
on the axes 𝑋𝑋(1),𝑋𝑋(2),…, 𝑋𝑋(𝑑𝑑) are found. The fluctuation intervals of the observations are 
divided into l partial intervals and in the hypercubes Ω𝑗𝑗(𝑗𝑗 = 1, … , 𝑟𝑟) bounded by them, 
the density estimate is calculated as 

𝑓𝑓(𝑥𝑥) =
𝑛𝑛(Ω𝑗𝑗)

𝑛𝑛⋅ℎ1⋅ℎ2...⋅ℎ𝑑𝑑
. (1) 

Here 𝑛𝑛(Ω𝑗𝑗) is the number of observations entering the hypercube Ω𝑗𝑗  and ℎ𝑗𝑗 , 𝑗𝑗 =
1, … ,𝑑𝑑 are the edges of the hypercube [21,22]. It is recommended to select the number of 
hypercubes [17,23,24], and to choose 𝑟𝑟 ≅ 1 + 3.32log (𝑛𝑛), and 𝑙𝑙 = √𝑟𝑟𝑑𝑑  has to be an integer 
number, so 𝑟𝑟 is chosen that ��1 + 3.32 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛𝑑𝑑 �

𝑑𝑑
. 

A histogram is one of the simplest means of presenting data that is easy to under-
stand and convenient. This estimate is a function that acquires non-negative values, and 
its integral is equal to one. However, it is not continuous. That poses problems when 
knowing the density estimate derivatives is essential, mainly when density estimation is 
used in intermediate steps of other methods, such as clustering using a gradient algorithm 
or plotting high-measurement data-level lines. Remarkably, the histogram stood as the 
only non-parametric density estimator until the 1950’s when substantial and simultaneous 
progress was made in density estimation and spectral density estimation. In 1951, in a 
little-known paper, Fix and Hodges [25] introduced the basic algorithm of non-parametric 
density estimation; an unpublished technical report was formally published as a review 
by Silverman and Jones in 1989 [26]. They addressed the problem of statistical discrimi-
nation when the parametric form of the sampling density was not known. During the 
following decade, several general algorithms and alternative theoretical modes of analysis 
were introduced by Rosenblatt in 1956 [27], Parzen in 1962 [28], and Cencov in 1962 [29]. 
Then followed the second wave of essential and primarily theoretical papers by Watson 
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and Leadbetter in 1963 [30], Loftsgaarden and Quesenberry in 1965 [31], Schwartz in 1967 
[32], Epanechnikov in 1969 [33], Tarter and Kronmal in 1970 [34], and Kimeldorf and 
Wahba in 1971 [35]. Next, Cacoullos introduced the natural multivariate generalization in 
1966 [36]. Finally, in the 1970s, the first papers focusing on the practical application of 
these methods were published by Scott et al. in 1979 [24] and Silverman in 1978 [37]. These 
and later multivariate applications awaited the computing revolution. 

Modern data analysis uses several non-parametric methods for statistically estimat-
ing the distribution density of multivariate random variables. Kernel estimates are partic-
ularly prevalent [38,39]. Quite popular and spline [40,41] and semi-parametric [42–46] al-
gorithms. However, detailed comparisons of the effectiveness of existing popular esti-
mates for multimodal density are lacking. With the most popular non-parametric estima-
tion procedures, optimal selection of their parameters is encountered in practice. The most 
crucial element in the design of kernel estimates is the width of the smoothing. It is not 
easy to select the nodes of the spline estimates. Although several adaptive procedures for 
the selection of these parameters have been developed [39,47–52], however, they are not 
efficient enough when the sample volume is not large, especially then the observational 
dimension is large. In the latter case, it is appropriate to apply data design [53–56] because 
of the more extensive the dimension of the observed random vectors, the more complex 
the task of parameter selection. 

The main idea of this paper is to estimate the performance of different density esti-
mators by using density mixtures to show another type of problem, which may result 
from data heteroscedasticity and outliers. The relationship between the accuracy of eval-
uation and complicated multidimensional Cauchy mixture models (CMM) is analyzed 
using the Monte Carlo method. For example, Kalantan and Einbeck [57] used engineering 
data and, for computer vision, used CMM, comparing it with the Gaussian mixture model. 
Azzari and Foi [58] used harmony between Gauss and heavy-tailed Cauchy to find noise-
model parameters that make outlier estimation robust when imaged dominated by tex-
ture. Finally, Teimouri [59] analyzed patients with Cushing’s syndrome and their diag-
nostic tests. The focus was on the tetra hydrocortisone urine release rate (mg/24 h) and 
evaluating parameters in the EM algorithm and Cauchy mixture model. 

Scientific novelty. Evaluation accuracy comparative analysis is made by using differ-
ent probability density estimation procedures. Density function estimates are chosen as 
popular different technique estimates, which other researchers have already analyzed. 
This research is essential because it focuses on Cauchy distributions. 

2. The Density Estimation Algorithms 
This section aims to present the density estimation algorithms used in the study the-

oretically. All algorithms are presented with algorithms theoretical substantiation. When 
making the histogram, each 𝑋𝑋(𝑡𝑡) can be imagined as a separate column with a height of 
1/𝑛𝑛. Then it makes sense to change the centre of the column to 𝑋𝑋(𝑡𝑡) itself and get the 
following function: 

𝑓𝑓(𝑥𝑥) = 1
𝑛𝑛⋅ℎ1⋅ℎ2...⋅ℎ𝑑𝑑

∑ 𝐼𝐼𝐶𝐶ℎ(𝑋𝑋(𝑡𝑡))(𝑥𝑥)𝑛𝑛
𝑡𝑡=1 . (2) 

Here 𝐶𝐶ℎ is a hypercube with centre 𝑋𝑋(𝑡𝑡), and the lengths of the edges are ℎ1, … , ℎ𝑑𝑑. 
In summary, instead of the indicator function, a smooth “prominence”—the kernel func-
tion—can be used at each observed point. The multidimensional fixed-width bandwidth 
estimate with the kernel function K and the fixed (global) kernel width parameter h, which 
can be used to estimate the density 𝑓𝑓(𝑥𝑥) of the multidimensional data X∈Rd, is then de-
fined as follows: 

𝑓𝑓(𝑥𝑥) = 1
𝑛𝑛ℎ𝑑𝑑

∑ 𝐾𝐾 �𝑥𝑥−𝑋𝑋(𝑡𝑡)
ℎ

�𝑛𝑛
𝑡𝑡=1 . (3) 

These are some of the most common non-parametric estimates of distribution density 
[38,39,60,61]. The kernel function is selected to meet the following condition: 
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∫ 𝐾𝐾(𝑥𝑥)𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑 = 1. (4) 

The standard normal distribution density function 𝜑𝜑 is often used as the kernel [62,63]: 

𝜙𝜙(𝑥𝑥) = (2𝜋𝜋)−𝑑𝑑/2 𝑒𝑒𝑒𝑒𝑒𝑒( − 1
2
𝑥𝑥′𝑥𝑥). (5) 

Often the observations are not evenly distributed in all directions. Therefore, it is de-
sirable to scale the data by eliminating the most significant dispersion differences in the 
different coordinate directions. One suitable method for this [64] is data standardization. 
That means the sample’s effect on a linear transformation. The mean of the transformed 
data is zero, the covariance matrix is unitary, and (3) apply the Equation to already stand-
ardized data. For example, suppose Z is a standardized random vector, 

𝑍𝑍 = 𝑆𝑆−
1
2(𝑋𝑋 − 𝑋̄𝑋), (6) 

here 𝑋𝑋� is the empirical mean of the sample, and S∈Rd×d is the empirical covariance matrix. 
Based on the fixed kernel width density estimate (3), a more complex standardized data 
density estimate has been constructed: 

𝑓𝑓𝑧𝑧�(𝑧𝑧) = 1
𝑛𝑛ℎ𝑑𝑑

∑ 𝐾𝐾 �𝑧𝑧−𝑍𝑍(𝑡𝑡)
ℎ

�𝑛𝑛
𝑡𝑡=1 . (7) 

𝑓́𝑓(𝑥𝑥) = (𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒)−1/2

𝑛𝑛ℎ𝑑𝑑
∑ 𝐾𝐾 �𝑆𝑆−1/2 𝑥𝑥−𝑋𝑋(𝑡𝑡)

ℎ
�𝑛𝑛

𝑡𝑡=1 . (8) 

The optimal kernel width ℎ∗ for a fixed core width is determined by minimizing the 
average integral root mean square error (MISE) [65]. For example, when the distribution 
of observations is normal with a unit covariance matrix in Gaussian kernel, the expression 
ℎ∗ proposed by [65] is ℎ∗ = 𝐴𝐴𝑛𝑛−

1
𝑑𝑑+4, here 𝐴𝐴 = [4/(2𝑑𝑑 + 1)]

1
𝑑𝑑+4. More sophisticated kernel 

width selection methods (such as the least-squares cross-checking method) are obtained 
by more complex and lengthy calculations [66–70]. 

In practical research, the kernel width is often selected experimentally. If the value of 
h is small, the density function estimate has more modes that correspond to the layout of 
the observed data. A higher value of h means more significant smoothing of the estimate. 

Although fixed-core width density estimates are widely used to estimate non-para-
metric densities, they often have some practical drawbacks [65]. For example, fixed-core 
width density estimates do not ensure the distribution ends’ integrity without over-
smoothing the underlying bulk density. 

2.1. Adapted Kernel Density Estimate (AKDE) 
A good improvement on the fixed kernel width density estimate is the adapted ker-

nel density estimate [65]. The adapted kernel density estimate is constructed similarly to 
the fixed kernel width density estimate. The kernel describes the density at each observed 
point. In this case, the kernel width is already considered when moving from one obser-
vation to another. In areas of different smoothness, it is appropriate to take different ker-
nel widths. This method consists of two steps: estimation of the adapted kernel width and 
density estimation by the kernel method, using the information obtained in the first step. 
The algorithm can be summarized as follows: 

Step 1: The elements of sample 𝑋𝑋 = (𝑋𝑋(1), … ,𝑋𝑋(𝑛𝑛))  are standardized to 𝑍𝑍 =
(𝑍𝑍(1), … ,𝑍𝑍(𝑛𝑛)) such that 𝐸𝐸�[𝑍𝑍] = 0 and 𝐸𝐸�[𝑍𝑍𝑍𝑍′] = 𝐼𝐼. 

Step 2: Estimates 𝑓𝑓𝑍𝑍(𝑧𝑧) of the fixed kernel density estimate (3) satisfying the condi-
tion 𝑓𝑓𝑍𝑍(𝑍𝑍(𝑡𝑡)) > 0, ∀t. 

Step 3: The local width parameter is determined 𝜆𝜆𝑡𝑡 = �𝑓̃𝑓𝑍𝑍�𝑍𝑍(𝑡𝑡)�
𝑔𝑔

�
−𝛾𝛾

, where g is 𝑓𝑓𝑍𝑍(𝑧𝑧) the 

geometric mean, log𝑔𝑔 = 1
𝑛𝑛
∑ log 𝑓𝑓𝑍𝑍� (𝑍𝑍(𝑡𝑡))𝑛𝑛
𝑖𝑖=1  and γ is the sensitivity parameter: 0 ≤ 𝛾𝛾 ≤ 1. 

Step 4: An adapted kernel estimate is made with variable-width kernels:𝑓𝑓𝑍𝑍(𝑧𝑧) =
1
𝑛𝑛
∑ ℎ−𝑑𝑑𝜆𝜆𝑡𝑡−𝑑𝑑𝐾𝐾 �

𝑧𝑧−𝑍𝑍(𝑡𝑡)
ℎ𝜆𝜆𝑡𝑡

�𝑛𝑛
𝑡𝑡=1 . 
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Where h is the same global smoothness parameter as in Equation (3), the higher 𝛾𝛾, 
the more sensitive the density selection. Quite often, the parameter value is selected as 
follows 𝛾𝛾 = 1

2
 [65,71]. 

2.2. Semi-Parametric Kernel Density Estimate (SKDE) 
When data are scarce, parametric estimates are often applied even when the un-

known density is not parameterized. Therefore, it is essential to mention the combination 
of parametric and non-parametric estimates. For example, one of the semi-parametric es-
timates of kernel density was examined by F. Hoti and L. Holmström [46]. This estimate 
divides the random vector into two subvectors and estimates the distribution density of 
one of them by the kernel method. Afterward, another relative density is approximated 
by the Normal distribution density [46]. For example, suppose d and s are positive inte-
gers d ≥ 2, 1 ≤ s ≤ d − 1. Using this method, the d-dimensional vector X∈Rd is decomposed 
into two s and (d–s) dimensioned subvectors 𝑋𝑋 = �𝑌𝑌𝑍𝑍�, and the sample is decomposed ac-

cordingly: 𝑋𝑋 = �𝑌𝑌𝑍𝑍�, where Y∈Rs, Z∈Rd-s. The evaluated density function is expressed as the 
product of the distribution density of the random vector Y and the conditional distribution 
density of the random vector Z: 𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑓𝑓(𝑌𝑌,𝑍𝑍)(𝑦𝑦, 𝑧𝑧) = 𝑓𝑓𝑌𝑌(𝑦𝑦)𝑓𝑓𝑍𝑍|𝑌𝑌=𝑦𝑦(𝑧𝑧|𝑦𝑦), 𝑥𝑥 = �𝑦𝑦𝑧𝑧� ∈ 𝑅𝑅

𝑑𝑑. Here 
𝑓𝑓𝑋𝑋 and 𝑓𝑓𝑌𝑌 are the densities of 𝑋𝑋 and 𝑌𝑌. 𝑓𝑓𝑍𝑍|𝑌𝑌=𝑦𝑦 is the density of 𝑍𝑍 when 𝑌𝑌 = 𝑦𝑦. 

Suppose that the relative density 𝑌𝑌 = 𝑦𝑦 is multidimensional normal Gaussian, but 
the density 𝑓𝑓𝑌𝑌 does not belong to any family of parametric functions. The density 𝑓𝑓𝑋𝑋 is 
then obtained by estimating 𝑓𝑓𝑌𝑌 in a non-parametric manner and applying a multidimen-
sional Normal density to each 𝑓𝑓𝑍𝑍|𝑌𝑌=𝑦𝑦. The density function 𝑓𝑓𝑌𝑌(𝑦𝑦), as with (8), is evaluated 
by the kernel method [65]. Since the sample elements are not standardized, the smooth-
ness parameter is not the same in all directions. Therefore, using the kernel method, it is 
replaced by the s-dimensional matrix H: 

𝑓𝑓(𝑦𝑦) = 1
𝑛𝑛
∑ 1

𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻)
𝐾𝐾(𝐻𝐻−1(𝑦𝑦 − 𝑌𝑌(𝑡𝑡)))𝑛𝑛

𝑡𝑡=1 . (9) 

Usually, the shape of H is chosen diagonally—𝐻𝐻 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(ℎ1, … , ℎ𝑠𝑠), and the smooth-
ness parameters are calculated as follow 

ℎ𝑗𝑗 = � 4
𝑠𝑠+2

�
1/(𝑠𝑠+4)

𝑛𝑛−1/(𝑠𝑠+4)𝜎𝜎𝑗𝑗. (10) 

It should be noted that this form, when s = 1, was proposed by B. W. Silverman [65]. 

Replacing the standard deviation σj of the component Yj with its estimate 𝜎𝜎�𝑗𝑗 = �
∑(𝑋𝑋𝑗𝑗−𝑋𝑋𝚥𝚥���)2

𝑛𝑛𝑗𝑗
 

and by the rule of D. W. Scott [39] first multiplier is always between 0.924 and 1.059 ℎ�𝑗𝑗 
can be calculated as follows 

ℎ�𝑗𝑗 = 𝑛𝑛−1/(𝑠𝑠+4)𝜎𝜎�𝑗𝑗. (11) 

This Scott’s rule is easy to summarize for the smoothness matrix H: 

𝐻𝐻� = 𝑛𝑛−1/(𝑠𝑠+4)Σ�1/2. (12) 

Here 𝛴𝛴� = diag(𝜎𝜎�12,𝜎𝜎�22, . . . ,𝜎𝜎�𝑠𝑠2) is the diagonal matrix of Y empirical variances. 
The conditional density 𝑓𝑓𝑍𝑍|𝑌𝑌(⋅ |𝑦𝑦)  is approximated by the Gaussian distribution 

N(m(y), C(y)), where m(y), C(y) denote the conditional mean of the vector Y and the con-
ditional covariance matrix: 𝑚𝑚(𝑦𝑦) = 𝐸𝐸(𝑍𝑍|𝑌𝑌 = 𝑦𝑦) , y∈Rs, 𝐶𝐶(𝑦𝑦) = 𝐸𝐸[(𝑍𝑍 − 𝑚𝑚(𝑦𝑦))′(𝑍𝑍 −
𝑚𝑚(𝑦𝑦))|𝑌𝑌 = 𝑦𝑦], y∈Rs. For the estimation of m(y) and C(y), it is proposed to apply the kernel 
smoothing: 

𝑚𝑚�(𝑦𝑦) =
∑ 𝐾𝐾𝐻𝐻2�𝑦𝑦−𝑌𝑌(𝑡𝑡)�𝑍𝑍(𝑡𝑡)𝑛𝑛
𝑡𝑡=1
∑ 𝐾𝐾𝐻𝐻2�𝑦𝑦−𝑌𝑌(𝑗𝑗)�𝑛𝑛
𝑗𝑗=1

= ∑ 𝑊𝑊𝐻𝐻2�𝑦𝑦 − 𝑌𝑌(𝑡𝑡)�𝑍𝑍(𝑡𝑡)𝑛𝑛
𝑡𝑡=1 , y∈Rs. (13) 
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Here are the weights 𝑊𝑊𝐻𝐻2(𝑦𝑦 − 𝑌𝑌(𝑡𝑡)) = 𝐾𝐾𝐻𝐻2(𝑦𝑦−𝑌𝑌(𝑡𝑡))
∑ 𝐾𝐾𝐻𝐻2(𝑦𝑦−𝑌𝑌(𝑗𝑗))𝑛𝑛
𝑗𝑗=1

. 

The sum of which is equal to one. The formula (13) can be understood as a regression 
estimate of the conditional mean function m of Nadaraya and Watson [72,73]. The condi-
tional covariance matrix can be evaluated similarly 𝐶̂𝐶(𝑦𝑦) = ∑ 𝑊𝑊𝐻𝐻3(𝑦𝑦 − 𝑌𝑌(𝑡𝑡))(𝑍𝑍(𝑡𝑡) −𝑛𝑛

𝑡𝑡=1
𝑚𝑚�(𝑦𝑦))′(𝑍𝑍(𝑡𝑡) −𝑚𝑚�(𝑦𝑦)), y∈Rs. The parametric estimate of the relative density f(Z|Y) = y looks 
akin to this 𝑓𝑓𝑍𝑍|𝑌𝑌=𝑦𝑦(𝑧𝑧) = [(2𝜋𝜋)𝑑𝑑−𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑 𝐶𝐶� (𝑦𝑦)]−1/2 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1

2
(𝑧𝑧 − 𝑚𝑚�(𝑦𝑦))𝐶̂𝐶(𝑦𝑦)−1(𝑧𝑧 − 𝑚𝑚�(𝑦𝑦))′� , 

z∈Rd-s. The estimate of the distribution density fX of X then is: 𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑓𝑓(𝑌𝑌,𝑍𝑍)(𝑦𝑦, 𝑧𝑧) =
𝑓𝑓𝑌𝑌(𝑦𝑦)𝑓𝑓𝑍𝑍|𝑌𝑌=𝑦𝑦(𝑧𝑧), x = (y,z)∈Rd. 

The procedure described above is called the semi-parametric kernel density estimate. 
In practice, even if the conditional assumption of the normality of several random vector 
components is satisfied. The decomposition dimensions also influence the accuracy of the 
density estimation results, and the choice of the coordinates influences the accuracy of the 
density estimation results. One way to select them is to use the least-squares method or 
the maximum likelihood cross-entropy method recommended by original method au-
thors [46]. The authors propose the parameters H2 and H3 [46] to select 2H. 

2.3. Logspline Estimation (LSDE) 
This subsection describes the logspline estimation (LSDE) calculation. One-dimen-

sional polynomial splines are called partial polynomials of a certain degree. Breakpoints 
that contain a transition from one polynomial to another are called nodes. Suppose that 
the vector 𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝐾𝐾) ∈ 𝑅𝑅𝐾𝐾  defines a set of such K points. Splines describe smooth con-
nections, showing how different areas are separated by nodes [74]. These constraints are 
precisely defined by expressing partial polynomials in the number of continuous deriva-
tives s. These include partially linear curves. If there are no restrictions, breakpoints are 
allowed in the nodes of these functions. Assuming that the functions are globally contin-
uous, it is required that the individual linear parts meet at each node. If greater smooth-
ness is needed (for continuous first-order derivatives), then the flexibility of the nodes is 
lost. Moreover, the curves are considered simple linear functions. The term “linear spline” 
is applied to a continuous partial linear function in the literature on approximation theory. 
Accordingly, the term “cubic spline” is assigned to continuous cubic functions with sec-
ond-order continuous derivatives and nodes that allow jumps of third-order derivatives. 
If the polynomial degree is b and the vector of the nodes is t, then the set of polynomial 
splines with s continuous derivatives forms a linear space. For example, a set of linear 
splines with nodes in the sequence t is defined by function 

1, 𝑥𝑥, (𝑥𝑥 − 𝑡𝑡1)+, … , (𝑥𝑥 − 𝑡𝑡𝐾𝐾) +. (14) 

Here (۰)+ = max(۰,0). We will rely on this set as the base of space. The base of the 
spline space of degree b and s smoothness consists of monomial whose form (𝑥𝑥 − 𝑡𝑡𝑘𝑘)+

𝑠𝑠+𝑗𝑗, 
here 1 ≤ j ≤ b − s. Using this formula, in the case of classical cubic splines, where b = 3 and 
s = 2, the base consists of elements 

1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3, (𝑥𝑥 − 𝑡𝑡1)3+, … , (𝑥𝑥 − 𝑡𝑡𝐾𝐾)3 +. (15) 

From the model point of view, this base is convenient because the individual func-
tions at the nodes are merged. In expressions (14) and (15), each function is precisely as-
sociated with one of the nodes, and removing this function essentially corresponds to re-
moving the node itself. It is known that the numerical properties of functions (14) and (15) 
are poor. For example, the solution matrix deteriorates as rapidly as the number of nodes 
decreases in linear regression problems. A practical alternative is the so-called B-spline 
base [75,76]. These functions are designed to be supported in several contiguous intervals 
defined by nodes (b + 1 contiguous intervals are used for the smoothest splines). Suppose 
we can find the basis for splines of space B1(x; t), …, BJ(x; t) b with smoothness s and a se-
quence of nodes t so that any function in space can be written as 𝑔𝑔(𝑥𝑥;𝛽𝛽, 𝑡𝑡) =
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𝛽𝛽1𝐵𝐵1(𝑥𝑥; 𝑡𝑡)+. . . +𝛽𝛽𝐽𝐽𝐵𝐵𝐽𝐽(𝑥𝑥; 𝑡𝑡). Where the corresponding coefficient vector is β = (β1, …, βJ)′. As 
seen from (14) and (15), then spline spaces of maximum smoothness are used J = K + b + 1. 

According to the title of the subsection, the object of this analysis is the logarithmic 
density. Suppose X is a random vector that takes values from the interval (L, U). In the 
individual case, L and U can be ±∞. The parameters L and U are set to 2𝑡𝑡1 − 𝑡𝑡2 and 2𝑡𝑡𝐾𝐾 − 𝑡𝑡𝐾𝐾 
− 1, respectively. If 𝛽𝛽𝛽1 ≥ 0 or 𝛽𝛽𝛽𝐾𝐾 − 1≥0, then the adjustment is made 2𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑡𝑡1 and 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 2𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 − 
𝑡𝑡𝐾𝐾 is performed. The method of Kooperberg and Stone [52,77–79], known as logspline, is 
implemented with cubic spline. The cubic spline is described in (15). These functions are 
also continuously differentiated, and the partial polynomials are defined accordingly in 
the sequence of nodes t = (t1, …, tK). In each interval [t1, t2], …, [tK-1, tK] cubic splines are 
also cubic polynomials, but at the edges (L, t1] and [tK, U) are linear functions. The mini-
mum number of nodes is K ≥ 3 (otherwise, a linear function or constant can be obtained). 
The basis form is 1, B1(x; t), …, BJ(x; t), where J = K − 1. 

It is said that the vector β = (β1, …, βJ)′∈RJ exists then 𝐶𝐶(𝛽𝛽, 𝑡𝑡) =
𝑙𝑙𝑙𝑙𝑙𝑙 �∫ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1𝐵𝐵1(𝑥𝑥; 𝑡𝑡)+. . . +𝛽𝛽𝐽𝐽𝐵𝐵𝐽𝐽(𝑥𝑥; 𝑡𝑡))𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿 � < ∞. Suppose B denotes a set of such possible 
vectors. After selecting β∈B, the family of positive density functions in the interval (L, U) 
is defined the form of which is 

𝑔𝑔(𝑥𝑥;𝛽𝛽, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1𝐵𝐵1(𝑥𝑥; 𝑡𝑡)+. . . +𝛽𝛽𝐽𝐽𝐵𝐵𝐽𝐽(𝑥𝑥; 𝑡𝑡) − 𝐶𝐶(𝛽𝛽, 𝑡𝑡)), 𝐿𝐿 < 𝑥𝑥 < 𝑈𝑈. (16) 

Now, having a random sample n of magnitude X(1), …, X(n) from the interval (L, U) 
with an unknown density function f, the logical probability function corresponding to the 
model of logsplines (16) is 

𝑙𝑙(𝛽𝛽, 𝑡𝑡) = ∑ log(𝑔𝑔(𝑋𝑋𝑖𝑖;𝛽𝛽, 𝑡𝑡))  𝑖𝑖 = ∑ ∑ 𝛽𝛽𝑗𝑗𝐵𝐵𝑗𝑗(𝑋𝑋𝑖𝑖; 𝑡𝑡)𝑗𝑗𝑖𝑖 − 𝑛𝑛𝑛𝑛(𝛽𝛽, 𝑡𝑡),𝛽𝛽 ∈ 𝐵𝐵. (17) 

where estimation of maximum likelihood 𝛽̂𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽∈𝐵𝐵 𝑙𝑙 (𝛽𝛽, 𝑡𝑡) and an estimate of den-
sity 𝑓𝑓 = 𝑔𝑔(𝑥𝑥; 𝛽̂𝛽, 𝑡𝑡), L < x < U. 

Let us say that during the stepwise determination procedure, the sequence of models 
is denoted by v, the vth model has Jv base functions. The Generalized Akaike Information 
Criterion (AIC) selects the best model [80]. Suppose that 𝑙𝑙𝑣𝑣 defines the estimate of the 
logic-likelihood function (17) for the vth model. The Equation defines the Akaike infor-
mation criterion AIC𝑎𝑎,𝑣𝑣(𝑡𝑡) = −2𝑙𝑙𝑣𝑣(𝑡𝑡) + 𝑎𝑎𝐽𝐽𝑣𝑣 for which the model has a loss parameter a. 
From many models, the one whose value of v minimizes AICa,v. Stone [52] recommends 
the use of a = log n. 

2.4. PPDE Algorithm. Estimation of the Projection Density of the Target 
The projection pursuit density estimator (PPDE) proposed by Friedman is based on 

the target projection and consistent projection Gaussianization. The essence of J. H. Fried-
man and coauthors [54,55,81] in estimating the target projection density is to search for 
“interesting”, small-measurement data projections. The distribution structures, where the 
projections have distributions that are very different (in the sense of some projection in-
dex) from Gaussian. Huber [82] made a heuristic proposal to consider the Gaussian dis-
tribution as the least interesting. This proposal is based on the facts that: 
• The multidimensional Gaussian distribution is entirely defined by its linear structure 

(mean and covariance matrices). Therefore, it is desired to feel a data structure inde-
pendent of the correlation and linear transformations such as the scale parameter. 

• All projections of a multidimensional Gaussian distribution are also Gaussian distri-
butions. Thus, if the projection differs insignificantly from the Gaussian distribution, 
it indicates that distribution is also close to the Gaussian. 

• For multidimensional data with a structure in multiple projection directions, many 
projections will have a distribution close to normal. This statement follows from the 
central limit theorem. 

• In the case of constant variance, the Gaussian distribution is considered to be the least 
informative. 
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Friedman developed Huber’s idea and proposed an algorithm called exploratory tar-
get projection to estimate multidimensional non-parametric density. This procedure con-
sists of five steps: 
(1) Data standardization simplifies layout, scalability, and correlation structures; 
(2) Projection index: the degrees of ‘interest’ in various directions are determined. 
(3) Optimization strategy: search for the direction in which the projection index is the 

largest. 
(4) Data transformation: the one-dimensional density is calculated in the chosen direc-

tion, and the data are multiplied. 
(5) Density formation: multidimensional density is formed from the calculated one-dimen-

sional densities. Multidimensional density is a function of one-dimensional densities. 
The following projection index construction has been proposed. It is known that all 

projections of a multidimensional Gaussian distribution are one-dimensional Gaussian 
distributions. If the distribution in one direction is not Gaussian, then the multidimen-
sional distribution is also not Gaussian. Therefore, the projection index 𝐼𝐼(𝜏𝜏) shows how 
far the one-dimensional density 𝑓𝑓𝜏𝜏(𝑦𝑦) is in the direction 𝜏𝜏(𝑌𝑌 = 𝜏𝜏′𝑍𝑍) from the Gaussian 
distribution when 𝑍𝑍 is a standardized quantity [83]: 

𝐼𝐼(𝜏𝜏) = ∫ (𝑓𝑓𝜏𝜏(𝑦𝑦) − 𝜙𝜙(𝑦𝑦))2𝑑𝑑𝑑𝑑∞
−∞ , where 𝜙𝜙(𝑦𝑦) = 1

√2𝜋𝜋
𝑒𝑒
−𝑦𝑦2
2 . (18) 

The projection direction τ, which maximizes the projection of a distribution 𝐼𝐼(𝜏𝜏), is 
chosen to highlight the multimodal or other nonlinear structure of that distribution. We 
transform the data 𝑦𝑦 by equality 𝑅𝑅 = 2𝛷𝛷(𝑌𝑌) − 1 = 2𝛷𝛷(𝜏𝜏′𝑍𝑍) − 1,𝑅𝑅 ∈ [−1, 1], where 𝛷𝛷(𝑢𝑢) 

is a function of the standard normal distribution 𝛷𝛷(𝑢𝑢) = 1
√2𝜋𝜋

∫ 𝑒𝑒
−𝑡𝑡2
2 𝑑𝑑𝑑𝑑𝑢𝑢

−∞ . The distribution 
density of the transformed quantity 𝑅𝑅, function 𝑓𝑓𝑅𝑅(𝑟𝑟) can be rewritten as 

𝑓𝑓𝑅𝑅(𝑟𝑟) = 𝑓𝑓𝜏𝜏(𝑦𝑦)

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
= 𝑓𝑓𝜏𝜏(𝑦𝑦)

2𝜙𝜙(𝑦𝑦)
. (19) 

Equation (18) can be rewritten by changing the variable 𝑦𝑦  to 𝑟𝑟: 𝐼𝐼(𝜏𝜏) =
∫ 2𝜙𝜙(𝑦𝑦)(𝑓𝑓𝑅𝑅(𝑟𝑟) − 1/2)2𝑑𝑑𝑑𝑑1
−1 = ∫ 2𝜙𝜙(𝛷𝛷−1(𝑅𝑅+1

2
))(𝑓𝑓𝑅𝑅(𝑟𝑟) − 1/2)2𝑑𝑑𝑑𝑑1

−1 . Friedman [55] proposed 
a slightly different form of the projection index 𝐼𝐼(𝜏𝜏), taking the integrated square error as 
a measure of 𝑅𝑅 inequality: 

𝐼𝐼(𝜏𝜏) = ∫ (𝑓𝑓𝑅𝑅(𝑟𝑟) − 1/2)2𝑑𝑑𝑑𝑑1
−1 = ∫ 𝑓𝑓𝑅𝑅2(𝑟𝑟)𝑑𝑑𝑑𝑑1

−1 − 1/2. (20) 

Note that if the distribution of 𝑌𝑌 is Gaussian, then 𝑓𝑓𝑅𝑅(𝑟𝑟) = 1
2
, ∀r, and the projection 

index 𝐼𝐼(𝜏𝜏) is zero. The more the 𝑌𝑌 distribution differs from the normal, the higher the 
value of the index 𝐼𝐼(𝜏𝜏). Since 𝑅𝑅 ∈ [−1, 1], 𝑓𝑓𝑅𝑅(𝑟𝑟) can be decomposed by orthogonal La-
grangian polynomials, �𝜓𝜓𝑗𝑗�𝑗𝑗=0

∞ , i.e., 𝑓𝑓𝑅𝑅(𝑟𝑟) = ∑ 𝑏𝑏𝑗𝑗𝜓𝜓𝑗𝑗(𝑟𝑟)∞
𝑗𝑗=0 : 

𝐼𝐼(𝜏𝜏) = ∫ 𝑓𝑓𝑅𝑅2(𝑟𝑟)𝑑𝑑𝑑𝑑1
−1 − 1/2 = ∫ �∑ 𝑏𝑏𝑗𝑗𝜓𝜓𝑗𝑗(𝑟𝑟)∞

𝑗𝑗=0 �1
−1 𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑 − 1/2. (21) 

An iterative expression defines orthogonal Lagrangian polynomials. 𝜓𝜓0(𝑟𝑟) = 1 and 
𝜓𝜓1(𝑟𝑟) = 𝑟𝑟.𝜓𝜓𝑗𝑗(𝑟𝑟) =

(2𝑗𝑗−1)𝑟𝑟𝜓𝜓𝑗𝑗−1(𝑟𝑟)−(𝑗𝑗−1)𝜓𝜓𝑗𝑗−2(𝑟𝑟)

𝑗𝑗
, then 𝑗𝑗 ≥ 2. It follows from the orthogonality 

property that the coefficients 𝑏𝑏𝑗𝑗 can be calculated as follows 𝑏𝑏𝑗𝑗 = 2𝑗𝑗+1
2 ∫ 𝜓𝜓𝑗𝑗(𝑟𝑟)𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑1

−1 =
2𝑗𝑗+1
2
𝐸𝐸𝑅𝑅�𝜓𝜓𝑗𝑗(𝑟𝑟)� = 2𝑗𝑗+1

2
1
𝑛𝑛
∑ 𝜓𝜓𝑗𝑗�2𝛷𝛷�𝑌𝑌(𝑡𝑡)� − 1�𝑛𝑛
𝑡𝑡=1 , where ∫ 𝜓𝜓𝑗𝑗(𝑟𝑟)𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑1

−1 = 𝐸𝐸𝑅𝑅[𝜓𝜓𝑗𝑗(𝑟𝑟)]  is the 
mean of the sample approximates the expression. Thus, equality can be written as 

𝐼𝐼(𝜏𝜏) = ∫ 𝑓𝑓𝑅𝑅2(𝑟𝑟)𝑑𝑑𝑑𝑑1
−1 − 1/2 = ∑ 2𝑗𝑗+1

2
𝐸𝐸𝑅𝑅2[𝜓𝜓𝑗𝑗(𝑟𝑟)]𝑠𝑠

𝑗𝑗=1 . (22) 

It should be noted that the infinite amount has been changed to finite. Such a change 
has advantages: the sum is calculated faster, giving robustness to the projection index. By 
summing only a finite number of members, the slowly fading “tails” of the projection 
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distributions have a more negligible effect on the value of the projection index. Therefore, 
it is suggested to choose 4 ≤ s ≤ 7. 

There are many methods for finding “interesting” projections. The method used in 
this research for finding the ‘most interesting’ projection direction is a mixed optimization 
strategy [55,64,84]. After defining the analytical expression of the projection index, its gra-
dient in the projection direction τ is obtained as follows 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2
√2𝜋𝜋

∑ (2𝑗𝑗 + 1)𝐸𝐸[𝜓𝜓𝑗𝑗(𝑟𝑟)]𝐸𝐸[𝜓𝜓𝑗𝑗′(𝑟𝑟)𝑒𝑒−𝑦𝑦2/2(𝑧𝑧 − 𝜏𝜏𝜏𝜏)]𝑠𝑠
𝑗𝑗=1 . (23) 

Here, the Lagrangian polynomial derivative is calculated by an iterative formula: 
𝜓𝜓1′ (𝑟𝑟) = 1, then 𝜓𝜓𝑗𝑗′(𝑟𝑟) = 𝑟𝑟𝜓𝜓𝑗𝑗−1′ (𝑟𝑟) + 𝑗𝑗𝜓𝜓𝑗𝑗−1(𝑟𝑟), then 𝑗𝑗 ≥ 1. Initially, an approximate step 
optimizer is found by searching in the directions of the main components and their com-
binations so that the initial convergence to the maximum can be achieved quickly. Then, 
the approximate step optimizer (steepest ascent) quickly selects the projections required 
to ascend to the (local) maximum of the projection index. The projection index is used to 
search for ‘interesting’ data projections. However, it is usually not enough to find a single 
projection to reasonably estimate the multidimensional density. In general, “interesting” 
directions do not have to be orthogonal and may require more projection directions than 
the data dimension. Therefore, when estimating density by targeted projection, the so-
called deletion of the data structure is applied. A nonlinear scale transformation is per-
formed, found in the projection direction, so the distribution of the transformed data be-
comes normal. This operation ensures that the same direction as before was not found 
when searching for another projection direction. 

The deletion of the data structure is based on the fact that if the projection of one-
dimensional data projection 𝜏𝜏′𝑍𝑍 has a distribution density 𝑓𝑓𝜏𝜏(𝑦𝑦) and a corresponding 
distribution function 𝐹𝐹𝜏𝜏, then the random variable is equal to 

𝑌𝑌� = Φ−1(𝐹𝐹𝜏𝜏(𝑌𝑌)), (24) 

where Φ−1 is the inverse of the standard normal distribution. Friedman [55] proposed to 
calculate the empirical estimate of the distribution function as follows 𝐹𝐹�𝜏𝜏(𝑦𝑦) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑌𝑌)/𝑛𝑛 − 1

2𝑛𝑛
, where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑦𝑦) is the rank of 𝑌𝑌 in the whole sample of size n. Unfortu-

nately, this estimate is not accurate and often results in a very uneven density function. 
By denoting 𝑍𝑍(0) = 𝑍𝑍, we will discuss how 𝑍𝑍(𝑘𝑘−1) is obtained from 𝑍𝑍(𝑘𝑘). Based on Equa-
tion (14), 𝑍𝑍(𝑘𝑘) can be defined as 

𝑍𝑍(𝑘𝑘) = 𝑍𝑍(𝑘𝑘−1) + [𝛷𝛷−1 �𝐹𝐹𝜏𝜏�𝜏𝜏′𝑍𝑍(𝑘𝑘−1)�� − 𝜏𝜏′𝑍𝑍(𝑘𝑘−1)]𝜏𝜏. (25) 

The same procedure is performed to find the ‘most interesting’ projection with 𝑍𝑍(𝑘𝑘) 
searching for a new direction. This sequence is repeated until the multidimensional dis-
tribution becomes close to the Gaussian distribution in all directions. It has been observed 
[55] that gaussianization in one direction disrupts normalcy in the directions previously 
studied so that their projection index 𝐼𝐼(𝜏𝜏) is no longer zero. However, studies show [54] 
that the changes in results are minimal. Multidimensional density is calculated from one-
dimensional density estimates. 

The relationship between the multidimensional densities 𝑍𝑍(𝑘𝑘)  and 𝑍𝑍(𝑘𝑘−1)  (where 
𝑍𝑍(𝑘𝑘)  is the structure of the distant data 𝑍𝑍(𝑘𝑘−1)  along the k-th projection 𝜏𝜏(𝑘𝑘) ) is 

𝑓𝑓𝜏𝜏(𝑘𝑘)(𝑧𝑧(𝑘𝑘)) =
𝑓𝑓𝜏𝜏(𝑘𝑘−1)(𝑧𝑧(𝑘𝑘−1))

|𝐽𝐽𝑘𝑘(𝑧𝑧(𝑘𝑘−1))|
 and 𝑓𝑓𝜏𝜏(𝑘𝑘−1)(𝑧𝑧(𝑘𝑘−1)) = 𝑓𝑓𝜏𝜏(𝑘𝑘)(𝑧𝑧(𝑘𝑘))|𝐽𝐽𝑘𝑘(𝑧𝑧(𝑘𝑘−1))|, here is the Jacobian 

𝐽𝐽𝑘𝑘(𝑧𝑧(𝑘𝑘−1)) = 𝜕𝜕𝑧𝑧(𝑘𝑘)

𝜕𝜕𝑧𝑧(𝑘𝑘−1) = 𝜕𝜕(𝑈𝑈𝑧𝑧(𝑘𝑘))
𝜕𝜕(𝑈𝑈𝑧𝑧(𝑘𝑘−1))

= 𝜕𝜕𝑦𝑦(𝑘𝑘)

𝜕𝜕𝑦𝑦(𝑘𝑘−1) =
𝑓𝑓𝜏𝜏(𝑘𝑘)(𝑦𝑦(𝑘𝑘−1))

𝜙𝜙(𝑦𝑦(𝑘𝑘))
=

𝑓𝑓𝜏𝜏(𝑘𝑘)(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1))

𝜙𝜙(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘))
≥ 0. 

Starting from the initial multidimensional data 𝑍𝑍(0) gaussianization procedure is 
performed for each “interesting” projection found by 𝐼𝐼(𝜏𝜏). After a certain number, the 
projections’ multidimensional data 𝑍𝑍(𝑀𝑀)  differ slightly from the normal distribution. 
Density 𝑍𝑍(0) can be calculated as follows 
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𝑓𝑓(𝑧𝑧(0)) = 𝑓𝑓𝜏𝜏(1)(𝑧𝑧(1))𝐽𝐽1(𝑧𝑧(0)) = 𝑓𝑓𝜏𝜏(2)(𝑧𝑧(2))𝐽𝐽2(𝑧𝑧(1))𝐽𝐽1(𝑧𝑧(0)) = 𝑓𝑓𝜏𝜏(𝑀𝑀)(𝑧𝑧(𝑀𝑀))�𝐽𝐽𝑘𝑘(𝑧𝑧(𝑘𝑘−1))
𝑀𝑀

𝑘𝑘=1

≈ 𝜙𝜙(𝑧𝑧(𝑀𝑀))�𝐽𝐽𝑘𝑘(𝑧𝑧(𝑘𝑘−1))
𝑀𝑀

𝑘𝑘=1

= 𝜙𝜙(𝑧𝑧(𝑀𝑀))�
𝑓𝑓𝜏𝜏(𝑘𝑘)(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1))
𝜙𝜙(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘))

.
𝑀𝑀

𝑘𝑘=1

 (26) 

The one-dimensional density of the projected data 𝑓𝑓𝜏𝜏(𝑘𝑘)(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1)) is calculated ac-
cording to Equation (18) or more precisely 

𝑓𝑓𝜏𝜏(𝑘𝑘)�𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1)� = 𝜙𝜙�𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1)��
2𝑗𝑗 + 1
𝑛𝑛

�𝜓𝜓𝑗𝑗�𝑟𝑟𝑡𝑡
(𝑘𝑘−1)�

𝑛𝑛

𝑡𝑡=1

𝜓𝜓𝑗𝑗�𝑟𝑟(𝑘𝑘−1)�
𝑠𝑠

𝑗𝑗=0

. (27) 

Then, replacing the unknown one-dimensional distribution densities on the right-
hand side (26) with their statistical estimates, we obtain 

𝑓𝑓(𝑧𝑧) = 𝜙𝜙(𝑧𝑧(𝑀𝑀))�
𝑓𝑓𝜏𝜏(𝑘𝑘)(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘−1))
𝜙𝜙(𝜏𝜏′(𝑘𝑘)𝑧𝑧(𝑘𝑘))

.
𝑀𝑀

𝑘𝑘=1

 (28) 

The target projection density estimate is calculated relatively quickly because of the shape 
of the multivariate projection index and the iterative relationship between polynomials. 

2.5. Inversion Formula 
When examining approximations of parametric methods, it should be emphasized 

that as the data dimension increases, the number of model parameters increases rapidly, 
making it more difficult to find accurate parameter estimates. One-dimensional data pro-
jections 𝑋𝑋𝜏𝜏 = 𝜏𝜏′𝑋𝑋 density 𝑓𝑓𝜏𝜏 is much easier to find than multidimensional data density 𝑓𝑓 
because there exists a mutually unambiguous correspondence, 𝑓𝑓 ↔ {𝑓𝑓𝜏𝜏, 𝜏𝜏 ∈ 𝑅𝑅𝑑𝑑}. It is quite 
natural to try to find the multidimensional density 𝑓𝑓 using the density estimates 𝑓𝑓𝜏𝜏 of 
one-dimensional observational projections. It should be noted that in the case of the mix-
ture, when the distributions are Gaussian, the projections of observations are also distrib-
uted according to the (one-dimensional) Gaussian mixture model 

𝑓𝑓𝜏𝜏(𝑥𝑥) = ∑ 𝑝𝑝𝑘𝑘,𝜏𝜏𝜑𝜑𝑘𝑘,𝜏𝜏(𝑥𝑥)𝑞𝑞
𝑘𝑘=1 = 𝑓𝑓𝜏𝜏(𝑥𝑥, 𝜃𝜃𝜏𝜏). (29) 

Here 𝜑𝜑𝑘𝑘,𝜏𝜏(𝑥𝑥) = 𝜑𝜑�𝑥𝑥;  𝑚𝑚𝑘𝑘,𝜏𝜏,𝜎𝜎𝑘𝑘,𝜏𝜏
2 �– one-dimensional Gaussian density. The parameter 

𝜃𝜃 of the multidimensional mixture. The distribution parameters of the data projections 
𝜃𝜃𝜏𝜏 = �𝑝𝑝𝑘𝑘,𝜏𝜏,𝑚𝑚𝑘𝑘,𝜏𝜏,𝜎𝜎𝑘𝑘,𝜏𝜏

2 �, 𝑘𝑘 = 1, … , 𝑞𝑞 are related by equations: 𝑝𝑝𝑗𝑗,𝜏𝜏 = 𝑝𝑝𝑗𝑗 ,𝑚𝑚𝑗𝑗,𝜏𝜏 = 𝜏𝜏′𝑀𝑀𝑗𝑗 and 𝜎𝜎𝑗𝑗,𝜏𝜏
2 =

𝜏𝜏′𝑅𝑅𝑗𝑗𝜏𝜏. Using the inversion formula 

𝑓𝑓(𝑥𝑥) =
1

(2𝜋𝜋)𝑑𝑑 � 𝑒𝑒−𝑖𝑖𝑡𝑡′𝑥𝑥𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅𝑑𝑑

, (30) 

where 𝜓𝜓(𝑡𝑡) = 𝐸𝐸𝑒𝑒𝑖𝑖𝑡𝑡′𝑥𝑥 denotes the characteristic function of the random variable 𝑋𝑋. Mark-
ing 𝑢𝑢 = |𝑡𝑡|, 𝜏𝜏 = 𝑡𝑡/|𝑡𝑡| and changing the variables to a spherical coordinate system, density 
is written 

𝑓𝑓(𝑥𝑥) = 1
(2𝜋𝜋)𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝜏𝜏′𝑥𝑥𝜓𝜓(𝑢𝑢𝑢𝑢)𝑢𝑢𝑑𝑑−1𝑑𝑑𝑑𝑑∞

0𝜏𝜏: |𝜏𝜏|=1 . (31) 

Here, the first integral is understood as the surface integral of the unit sphere. After 
noting the characteristic function of the projection of the observed random variable as 
𝜓𝜓𝜏𝜏(𝑢𝑢) = 𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖𝜏𝜏′𝑋𝑋. Then equality 𝜓𝜓(𝑢𝑢𝑢𝑢) = 𝜓𝜓𝜏𝜏(𝑢𝑢) holds. By selecting the set 𝑇𝑇 of projection 
directions evenly spaced on the sphere and replacing the characteristic function with its 
estimate (𝑓𝑓(𝑥𝑥)) a formula 

𝑓𝑓(𝑥𝑥) =
𝐴𝐴(𝑑𝑑)
#𝑇𝑇

�� 𝑒𝑒−𝑖𝑖𝑖𝑖𝜏𝜏′𝑥𝑥𝜓𝜓�𝜏𝜏(𝑢𝑢)𝑢𝑢𝑑𝑑−1𝑒𝑒−ℎ𝑢𝑢2𝑑𝑑𝑑𝑑
∞

0𝜏𝜏∈𝑇𝑇

, (32) 
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is obtained to calculate the estimate [85,86]. Here and # continue to denote the number of 
elements in the set 𝑇𝑇. Using the d-meter ball volume 

𝑉𝑉𝑑𝑑(𝑅𝑅) =
𝜋𝜋
𝑑𝑑
2𝑅𝑅𝑑𝑑

Γ �𝑑𝑑2 + 1�
=

⎩
⎪
⎨

⎪
⎧ 𝜋𝜋

𝑑𝑑
2𝑅𝑅𝑑𝑑

�𝑑𝑑2� !
, then 𝑑𝑑 mod 2 ≡ 0

2
𝑑𝑑+1
2 𝜋𝜋

𝑑𝑑−1
2 𝑅𝑅𝑑𝑑

𝑑𝑑!!
, then 𝑑𝑑 mod 2 ≡ 1

, (33) 

the constant 𝐴𝐴(𝑑𝑑) depending on the data dimension can be calculated using 

𝐴𝐴(𝑑𝑑) =
�𝑉𝑉𝑑𝑑(1)�𝑅𝑅

′

(2𝜋𝜋)𝑑𝑑
= 𝑑𝑑2−𝑑𝑑𝜋𝜋−

𝑑𝑑
2

Γ�𝑑𝑑2+1�
. (34) 

Computer simulation studies have shown that the density estimates obtained using 
the inversion formula are not smooth. Therefore, in formula (32), an additional multiplier 
𝑒𝑒−ℎ𝑢𝑢2 is used below the integral sign. This multiplier further smoothes the estimate 𝑓𝑓(𝑥𝑥) 
(32) with the Gaussian kernel function. This form of the multiplier allows the value of the 
integral to be calculated analytically. The number of clusters and Gaussian mixture pa-
rameters was selected using the constructive procedure and software developed at the 
Lithuanian Institute of Mathematics and Informatics, applying the w2 type criterion [87]. 
Formula (32) can be used for various estimates of the characteristic function of the pro-
jected data. We will discuss the two methods used in this work. 

One of them is based on the density approximation of the Gaussian distribution mix-
ture model. In the present case, after replacing the parameters of the Gaussian mixture 
with their statistical estimates (𝑝̂𝑝𝑘𝑘,𝜏𝜏 = 𝑝𝑝𝑘𝑘 ,𝑚𝑚�𝑘𝑘,𝜏𝜏 = 𝜏𝜏′𝑀𝑀𝑘𝑘 ,𝜎𝜎𝑘𝑘,𝜏𝜏

2 = 𝜏𝜏′𝑅𝑅𝑘𝑘𝜏𝜏) (Page 10), the follow-
ing parametric estimate 

𝜓𝜓�𝜏𝜏(𝑢𝑢) = �𝑝̂𝑝𝑘𝑘,𝜏𝜏𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚�𝑘𝑘,𝜏𝜏−𝑢𝑢2𝜎𝜎�𝑘𝑘,𝜏𝜏
2 /2

𝑞𝑞�𝜏𝜏

𝑘𝑘=1

 (35) 

of the characteristic function is used, and adding (32) to (35) gives 

𝑓𝑓(𝑥𝑥) =
𝐴𝐴(𝑑𝑑)
#𝑇𝑇

��𝑝̂𝑝𝑘𝑘,𝜏𝜏 � 𝑒𝑒𝑖𝑖𝑖𝑖�𝑚𝑚�𝑘𝑘,𝜏𝜏−𝜏𝜏′𝑥𝑥�−𝑢𝑢2�ℎ+𝜎𝜎�𝑘𝑘,𝜏𝜏
2 /2�𝑢𝑢𝑑𝑑−1𝑑𝑑𝑑𝑑

∞

0

𝑞𝑞�𝜏𝜏

𝑘𝑘=1𝜏𝜏∈𝑇𝑇

=
𝐴𝐴(𝑑𝑑)
#𝑇𝑇

��𝑝̂𝑝𝑘𝑘,𝜏𝜏𝐼𝐼𝑑𝑑−1

⎝

⎛𝑚𝑚�𝑘𝑘,𝜏𝜏 − 𝜏𝜏′𝑥𝑥

�𝜎𝜎�𝑘𝑘,𝜏𝜏
2 + 2ℎ⎠

⎞��𝜎𝜎�𝑘𝑘,𝜏𝜏
2 + 2ℎ�

−𝑑𝑑𝑞𝑞�𝜏𝜏

𝑘𝑘=1𝜏𝜏∈𝑇𝑇

 (36) 

and where 𝐼𝐼𝑗𝑗(𝑦𝑦) can be written as 

𝐼𝐼𝑗𝑗(𝑦𝑦) = Re �� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝑧𝑧2/2𝑧𝑧𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

�. (37) 

It should be noted that only the real part of the expression can be considered here. The 
sum of the imaginary parts must be equal to zero. Because the density estimate 𝑓𝑓(𝑥𝑥) can ac-
quire only real values. The chosen form of the smoothing multiplier 𝑒𝑒−ℎ𝑢𝑢2 allows relating the 
smoothing parameter h to the variances of the projection clusters—in the calculations, the var-
iances are increased by 2ℎ. How to calculate expression (37) is given in Appendix B. 

2.6. Modified Density Estimate of the Inversion Formula 
One of the disadvantages of the inversion formula method defined in (32) is that the 

Gaussian distribution mixture model described by this estimate (where 𝑓𝑓𝑘𝑘 = 𝜑𝜑𝑘𝑘) evalu-
ates well only the density of observations close to it. However, when approximating the 
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density under study with a mixture of Gaussian distributions, the estimation of the den-
sity of the inversion formula often becomes complicated due to a large number of compo-
nents with low a priori probabilities. Their number can be reduced by introducing a noise 
cluster—the modified algorithm based on a multidimensional Gaussian distribution mix-
ture model. Let us use the inversion formula (30). The parametric estimate of the charac-
teristic function of uniform distribution density can be calculated as follows 

𝜓𝜓�(𝑢𝑢) =
2

(𝑏𝑏 − 𝑎𝑎)𝑢𝑢
sin

(𝑏𝑏 − 𝑎𝑎)𝑢𝑢
2

∙ 𝑒𝑒
𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

2 . (38) 

In uniform distribution density function (38), b is the maximum value, and a is the mini-
mum value. In the density estimate calculation formula (32), construct the estimation of the 
characteristic function as a union of the characteristic functions of a mixture of Gaussian dis-
tributions and a uniform distribution with corresponding a priori probabilities as follows 

𝜓𝜓�𝜏𝜏(𝑢𝑢) = �𝑝̂𝑝𝑘𝑘,𝜏𝜏𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚�𝑘𝑘,𝜏𝜏−𝑢𝑢2𝜎𝜎�𝑘𝑘,𝜏𝜏
2 /2

𝑞𝑞�𝜏𝜏

𝑘𝑘=1

+ 𝑝̂𝑝0,𝜏𝜏
2

�𝑏𝑏(𝜏𝜏) − 𝑎𝑎(𝜏𝜏)�𝑢𝑢
sin

�𝑏𝑏(𝜏𝜏) − 𝑎𝑎(𝜏𝜏)�𝑢𝑢
2

∙ 𝑒𝑒
𝑖𝑖𝑖𝑖�𝑎𝑎(𝜏𝜏)+𝑏𝑏(𝜏𝜏)�

2 . (39) 

Here the second term describes a uniform distributed noise cluster and 𝑝̂𝑝0 is the 
weight of the noise cluster. Based on the parameters of the uniform distribution and the 
projected data, we can write 

𝑎𝑎(𝜏𝜏) = (𝜏𝜏′𝑥𝑥)min −
(𝜏𝜏′𝑥𝑥)max − (𝜏𝜏′𝑥𝑥)min

2(𝑛𝑛 − 1)  and (40) 

𝑏𝑏(𝜏𝜏) = (𝜏𝜏′𝑥𝑥)max +
(𝜏𝜏′𝑥𝑥)max − (𝜏𝜏′𝑥𝑥)min

2(𝑛𝑛 − 1) . (41) 

Using notations such as (36), we can write 

𝑓𝑓(𝑥𝑥) =
𝐴𝐴(𝑑𝑑)
#𝑇𝑇

�

⎣
⎢
⎢
⎡
� 𝑝̂𝑝𝑘𝑘,𝜏𝜏𝐼𝐼𝑑𝑑−1

⎝

⎛𝑚𝑚�𝑘𝑘,𝜏𝜏 − 𝜏𝜏′𝑥𝑥

�𝜎𝜎�𝑘𝑘,𝜏𝜏
2 + 2ℎ⎠

⎞�𝜎𝜎�𝑘𝑘,𝜏𝜏
2 + 2ℎ�−

𝑑𝑑
2

𝑞𝑞�𝜏𝜏

𝑘𝑘=1𝜏𝜏∈𝑇𝑇

+
2𝑝̂𝑝0,𝜏𝜏

𝑏𝑏(𝜏𝜏) − 𝑎𝑎(𝜏𝜏) 𝐽𝐽𝑑𝑑−2 �
𝑎𝑎(𝜏𝜏) + 𝑏𝑏(𝜏𝜏) − 2𝜏𝜏′𝑥𝑥

2√2ℎ
,
𝑏𝑏(𝜏𝜏) − 𝑎𝑎(𝜏𝜏)

2√2ℎ
� ∙ (2ℎ)−

𝑑𝑑−1
2 � .

 (42) 

where the expression 𝐼𝐼𝑗𝑗(𝑦𝑦) is the same as (37) and its value is 𝐼𝐼𝑗𝑗(𝑦𝑦) = 𝐶𝐶𝑗𝑗(𝑦𝑦) and 

𝐽𝐽𝑗𝑗(𝑦𝑦, 𝑧𝑧) = Re �� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢2/2 ∙ sin 𝑧𝑧𝑧𝑧 ∙ 𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

�. (43) 

By integrating, we get 

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢2/2 ∙ sin 𝑧𝑧𝑧𝑧 ∙ 𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

= �(cos 𝑦𝑦𝑦𝑦 + 𝑖𝑖 sin𝑦𝑦𝑦𝑦) ∙ sin 𝑧𝑧𝑧𝑧 ∙ 𝑒𝑒−𝑢𝑢2/2 ∙ 𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

= � �
sin(𝑦𝑦 + 𝑧𝑧)𝑢𝑢 + sin(𝑧𝑧 − 𝑦𝑦)𝑢𝑢

2
+ 𝑖𝑖

cos(𝑦𝑦 − 𝑧𝑧)𝑢𝑢 − cos(𝑦𝑦 + 𝑧𝑧)𝑢𝑢
2

� ∙ 𝑒𝑒−𝑢𝑢2/2 ∙ 𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

=
1
2
𝑆𝑆𝑗𝑗(𝑦𝑦 + 𝑧𝑧) +

1
2
𝑆𝑆𝑗𝑗(𝑧𝑧 − 𝑦𝑦) + 𝑖𝑖

1
2
𝐶𝐶𝑗𝑗(𝑦𝑦 − 𝑧𝑧) − 𝑖𝑖

1
2
𝐶𝐶𝑗𝑗(𝑦𝑦 + 𝑧𝑧).

 (44) 

the above formula uses the variables 𝑆𝑆𝑗𝑗(𝑦𝑦) and 𝐶𝐶𝑗𝑗(𝑦𝑦), the calculation of which is given in 
formulas (52) and (53) in Appendix B. 

3. Materials and Methods 
Density estimation algorithms were presented in the previous section. The Monte 

Carlo method was used in this study. Such a comparison of algorithms allows us to meas-
ure the real observation density values and evaluate algorithms’ efficiency. For the re-
search, we used multidimensional (d = 2, 5, 10, 15) distributions of the Cauchy mixture 
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∑ 𝑝𝑝𝑗𝑗𝐶𝐶(𝑥𝑥,𝑚𝑚𝑗𝑗,𝑢𝑢𝑗𝑗)𝑞𝑞
𝑗𝑗=1 . (45) 

Additionally, 𝐶𝐶(𝑥𝑥,𝑚𝑚𝑗𝑗,𝑢𝑢𝑗𝑗) is defined as follows 

𝐶𝐶(𝑥𝑥,𝑚𝑚𝑗𝑗, 𝑢𝑢𝑗𝑗) = ∏ 𝑢𝑢𝑗𝑗𝑗𝑗
𝜋𝜋[𝑢𝑢𝑗𝑗𝑗𝑗

2 +(𝑥𝑥𝑘𝑘−𝑚𝑚𝑗𝑗𝑗𝑗)2]
𝑑𝑑
𝑘𝑘=1 . (46) 

Calculations were performed using sample sizes of n = 50, 100, 200, 400, 800 while 
changing the number of distributions, their weights, and centers (see. Table 1). In each 
case, 100,000 samples were generated. 

Table 1. Parameters table. 

Number of Com-
ponents 

Proportions of Compo-
nents Location Parameters 

Separation Size of 
Locations 

q = 2 p1 = (1 − p2), 
p2 = 0.1, 0.3, 0.5 

m1 = (0, 0), 
m2 = (0.5i, 0.5i) 

i = 1, 2,…, 6 

q = 3 p1 = p2 = (1 − p3)/2, 
p3 = 0.1, 1/3, 0.8 

m1 = (0, 0), 
m2 = (0.5i, 0.5i), 

m3 = (0.5i, 0) 
i = 1, 2,…, 6 

q = 4 p1 = p2 = p3 = (1 − p4)/3, 
p4 = 0.1, 0.25, 0.7 

m1 = (0, 0), 
m2 = (0.5i, 0.5i), 

m3 = (0.5i, 0), 
m4 = (0, 0.5i) 

i = 1, 2,…, 6 

q = 2 
p1 = (1 − p2), 

p2 = 0.1, 0.2, 0.3, 0.4, 0.5 
m1 = (0, 0, 0, 0, 0), 

m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i) i = 1, 2,…, 6 

q = 3 
p1 = p2 = (1 − p3)/2, 

p3 = 0.1, 0.2, 1/3, 0.4, 0.6, 
0.8 

m1 = (0, 0, 0, 0, 0), 
m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i), m3 = 

(0.5i, 0.5i, 0, 0, 0) 
i = 1, 2,…, 6 

q = 4 
p1 = p2 = p3 = (1 − p4)/3, 

p4 = 0.1, 0.16, 0.25, 0.4, 0.7 

m1 = (0, 0, 0, 0, 0), 
m2 = (0.5i, 0.5i, 0.5i, 0.5i, 0.5i), m3 = 

(0.5i, 0.5i, 0, 0, 0), 
m4 = (0, 0, 0.5i, 0.5i, 0.5i) 

i = 1, 2,…, 6 

In cases of d = 10, 15, the same weights were used as in d = 5. Additionally, centres 
are located on the apexes of the hypercube. 

Algorithms used in the research: AKDE—adaptive kernel, PPDE—projection pur-
suit, LSDE—logspline, SKDE—semi-parametric kernel, IFDE—inversion formula, 
MIDE—inversion formula with noise cluster. In IFDE and MIDE methods are used mix-
ture parameters, calculated with a program made in an institute of Mathematics and In-
formatics (Vilnius) [87]. 

Selection of parameters in the density estimation procedure. In this study, the Monte 
Carlo method aimed to perform the accuracy of the non-parametric estimates of distribu-
tion density previously described in the methodological sections (AKDE, PPDE, LSDE, 
SKDE, IFDE, MIDE) comparative analysis. The authors [34] propose to collect the value 
of the sensitivity parameter (γ, see. AKDE method step 3) used in the AKDE method from 
the set {0.2; 0.4; 0.6; 0.8}. The specific value of the parameter is determined by a probabil-
istic cross-check [88,89]. In the SKDE, all possible values of the sub-vector Y dimension s 
(1≤ s ≤ d–1, where d is dimensions, see page 5) and their corresponding coordinates were 
reselected. The most factual errors were used to compare the results with other studied 
methods. The LSDE method minimizes the Akaike information criterion by selecting the 
number of baseline spline points [78]. The computer program for calculating this estimate 
is provided in the R package and was used in the study. Akaike information criterion 
𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑙𝑙(𝑡𝑡) + 𝑎𝑎𝑎𝑎(𝑡𝑡), 𝐽𝐽—degree of spline, 𝑎𝑎 = log (𝑛𝑛), 𝑙𝑙—probability function used to 
select the spline coefficients. The MIDE method has a smoothing parameter, h. The chosen 
form of the smoothing multiplier 𝑒𝑒−ℎ𝑢𝑢2 allows relating the smoothing parameter h to the 
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variances of the projection clusters. Modelling studies have shown that this method is 
sensitive to parameter selection. If h is set too low, the estimate becomes very slick and 
has large errors. Excessive smoothing of the density estimate does not greatly affect its 
quality. In the studies, it was observed that the estimation becomes uneven due to the 
similarity of the values of the observations projected in some directions, thus distinguish-
ing low-weight components with small dispersions. The smoothing parameter (h) as well 
as the specific value of the noise cluster weight (probability) from the set {0.05; 0.1; 0.15; 
0.2; 0.3; 0.4} are selected by cross-checking the least squares [65]. The vector of the estimate 
parameters is searched for in such a way that it minimizes the integrated square error 

Θ = arg min
Θ

�(𝑓𝑓Θ�(𝑥𝑥) − 𝑓𝑓(𝑥𝑥))2𝑑𝑑𝑑𝑑 =
∞

−∞

𝑎𝑎𝑎𝑎𝑎𝑎min
Θ

{�𝑓𝑓Θ�(𝑥𝑥)�
2
2 −

2
𝑛𝑛
�𝑓𝑓Θ�(𝑋𝑋(𝑡𝑡))
𝑛𝑛

𝑡𝑡=1

}, (47) 

where Θ is the evaluated parameter and F(x) is the observed random variable distribution 
function. Changing an unknown distribution function to an empirical distribution func-
tion yields an expression for the parameter estimate 

Θ� = arg min
Θ

(�𝑓𝑓Θ�(𝑥𝑥)�
2
2 −

2
𝑛𝑛
�𝑓𝑓Θ�(𝑋𝑋(𝑡𝑡)|𝑡𝑡)
𝑛𝑛

𝑡𝑡=1

, (48) 

where 𝑓𝑓Θ�(𝑥𝑥|𝑡𝑡) is the value of the estimate at point x, which is calculated by subtracting 
the value of X(t) from the observations. In addition, empirical research suggests that it is 
better to look for a maximum local minimum point rather than a global minimum [90]. 
Using PPDE method and following the recommendation of the paper [38], the order of 
the spread was 4 ≤ 𝑠𝑠 ≤ 6 (see Page 9), and the projection directions were chosen to max-
imize the value of the estimate of the design index (2) recommended by J. H. Friedman 

𝐼𝐼(𝛼𝛼) = ∫ 𝑓𝑓𝑟𝑟2(𝑟𝑟)𝑑𝑑𝑑𝑑1
−1 − 1

2
= ∑ 2𝑗𝑗+1

2
𝐸𝐸𝑟𝑟2�𝜓𝜓𝑗𝑗(𝑟𝑟)�𝐽𝐽

𝑗𝑗=1 . (49) 

4. Results and Discussion 
This section presents the main results obtained during the simulations. We calculate the 

mean absolute error and (50) mean absolute percentage error (51) to evaluate the accuracy. 

𝛿𝛿1 = 1
𝑛𝑛
∑ �𝑓𝑓(𝑥𝑥(𝑡𝑡)) − 𝑓𝑓(𝑥𝑥(𝑡𝑡))�𝑛𝑛
𝑡𝑡=1 ≅ ∫�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑. (50) 

𝛿𝛿2 = 2
𝑛𝑛
∑ �𝑓𝑓(𝑥𝑥(𝑡𝑡))−𝑓̂𝑓(𝑥𝑥(𝑡𝑡))

𝑓𝑓(𝑥𝑥(𝑡𝑡))+𝑓̂𝑓(𝑥𝑥(𝑡𝑡))
�𝑛𝑛

𝑡𝑡=1 ≅ ∫�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)�𝑑𝑑𝑑𝑑. (51) 

The result tables (Tables 2 and A1–A10) provide 100,000 samples densities mean ab-
solute percentage error. The values in parentheses provide information about the stand-
ard deviation of errors. The best results in these tables are bolded and underlined. Ac-
cording to Table 2, it is concluded that when n = 100, d = 5, the best results are obtained by 
SKDE and MIDE methods. Based on Table A2, it can be observed that when q = 2, n = 200, 
the best results are obtained using SKDE and MIDE methods. According to Table A3, it is 
concluded that when q = 3, n = 200, in the case of highly overlapping distributions (i = 1, 
2), the best results are obtained by the SKDE method, and in the case of more isolated 
distributions (i ≥ 3)—by the MIDE method. Based on Table A4, it can be observed that 
when q = 3, n ≥ 400, the best results are obtained by SKDE, while the second-best method 
is MIDE. According to Table A5, it is concluded that when q = 4, n = 400, in the case of 
highly overlapping distributions (i ≤ 3), the best results are obtained by the SKDE method 
and in the case of more isolated distributions (i ≥ 4)—by the MIDE method. Table A6 
shows results of q = 4, n ≥ 400, it can be noticed that, in the case of highly overlapping or 
average isolated distributions (i ≤ 5), the best results are obtained by the SKDE method 
and in the case of more isolated distributions (i = 6)—by the MIDE method. Tables A7 and 
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A8 show results of q = 2 and n = 50, It can be noticed that in all cases highly overlapping 
or isolated distributions, the best results are obtained by AKDE method and in the case of 
more isolated distributions (i = 6) with p1 = 0.6; p2 = 0.4—by the MIDE method. Tables A9 
and A10 show results q = 3 and n = 50; the best results are obtained by the AKDE method 
in all cases (highly overlapping or isolated distributions).The LSDE method with huge 
outliers (|x − mj| > 100uj) is grouped with a more significant number of values closer to 
the centre of the distribution. With the help of the calculated spline coefficients, the den-
sity in the outliers is estimated at a value close to 10100. That is incorrect, and in such cases, 
the use of this method is not recommended. 

Table 2. An example of mean absolute percentage error. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = p2 = p3 = 1/3; n = 100 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.8268  0.8257 0.8198 0.8128 0.8066 0.8075 

SD (0.0760) (0.0814) (0.0848) (0.0827) (0.0788) (0.0731) 

PPDE 
Mean 0.9243  0.9319 0.9303 0.9300 0.9284 0.9250 

SD (0.0500) (0.0364) (0.0375) (0.0387) (0.0410) (0.0433) 

LSDE 
Mean 0.8043  0.8162 0.8583 0.8611 0.8613  0.8711 

SD (0.0534) (0.0540) (0.0490) (0.0349) (0.0434) (0.0577) 

SKDE 
Mean 0.7158 0.7144 0.7088 0.7071 0.7179 0.7227 

SD (0.0260) (0.0905) (0.0905) (0.0830) (0.0631) (0.0499) 

IFDE 
Mean 0.94593  0.8886 0.7857 0.8463 0.8761  0.8312 

SD (0.0362) (0.1318) (0.0706) (0.0380) (0.1110) (0.0538) 

MIDE 
Mean 0.7389 0.7332 0.7235 0.7149 0.7121 0.7219 

SD (0.0280) (0.0221) (0.0338) (0.0195) (0.0208) (0.0203) 

The results for the smaller dimensions (d = 2) are presented in Table A1. It can be seen 
that the best results are obtained using the SKDE method, both in large- and small-scale 
overlapping cases (i < 4). On the other hand, in the case of isolated distributions (i ≥ 5), 
good results were obtained by the MIDE method. 

In the case of mean absolute percentage error, recommended using the semiparametric 
kernel when the sample has overlapping distributions. In the case of two dimensions (d~2) 
and a sample is with overlapping distributions, it is recommended to use the semiparamet-
ric kernel method and for isolated distributions, to use the adaptive kernel method. 

5. Conclusions 
This paper reviewed the most popular and most often used nonparametric density es-

timation algorithms. The density estimation inversion formula was also presented in this 
article. It was observed that when a noise cluster is included, the results of the inversion 
formula improved statistically significantly. Based on the mean absolute error, in the case 
of higher dimension (d~5) and small samples (n~50), it is recommended to use the adaptive 
kernel method. If the sample is n~100, then the modified inversion formula method 
showed the best results. For larger samples with overlapping distributions it is recom-
mended to use a semi-parametric kernel and for more isolated distribution—modified in-
version methods. Based on the mean absolute percentage error, it is recommended to use 
the semiparametric kernel when the sample is with overlapping distributions. In the case 
of two dimensions (d~2) and a sample is with overlapping distributions, it is recom-
mended to use the semiparametric kernel method. For isolated distributions, it is recom-
mended to use the adaptive kernel method. 
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Appendix A 
Table A1. 102 times upscaled mean absolute error with d = 2; p1 = 0.5; p2 = 0.5; n = 100. 

Evaluation 
Methods 

 Density 
 d = 2; p1 = 0.5; p2 = 0.5; n = 100 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 1.74 1.41 1.16 1.08 1.02 0.99 

SD (0.94) (0.80) (0.70) (0.59) (0.54) (0.50) 

PPDE 
Mean 2.21 1.85 1.52 1.32 1.25 1.21 

SD (0.49) (0.41) (0.40) (0.44) (0.37) (0.31) 

LSDE 
Mean 0.87 0.71 0.78 0.63 0.69 0.69 

SD (0.43) (0.20) (0.08) (0.08) (0.04) (0.09) 

SKDE 
Mean 0.63 0.61 0.52 0.52 0.51 0.51 

SD (0.12) (0.17) (0.07) (0.05) (0.06) (0.04) 

IFDE 
Mean 1.69 1.31 0.97 0.75 0.61 0.53 

SD (0.06) (0.10) (0.08) (0.01) (0.04) (0.06) 

MIDE 
Mean 0.69 0.66 0.57 0.55 0.51 0.51 

SD (0.06) (0.10) (0.08) (0.01) (0.04) (0.06) 

Table A2. 104 times upscaled mean absolute error with d = 5; p1 = 0.7; p2 = 0.3; n = 200. 

Evaluation 
Methods 

 Density 
 d=5; p1 = 0.7; p2 = 0.3; n = 200 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.979 0.801 0.703 0.664 0.655 0.654 

SD (0.171) (0.146) (0.145) (0.155) (0.158) (0.159) 

PPDE 
Mean 1.001 0.822 0.722 0.681 0.671 0.669 

SD (0.174) (0.152) (0.151) (0.160) (0.163) (0.163) 

LSDE 
Mean 5.039 4.185 2.632 0.944 0.665 0.660 

SD (1.265) (6.747) (1.081) (0.138) (0.140) (0.112) 

SKDE 
Mean 0.857 0.759 0.705 0.658 0.649 0.638 

SD (0.087) (0.069) (0.076) (0.085) (0.083) (0.083) 

IFDE 
Mean 0.912 0.801 0.721 0.681 0.667 0.666 

SD (0.133) (0.149) (0.151) (0.160) (0.162) (0.163) 

MIDE 
Mean 0.956 0.788 0.694 0.661 0.657 0.640 

SD (0.162) (0.154) (0.144) (0.152) (0.158) (0.163) 
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Table A3. 104 times upscaled mean absolute error with d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n= 200. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 200 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.970 0.725 0.576 0.533 0.504 0.500 

SD (0.127) (0.089) (0.078) (0.073) (0.069) (0.066) 

PPDE 
Mean 0.992 0.746 0.594 0.528 0.506 0.500 

SD (0.137) (0.092) (0.077) (0.072) (0.069) (0.066) 

LSDE 
Mean 1.057 0.775 0.652 0.590 0.508 0.503 

SD (0.164) (0.203) (0.650) (0.491) (0.067) (0.081) 

SKDE 
Mean 0.6245 0.6274 0.6312 0.629 0.630 0.628 

SD (0.072) (0.025) (0.027) (0.049) (0.049) (0.050) 

IFDE 
Mean 0.990 0.743 0.589 0.525 0.497 0.499 

SD (0.136) (0.091) (0.076) (0.071) (0.071) (0.067) 

MIDE 
Mean 0.993 0.746 0.574 0.525 0.496 0.490 

SD (0.137) (0.092) (0.077) (0.072) (0.069) (0.066) 

Table A4. 104 times upscaled mean absolute error with d = 5; p1 = 0.4; p2 = 0.4; p3 = 0.2; n = 400. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.4; p2 = 0.4; p3 = 0.2; n = 400 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.916 0.689 0.527 0.445 0.410 0.396 

SD (0.099) (0.068) (0.048) (0.044) (0.048) (0.052) 

PPDE 
Mean 0.937 0.709 0.545 0.461 0.423 0.407 

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052) 

LSDE 
Mean 0.815 0.549 0.511 0.443 0.404 0.401 

SD (0.007) (0.063) (0.151) (0.094) (0.040) (0.030) 

SKDE 
Mean 0.655 0.499 0.413 0.388 0.385 0.384 

SD (0.064) (0.049) (0.034) (0.031) (0.028) (0.027) 

IFDE 
Mean 0.937 0.709 0.544 0.460 0.423 0.404 

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052) 

MIDE 
Mean 0.757 0.509 0.415 0.391 0.391 0.388 

SD (0.109) (0.074) (0.049) (0.044) (0.048) (0.052) 

Table A5. 104 times upscaled mean absolute error with d = 5; p1 = 0.25; p2 = 0.25; p3 = 0.25; p4 = 0.25; n = 400. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.25; p2 = 0.25; p3 = 0.25; p4 = 0.25; n = 400 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.912 0.645 0.447 0.351 0.309 0.290 

SD (0.128) (0.068) (0.029) (0.019) (0.026) (0.030) 

PPDE 
Mean 0.934 0.665 0.464 0.365 0.321 0.299 

SD (0.145) (0.089) (0.048) (0.031) (0.033) (0.035) 

LSDE 
Mean 0.934 0.676 0.464 0.365 0.321 0.293 

SD (0.145) (0.064) (0.048) (0.031) (0.033) (0.039) 

SKDE 
Mean 0.658 0.472 0.372 0.345 0.316 0.290 

SD (0.071) (0.031) (0.020) (0.017) (0.019) (0.018) 

IFDE 
Mean 0.933 0.665 0.464 0.365 0.321 0.299 

SD (0.145) (0.089) (0.048) (0.031) (0.033) (0.035) 

MIDE 
Mean 0.889 0.622 0.433 0.341 0.307 0.281 

SD (0.118) (0.074) (0.037) (0.026) (0.019) (0.027) 
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Table A6. 104 times upscaled mean absolute error with d = 5; p1 = 0.1; p2 = 0.1; p3 = 0.1; p4 = 0.7; n = 400. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.1; p2 = 0.1; p3 = 0.1; p4 = 0.7; n = 400 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 0.957 0.800 0.678 0.617 0.587 0.571 

SD (0.131) (0.127) (0.103) (0.090) (0.087) (0.087) 

PPDE 
Mean 0.979 0.821 0.697 0.634 0.603 0.586 

SD (0.141) (0.137) (0.112) (0.099) (0.094) (0.093) 

LSDE 
Mean 0.979 0.821 0.697 0.634 0.596 0.586 

SD (0.141) (0.137) (0.112) (0.099) (0.098) (0.093) 

SKDE 
Mean 0.687 0.580 0.514 0.496 0.491 0.489 

SD (0.076) (0.070) (0.058) (0.058) (0.058) (0.056) 

IFDE 
Mean 0.979 0.820 0.697 0.634 0.602 0.585 

SD (0.141) (0.137) (0.112) (0.098) (0.094) (0.093) 

MIDE 
Mean 0.924 0.770 0.652 0.597 0.533 0.488 

SD (0.135) (0.131) (0.108) (0.093) (0.092) (0.091) 

Table A7. 104 times upscaled mean absolute error with d = 5; p1 = 0.5; p2 = 0.5; n = 50. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.5; p2 = 0.5; n = 50 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 1.093 0.828 0.758 0.741 0.739 0.740 

SD (0.095) (0.099) (0.114) (0.123) (0.130) (0.134) 

PPDE 
Mean 1.147 0.872 0.794 0.770 0.764 0.762 

SD (0.157) (0.150) (0.157) (0.156) (0.159) (0.160) 

LSDE 
Mean 2.100 1.997 2.002 2.010 2.013 2.014 

SD (0.078) (0.028) (0.017) (0.019) (0.024) (0.025) 

SKDE 
Mean 1.149 0.875 0.797 0.773 0.765 0.763 

SD (0.160) (0.154) (0.160) (0.160) (0.161) (0.162) 

IFDE 
Mean 1.145 0.864 0.780 0.765 0.763 0.757 

SD (0.163) (0.137) (0.140) (0.150) (0.163) (0.156) 

MIDE 
Mean 1.094 0.860 0.759 0.767 0.742 0.752 

SD (0.142) (0.167) (0.160) (0.156) (0.163) (0.160) 

Table A8. 104 times upscaled mean absolute error with d = 5; p1 = 0.6; p2 = 0.4; n = 50. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.6; p2 = 0.4; n = 50 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 1.138 0.872 0.770 0.748 0.745 0.746 

SD (0.105) (0.085) (0.126) (0.143) (0.152) (0.155) 

PPDE 
Mean 1.192 0.918 0.808 0.778 0.771 0.769 

SD (0.150) (0.136) (0.172) (0.178) (0.181) (0.182) 

LSDE 
Mean 2.114 1.995 1.977 1.983 1.986 1.987 

SD (0.101) (0.083) (0.080) (0.079) (0.082) (0.084) 

SKDE 
Mean 1.195 0.919 0.810 0.780 0.772 0.770 

SD (0.154) (0.138) (0.174) (0.182) (0.183) (0.183) 

IFDE 
Mean 1.183 0.906 0.802 0.778 0.765 0.769 

SD (0.142) (0.125) (0.163) (0.185) (0.176) (0.185) 

MIDE 
Mean 1.152 0.882 0.782 0.754 0.747 0.742 

SD (0.136) (0.124) (0.155) (0.175) (0.176) (0.180) 



Mathematics 2021, 9, 2717 19 of 23 
 

 

Table A9. 104 times upscaled mean absolute error with d = 5; p1 = 0.33; p2 = 0.33; p3 = 0.33; n = 50. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.33; p2 = 0.33; p3 = 0.33; n = 50 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 1.166 0.828 0.634 0.547 0.512 0.500 

SD (0.120) (0.086) (0.057) (0.064) (0.074) (0.080) 

PPDE 
Mean 1.224 0.879 0.677 0.581 0.540 0.523 

SD (0.184) (0.128) (0.107) (0.108) (0.108) (0.109) 

LSDE 
Mean 2.075 1.934 1.921 1.939 1.938 1.937 

SD (0.127) (0.094) (0.058) (0.054) (0.048) (0.044) 

SKDE 
Mean 1.226 0.881 0.678 0.583 0.542 0.524 

SD (0.186) (0.130) (0.109) (0.110) (0.110) (0.110) 

IFDE 
Mean 1.215 0.839 0.649 0.554 0.522 0.513 

SD (0.175) (0.099) (0.110) (0.102) (0.110) (0.111) 

MIDE 
Mean 1.182 0.834 0.638 0.545 0.518 0.501 

SD (0.167) (0.124) (0.097) (0.101) (0.106) (0.106) 

Table A10. 104 times upscaled mean absolute error with d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 50. 

Evaluation 
Methods 

 Density 
 d = 5; p1 = 0.45; p2 = 0.45; p3 = 0.1; n = 50 
 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

AKDE 
Mean 1.126 0.838 0.690 0.633 0.618 0.615 

SD (0.112) (0.126) (0.063) (0.053) (0.061) (0.067) 

PPDE 
Mean 1.182 0.882 0.727 0.660 0.640 0.634 

SD (0.156) (0.132) (0.091) (0.085) (0.087) (0.088) 

LSDE 
Mean 2.101 2.002 1.985 2.010 2.014 2.015 

SD (0.105) (0.063) (0.012) (0.029) (0.028) (0.025) 

SKDE 
Mean 1.183 0.885 0.729 0.663 0.642 0.635 

SD (0.157) (0.134) (0.094) (0.089) (0.090) (0.090) 

IFDE 
Mean 1.170 0.859 0.702 0.649 0.624 0.619 

SD (0.142) (0.129) (0.074) (0.088) (0.083) (0.086) 

MIDE 
Mean 1.142 0.850 0.696 0.639 0.620 0.618 

SD (0.141) (0.125) (0.080) (0.084) (0.083) (0.087) 

Appendix B 
Calculate expression (36). Marked 

𝐶𝐶𝑗𝑗(𝑦𝑦) = � cos 𝑦𝑦𝑦𝑦 ∙ 𝑒𝑒−𝑧𝑧2/2 ∙ 𝑧𝑧𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

 and (A1) 

𝑆𝑆𝑗𝑗(𝑦𝑦) = � sin𝑦𝑦𝑦𝑦 ∙ 𝑒𝑒−𝑧𝑧2/2 ∙ 𝑧𝑧𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

. (A2) 

The Equation holds 

� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖−𝑧𝑧2/2𝑧𝑧𝑗𝑗𝑑𝑑𝑑𝑑
∞

0

= 𝐶𝐶𝑗𝑗(𝑦𝑦) + 𝑖𝑖𝑆𝑆𝑗𝑗(𝑦𝑦). (A3) 

Integration in parts results in 
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𝐶𝐶𝑗𝑗(𝑦𝑦) = 𝑒𝑒−
𝑧𝑧2
2 𝑧𝑧𝑗𝑗−1cos 𝑦𝑦𝑦𝑦�

0

∞

+ � 𝑒𝑒−
𝑧𝑧2
2 �(𝑗𝑗 − 1)𝑧𝑧𝑗𝑗−2 cos 𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑧𝑧𝑗𝑗−1 sin𝑦𝑦𝑦𝑦�𝑑𝑑𝑑𝑑

∞

0

=

= 1{𝑗𝑗=1} + (𝑗𝑗 − 1)𝐶𝐶𝑗𝑗−2(𝑦𝑦) − 𝑦𝑦𝑆𝑆𝑗𝑗−1(𝑦𝑦), 𝑗𝑗 ≥ 1.

 (A4) 

Analogously expressing 𝑆𝑆𝑗𝑗(𝑦𝑦) and taking into account the constraints of the j index, 
recursive equations are obtained 

𝐶𝐶𝑗𝑗(𝑦𝑦) = (𝑗𝑗 − 1)𝐶𝐶𝑗𝑗−2(𝑦𝑦) − 𝑦𝑦𝑆𝑆𝑗𝑗−1(𝑦𝑦), 𝑗𝑗 ≥ 2 and  (A5) 

𝐶𝐶1(𝑦𝑦) = 1 − 𝑦𝑦𝑆𝑆0(𝑦𝑦) also (A6) 

𝑆𝑆𝑗𝑗(𝑦𝑦) = (𝑗𝑗 − 1)𝑆𝑆𝑗𝑗−2(𝑦𝑦) − 𝑦𝑦𝐶𝐶𝑗𝑗−1(𝑦𝑦), 𝑗𝑗 ≥ 2 and (A7) 

𝑆𝑆1(𝑦𝑦) = 𝑦𝑦𝐶𝐶0(𝑦𝑦) , 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑗𝑗 = 1. (A8) 

To calculate the functions 𝐶𝐶0(𝑦𝑦) and 𝑆𝑆0(𝑦𝑦) it is used that 

�𝑆𝑆0(𝑦𝑦)�
𝑦𝑦
′ = � 𝑧𝑧 cos 𝑦𝑦𝑦𝑦 ∙ 𝑒𝑒−𝑧𝑧2/2𝑑𝑑𝑑𝑑

∞

0

= 𝐶𝐶1(𝑦𝑦). (A9) 

From (A7) and (A10), it is obtained that 𝑆𝑆0 satisfies the differential equation 𝑆𝑆0′(𝑦𝑦) =
1 − 𝑦𝑦𝑆𝑆0(𝑦𝑦). This Equation is solved by spreading 𝑆𝑆0 by Taylor series 

𝑆𝑆0′(𝑦𝑦) = �𝑐𝑐𝑙𝑙+1(𝑙𝑙 + 1)𝑦𝑦𝑙𝑙+1
∞

𝑙𝑙=0

= 1 −�𝑐𝑐𝑙𝑙−1𝑦𝑦𝑙𝑙
∞

𝑙𝑙=2

. (A10) 

Comparing the coefficients to similar members, their values are found 𝑐𝑐0 = 0, 𝑐𝑐1 =
1, 𝑐𝑐𝑙𝑙 = − 𝑐𝑐𝑙𝑙−2/𝑙𝑙, 𝑙𝑙 ≥ 2. Thus, 

𝑆𝑆0(𝑦𝑦) = �
(−1)𝑙𝑙𝑦𝑦2𝑙𝑙+1

(2𝑙𝑙 + 1)‼

∞

𝑙𝑙=0

= 𝑦𝑦 −
𝑦𝑦3

3‼
+
𝑦𝑦5

5‼
−
𝑦𝑦7

7‼
+ ⋯. (A11) 

𝐶𝐶0 is found from expression (50) 

𝐶𝐶0(𝑦𝑦) = � cos 𝑦𝑦𝑦𝑦 ∙ 𝑒𝑒−𝑧𝑧2/2𝑑𝑑𝑑𝑑
∞

0

=
1
2
� cos 𝑦𝑦𝑦𝑦 ∙ 𝑒𝑒−𝑧𝑧2/2𝑑𝑑𝑑𝑑
∞

−∞

=
1
2
�(cos 𝑦𝑦𝑦𝑦 − 𝑖𝑖 sin 𝑦𝑦𝑦𝑦) ∙ 𝑒𝑒−𝑧𝑧2/2𝑑𝑑𝑑𝑑
∞

−∞

= �
𝜋𝜋
2
𝑒𝑒−𝑦𝑦2/2.

 (A12) 

Seeking integral (32) value 𝐼𝐼𝑗𝑗(𝑦𝑦) = 𝐶𝐶𝑗𝑗(𝑦𝑦). 
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