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Abstract: Two 1D nonlinear coupled Schrödinger equations are often used for describing optical
frequency conversion possessing a few conservation laws (invariants), for example, the energy’s
invariant and the Hamiltonian. Their influence on the properties of the finite-difference schemes
(FDSs) may be different. The influence of each of both invariants on the computer simulation result
accuracy is analyzed while solving the problem describing the third optical harmonic generation
process. Two implicit conservative FDSs are developed for a numerical solution of this problem. One
of them preserves a difference analog of the energy invariant (or the Hamiltonian) accurately, while
the Hamiltonian (or the energy’s invariant) is preserved with the second order of accuracy. Both FDSs
possess the second order of approximation at a smooth enough solution of the differential problem.
Computer simulations demonstrate advantages of the implicit FDS preserving the Hamiltonian. To
illustrate the advantages of the developed FDSs, a comparison of the computer simulation results
with those obtained applying the Strang method, based on either an implicit scheme or the Runge–
Kutta method, is made. The corresponding theorems, which claim the second order of approximation
for preserving invariants for the FDSs under consideration, are stated.

Keywords: two nonlinear coupled Schrödinger equations; conservation laws; finite-difference
scheme; split-step method; approximation order; Hamiltonian; computational methods

1. Introduction

The problem of optical frequency conversion, for example, the third harmonic gen-
eration (THG) of high intensity femtosecond pulse, attracts the attention of many au-
thors [1–11]. For example, THG is used in the microscopy of cells and tissues [1,2] and
for the spectroscopy of various substances [3]. Frequency tripling is observed in many
practical schemes based on quantum wells, nanoparticles [4,5], graphene [6], photonic
crystals [7,8], and other substances [9–12].

As a rule, a theoretical investigation of THG is based on either the nonlinear coupled
Schrödinger equations (NCSEs) or the basic frequency wave energy non-depletion approx-
imation. In this approximation, the spatial and temporal distribution of the wave with
basic frequency remains unchangeable, and therefore, restrictions of this approximation
are obvious. The next step in developing an effective and more accurate approach for
theoretical investigation was recently proposed in [13]. This approach is based on using
the problem invariants (integrals of motion [12]) for developing the problem solution in
the framework of long pulse duration and plane wave approximation but without using
non-depletion energy approximation of basic wave. This approach allows us both to
analyze a multiplicity of the THG problem solution and to derive that solution [14,15].
However, if the optical beam undergoes the action of the diffraction or dispersion, and its
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propagation distance is large enough, then it is necessary to provide a computer simulation
of the laser beam propagation based on the nonlinear Schrödinger equations containing
the terms with second-order derivatives on spatial coordinate or time or both coordinates.

During the past four decades, many authors paid attention to developing numerical
methods for the nonlinear Schrödinger equation (or set of these equations); see, for exam-
ple, [16–31]. As it is well-known, the most widespread method which is used for computer
simulation of nonlinear optical problems is the Strang method [32]. As a rule, after applying
the Strang method, it is necessary to solve the linear Schrödinger equation, describing the
pulse propagation in a linear medium and ODEs, describing the nonlinear part of the laser
pulse propagation. A numerical solution of the linear Schrödinger equation is based on the
Crank–Nicolson finite-difference scheme (FDS). A solution of the equation’s nonlinear part
is often based on using the explicit Runge–Kutta method (see, for example, [29]). Moreover,
the constructed FDS is conservative only with respect to the energy’s invariant, but the
equation’s Hamiltonian is not preserved. In turn, one can develop the FDS preserving the
Hamiltonian and not preserving energy’s invariant. Which one is more accurate? To our
knowledge, an answer to this question is absent until now.

Not preserving the Hamiltonian during the computer simulation leads to the neces-
sity to choose mesh steps in dependence on a laser pulse propagation distance: if the
propagation distance increases, then it is necessary at least to decrease the mesh step on
a coordinate corresponding to the laser pulse propagation direction. Consequently, an
asymptotic stability property is absent for such a kind of the FDSs, including the schemes
developed on the base of split-step method. Moreover, there is a strong influence of the
domain sizes along coordinates, which are transverse to the pulse propagation direction, on
computer simulation results and their accuracy [33]. Such influence on the development of
the numerical solution instability in the computer simulation of the second harmonic gener-
ation (SHG) problem was investigated in [34]. It should be emphasized that a comparison
of computer simulation results obtained by using the split-step method and a conservative
finite-difference scheme (CFDS) was made in [35] for the frequency doubling problem,
which is governed by two NCSEs, and that paper has demonstrated some advantages of the
CFDS. Thus, a study of the influence of the Hamiltonian’s non-preserving on a numerical
solution accuracy is a modern problem.

Below, we develop two FDSs for another set of the NCSEs, which describe the THG
process. One of them preserves the energy invariant, and another one preserves the
Hamiltonian of the interacting waves. It is important to stress that the CFDSs, preserv-
ing the problem Hamiltonian (energy’s invariant), preserves the energy’s invariant (the
Hamiltonian) with the second order of accuracy concerning the mesh step along the pulse
propagation coordinate. Nevertheless, the rates of increase are different for these FDSs.
That is why we expect worse properties of the FDS, preserving the energy, despite both
CFDSs possessing the same approximation order.

To clarify the advantages (or disadvantages) of developed CFDSs, we compare them
with two FDSs based on the Strang splitting. They are non-conservative ones with respect
to the problem Hamiltonian and the energy invariant, simultaneously. However, one of the
FDSs is implicit at a stage of the nonlinear equation solution. Another one uses the Runge–
Kutta method for solving the ODE, describing the stage of the laser pulse interaction.
Using computer simulation, we compare all FDSs and show that the FDS preserving the
Hamiltonian is the best one because it is not sensitive to an increase in the pulse propagation
distance or to the pulse intensity value near the time domain boundaries. Moreover, this
FDS allows us to use fewer mesh nodes to achieve high accuracy in comparison with other
FDSs. Our conclusion is supported by certain theoretical reasoning.
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2. Problem Statement

A THG process (ω3 = 3ω-trebling of a basic wave (BW) frequency ω1 = ω) for a
femtosecond laser pulse in a medium with cubic nonlinear response is described by the
following dimensionless NCSEs [12]:

∂A1
∂z + ν1

∂A1
∂t + iD21· ∂

2 A1
∂t2 + iγA1·

(
γ11·|A1|2 + γ13·|A3|2

)
+ iγA3·A∗21 ·e−i∆kz = 0,

∂A3
∂z + ν3

∂A3
∂t + iD23· ∂

2 A3
∂t2 + i3γA3·

(
γ31·|A1|2 + γ33·|A3|2

)
+ iγA3

1·ei∆kz = 0
(1)

on the domain
(z, t) ∈ G0 = (0, Lz]× (0, Lt )

with initial conditions

Aj(0, t) = Aj0(t), t ∈ [0, Lt], j = 1, 3 (2)

and with the boundary conditions (BCs):

Aj(z, 0) = Aj(z, Lt) = 0, z ∈ [0, Lz], j = 1, 3. (3)

These BCs correspond to a finite initial distribution of the functions characterizing the
interacting waves. Here, the function Aj denotes complex amplitudes of the interacting
waves, normalized on the square root of the maximal incident basic wave intensity I0.5

in .
i denotes an imaginary unit: i2 = −1. Parameter γ characterizes both the interacting
waves nonlinear coupling and their self-modulation and cross-modulation. Parameters
γmj , m = 1, 3, j = 1, 3, are defined as γ11 = γ33 = 1, γ13 = γ31 = 2. However, in the
general case, they can differ from these values. Parameters νj characterize a group velocity
of the pulses, and coefficients D2j characterize the pulse group velocity dispersion (second
order dispersion -SOD) at the corresponding frequency. A spatial coordinate z denotes
a longitudinal coordinate along which the pulse propagates, and it is measured in the
dispersion length for the laser pulse with basic frequency (BF) ω1 = ω (the first pulse):

ldis = 2τ2
p ·
∣∣∣∣ ∂2k
∂ω2 |ω1

∣∣∣∣−1

, (4)

where τp is the pulse duration. Lz denotes the distance of the laser pulse propagation. In
turn, time t is measured in units of τp. Lt denotes a time interval that is chosen in such a
way that complex amplitudes of the pulses are equal to zero during some time interval near
boundary values of time coordinate: t = 0, Lt. It can be done always because the initial
distributions of the complex amplitudes are finite, and the distance of the laser pulses’
propagation is bounded. It should be also stressed that in the solution of many other
problems, governed by NLSE, instead of the BCs (3), one often requires to state the BCs in
an unbounded domain. As a rule, in this case, the exponential decreasing of the complex
amplitudes to zero is stated if time tends to plus or minus infinity. Similar conditions are
stated for derivatives on time of the complex amplitude. Nevertheless, their decrease is
stronger than the decrease of the complex amplitude.

The dimensionless parameters introduced above can be expressed through the physi-
cal ones in the following manner:

νj = 2τp·
(

∂k
∂ω

)
|ωj ·ldis, D21 = sign

(
− ∂2k

∂ω2 |ω1

)
, D23 = − ∂2k

∂ω2 |ω3 ·
∣∣∣ ∂2k

∂ω2 |ω1

∣∣∣−1
,

γ =
3πkτ2

p

n2
j
·χ(3)(ωj

)
·Iin·

∣∣∣ ∂2k
∂ω2 |ω1

∣∣∣−1
, j = 1, 3.

(5)

Above χ(3)(ωj
)

denotes the cubic susceptibility of a medium at the frequency ωj,
and nj is a refraction index at the frequency ωj. In Expression (5), a notation, k = k1, is
introduced. Parameter k j is a wave number of the j-th wave multiplying on the dispersion
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length of the first wave. As follows from Expression (5), we assume that the ratio
χ(3)(ωj)

nj
is a

constant. However, if this assumption does not occur, then using appropriate normalization
of the complex amplitude Aj, it is possible to write the equations in the form (1). As usual,
we take into account a relation between the wave numbers of the interacting pulses:

k3 = 3k1 + ∆k, k j = ωjnj, j = 1, 3. (6)

The parameter ∆k is equal to the phase mismatching on the dispersion length.
It is important to note that the equations set (1) possesses the following invariants

(integrals of motion):

I1 =
∫ Lt

0

(
|A1|2 + |A3|2

)
dt (7)

-energy’s invariant,

I3 =

Lt∫
0

[
∑

j=1,3

{
(4− j)(−D2j·

∣∣∣∣∂Aj

∂t

∣∣∣∣2 + νj ·Im
(

A∗j
∂Aj

∂t

)
) +

3
2

γ
∣∣Aj
∣∣4 }+ 6γ·|A1|2·|A3|2 + 2γ Re

(
A3

1·A
∗
3 e−i∆kz

)]
dt (8)

—the Hamiltonian (so-called the third invariant). In (8) we use a representation of the
complex function U = (Re U, Im U) = Re U + i Im U. These invariants (conservation
laws) are used in developing FDSs.

For simplicity and without loss of generality, we consider only the case ν1 = ν3 = 0
because the Equation (1) can always be transformed to the form without the first derivatives.
Additionally, setting Aj = Aje−

i∆kz
2 , Equation (1) is reduced to the form:

∂A1

∂z
+ ν1

∂A1

∂t
+ iD21·

∂2 A1

∂t2 −
i∆k
2
·A1 + iγA1·

(
γ11·

∣∣A1
∣∣2 + γ13·

∣∣A3
∣∣2)+ iγ·A3 A∗21 = 0,

∂A3

∂z
+ ν1

∂A3

∂t
+ iD21·

∂2 A3

∂t2 −
i∆k
2
·A3 + i3γA3·

(
γ31·

∣∣A1
∣∣2 + γ33·

∣∣A3
∣∣2)+ iγ·A3

1 = 0. (9)

For brevity, in the rest of the paper we omit the line over the complex amplitudes,
functions, and operators when we consider Equation (9).

3. Conservative FDSs

In a domain G = [0, Lz]× [0, Lt ], let us introduce the uniform grid Ω = ωz ×ωt :

ωt =

{
tl = lτ, l = 0, 1, . . . , Nt, τ =

Lt

Nt

}
, ωz =

{
zm = mh, m = 0, 1, . . . , Nz, h =

Lz

Nz

}
(10)

and the following index-free notations for the grid functions:

Aj = Aj(zm, tl), Âj = Aj(zm + h, tl),
0.5
Aj =

Âj + Aj

2
,

0.5∣∣Aj
∣∣ = ∣∣Âj

∣∣2 + ∣∣Aj
∣∣2

2
,

0.5
A3

j =
Â3

j + A3
j

2
. (11)

and difference operators:

Λtt Aj =
Aj(zm, tl+1)− 2Aj(zm, tl) + Aj(zm, tl−1)

τ2 , Aj,t =
Aj(zm, tl)− Aj(zm, tl−1)

τ
, Aj,z =

Âj − Aj

h
j = 1, 3.

Using these notations, the FDSs are written in the inner nodes of the mesh:

Aj,z + iD2j·Λtt

0.5
Aj −

i∆k
2

0.5
Aj + ijγ

0.5
Aj ·

(
γj1·

0.5
|A1|

2

+ γj3·
0.5
|A3|

2)
+ iγ Fj = 0, j = 1, 3 (12a)

with the functions

F1 =
0.5
A3·

Â∗21 + Â∗1 A∗1 + A∗21
3

, F3 =
0.5
A3

1 (12b)
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or with the functions

F1 =
0.5
A3·

Â∗21 + Â∗1 A∗1 + A∗21
3

, F3 =
0.5
A1·

Â2
1 + Âj Aj + A2

1
3

. (12c)

The FDS (12a), (12b) preserves difference analogue of the Hamiltonian

I3 = I3(zm) =
Nt

∑
l=1

τ

(
∑

j=1,3

{
−(4− j)·(D2j·

∣∣∣Âj,t

∣∣∣2 + ∆k
2
·
∣∣Âj
∣∣2) + 3

2
γ
∣∣Âj
∣∣4 }+ 2γ·Re

(
Â3·Â∗31

)
+ 6γ

∣∣Â1
∣∣2·∣∣Â3

∣∣2)= I3(0) = const, (13)

and this FDS will be named CFDS-I3. The scheme (12a), (12c) possesses the energy’s
invariant conservation

I1 = I1(zm) =
Nt

∑
l=0

(∣∣Â1
∣∣2 + ∣∣Â3

∣∣2)·τ= I1(0) = const, (14)

and this FDS will be named CFDS-I1. The initial conditions (2) are approximated as

Aj(z0, tl) = Aj0(tl), l = 0, 1, . . . , Nt,

and the BCs (3) are approximated as

Aj(zm, t0) = Aj(zm, tNt) = 0, m = 0, 1, . . . , Nz , j = 1, 3 (15)

for the FDSs (12a)–(12c), respectively.
A validation of the Formula (13) demonstrates:

Theorem 1. The FDS (12a), (12b) is a conservative one with respect to the Hamiltonian (8).

Proof. We multiply the Equation (12a,b) by A∗j,z and equations, conjugated to those by Aj,z,
respectively. Then, pair of the equations, referring to each of the complex amplitudes, are
subtracted from each other. After that, the result of subtraction referring to the pulse at BF
is multiplied by 3, and then, it is summed with the result of subtraction referring to the
pulse at trebled frequency. After multiplying the resulting equation by mesh step τ and its
summation by internal grid nodes of the mesh ωt, we obtain the following equation:

Nt−1

∑
l=1

τ ∑
j=1,3

{
(4− j)·

[
iD2j ·

(
A∗j,z ·Λtt

0.5
A j + Aj,z ·Λtt

0.5
A
∗

j

)
+ i

(
jγ

(
0.5
Aj ·A∗j,z +

0.5
A
∗

j ·Aj,z

)(
γj1·

0.5
|A1|

2

+ γj3
0.5
·|A3|

2)
− ∆k

2

)
+ iγ·( Fj ·A∗j,z + F∗j ·Aj,z

] }
= 0. (16)

Further, using the difference from Green’s formula and the zero-value BCs (15), we
transform the terms containing the difference Laplace operator to the form:

−
Nt−1

∑
l=1

τ ∑
j=1,3

iD2j·(4− j)
h

·
(∣∣∣Âj,t

∣∣∣2 − ∣∣∣Aj,t

∣∣∣2) (17)

The terms referring to phase mismatching are reduced to

−
Nt−1

∑
l=1

τ ∑
j=1,3

i∆k·(4− j)
2h

·
(∣∣Âj

∣∣2 − ∣∣Aj
∣∣2) (18)

and the terms containing modulus of the amplitudes can be re-written as

3iγ
2h
·

Nt−1

∑
l=1

τ ∑
j=1,3

[∣∣Â1
∣∣4 + 4

∣∣Â1
∣∣2·∣∣Â3

∣∣2 + ∣∣Â3
∣∣4 − (|A1|4 + 4|A1|2·|A3|2 + |A3|4

)]
. (19)
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Finally, the terms referring to the energy exchange between the waves are reduced to
the form:

i2γ

h
·

Nt−1

∑
l=1

τ ∑
j=1,3

Re
(

Â3·Â∗31 − A3·A∗31

)
. (20)

Accounting for these transformations and multiplying (16) by h, and then taking an
imaginary part of (16), we show that a difference analogue (13) of the Hamiltonian (8) is
preserved on the numerical solution obtained using the CFDS-I3. �

Theorem 2. (Without proof) The FDS (12a), (12b) is not conservative with respect to the energy’s
invariant and preserves its difference analogue on a smooth enough solution of the problem (1) with
the second order of approximation on the spatial coordinate, and the following formula takes place:

(I1(zm)− I1(zm−1))/h = ∆I1(zm) (21)

where an additive is defined as

∆I1(zm) =
γ

3

Nt

∑
l=0

τ·Im
[(

Â∗3 + A∗3
)(

Â1 + A1
)(

Â1 − A1
)2
]
. (22)

Based on Formula (22) of the Theorem 2, it is easy to see that:

∆I1(zm) = h2·4γ

3
·Im

[
A∗3 ·A1·

(
∂A1

∂z

)2
]
= O

(
h2
)

(23)

at the point
(

zm + h
2 , tl

)
for a smooth enough solution of the problem (1). Consequently, a

value of the first invariant in the section z and its corresponding value at the input section
are defined by the following equality:

I1(zm) = I1(0) +
m−1

∑
p=0

∆I1(zp)·h = I1(0) + O
(

h2
)

. (24)

A proof of the Formula (14) occurring for the FDS (12a,12c) demonstrates:

Theorem 3. The FDS (12a), (12c) preserves a difference analogue (14) of the energy’s
invariant (7).

Proof. We multiply the Equation (12a,c) by
0.5
A
∗

j and equations, conjugated to those by
0.5
A j,

respectively. Then, we sum these equations, and after multiplying the resulting equation
by mesh step τ and its summation by internal grid nodes of the mesh ωt, we obtain the
following equation:

Nt−1

∑
l=1

τ ∑
j=1,3

{[(
Aj,z ·

0.5
A∗j + A∗j,z ·

0.5
A j

)
+ iD2j ·

(
0.5
A∗j ·Λtt

0.5
A j −

0.5
A j ·Λtt

0.5
A∗j

)
+ i

(
jγ·
(

γj1·
0.5
|A1|

2

+ γj3·
0.5
|A3|

2)
− ∆k

2

)(
0.5
Aj ·

0.5
A∗j −

0.5
A j ·

0.5
A∗j

)
+ iγ·(Fj ·

0.5
A∗j − F∗j ·

0.5
A j

]}
= 0. (25)

Accounting for the difference Green’s formula and the zero-value BCs, one sees that
the terms in the rounds brackets multiplied by the SOD coefficients are equal to zero as
well as the terms referring to the phase mismatching and self-action of the optical pulses.
Analyzing sum describing the energy’s exchange between interacting waves, one can see
directly that this sum also is equal to zero:(

0.5
A3 −

0.5
A3

)(
Â∗1 + A∗1

)(
Â∗21 + Â∗1 ·A∗1 + A∗21

)
−
(

0.5
A∗3 −

0.5
A∗3

)(
Â1 + A1

)(
Â2

1 + Â1·A1 + A2
1

)
= 0 (26)
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Finally, the first four terms yield in the following:

Nt−1

∑
l=1

τ

h

(∣∣Â1
∣∣2 + ∣∣Â3

∣∣2 − |A1|2 − |A3|2
)
= 0. (27)

That means that a difference analogue (14) of the energy’s invariant (7) takes place.
�

In turn, the CFDS-I1 does not preserve the difference analogue of the Hamiltonian.

Theorem 4. The FDS (12a),(12c) is not conservative with respect to the Hamiltonian and
preserves its difference analogue on a smooth enough solution of the problem (1) with
the second order of approximation on the spatial coordinate, and the following formula
takes place:

(I3(zm)− I3(zm−1))/h = ∆I3(zm), (28)

and an additive is defined as

∆I3(zm) = −
Nt−1

∑
j=1

τ
2γ

3h
·Re
((

Â3 − A3
)(

Â∗1 + A∗1
)(

Â∗1 − A∗1
)2
)

. (29)

Proof. Obviously, the FDS (12a), (12c) differs from the FDS (12a), (12b) only by an approx-
imation of the last nonlinear term in the equation referring to the complex amplitude of
the third wave (see the expression F3). Carrying out some steps, which are similar to the
steps for proving Theorem 2, we obtain the same terms except only the terms describing
the energy exchange between waves (see (16)). They are written as follows:

iγ
2h

Nt−1

∑
j=1

τ

[(
Â3 + A3

)(
Â∗31 − A∗31

)
+
(

Â∗3 + A∗3
)(

Â3
1 − A3

1

)
+

1
3
(

Â∗3 − A∗3
)(

Â1 + A1
)
·
(

Â2
1 + Â1 A1 + A2

1

)
+

1
3
(

Â3 − A3
)(

Â∗1 + A∗1
)
·
(

Â∗21 + Â∗1 A∗1 + A∗21

)]
. (30)

This expression is transformed to:

iγ
2h ∑Nt−1

j=1 τ
[(

Â3 + A3
)(

Â∗31 − A∗31
)
+
(

Â∗3 + A∗3
)(

Â3
1 − A3

1
)
+
(

Â3 − A3
)(

Â∗31 + A∗31
)
+
(

Â∗3 − A∗3
)(

Â3
1 + A3

1
)

− 2
3
(

Â3 − A3
)(

Â∗1 + A∗1
)(

Â∗21 − 2Â∗1 A∗1 + A∗21
)
− 2

3
(

Â∗3 − A∗3
)(

Â1 + A1
)(

Â2
1 − 2Â1 A1 + A2

1
)]

.
(31)

Therefore, we obtain the following expression:

i2γ

h

Nt−1

∑
j=1

τ

[
Re
(

Â3·Â∗31 − A3·A∗31

)
− 1

3
Re
(

Â3 − A3
)(

Â∗1 + A∗1
)
·
(

Â∗1 − A∗1
)2
]

. (32)

Thus, an additive is defined by (29). �

Therefore, it is easy to see that:

∆I3(zm) = −
4γ

3
h2·Re

(
A∗1

∂A3

∂z

(
∂A∗1
∂z

)2
)

(33)

at the point
(

zm + h
2 , tl

)
. Consequently, the relation between a value of the third invariant

in the section z and its corresponding value at the input section is defined by the formula:

I3(zm) = I3(0) +
m−1

∑
p=0

h ∆I3(zp) = I3(0) + O
(

h2
)

. (34)
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It is necessary to stress a few conclusions that follow from the Formulas (23) and (33)
and are very important for understanding computer simulation results referring to devia-
tions of the invariants. Thus, there is the same order of approximation in these formulas.
However, the parameters involved in these formulas are different. In the first one, a mul-
tiplication of the complex amplitudes of both pulses is contained, and in contrast, in the
second one, only the complex amplitude of the BW is involved. In turn, in (23) only the
second degree of a first-order derivative of the BW complex amplitude along z-coordinate
is contained, and the Formula (33) additionally contains a similar derivative to the one of
the third harmonic (TH) complex amplitude. If the complex amplitudes of both pulses
change smoothly without their strong gradients and high value, then the approximation
order of both the energy’s invariant for the CFDS-I3 and the Hamiltonian for the CDFS-I1
is the same, and the computer simulation results obtained on the base of both schemes
coincide with each other. However, if the interaction of the pulses is accompanied by the
strong gradient of the complex amplitudes and high intensities, the approximation orders
of both invariants can differ. In particular, we see that the Expressions (23) and (33) depend
on the TH complex amplitude or on its derivative along z-coordinate, respectively. As we
will discuss in Section 5, changing the pulses’ intensities depends on the SOD coefficients,
one can observe various evolutions of the invariants’ deviations in the computer simulation
results when using the CFDS-I3 and CDFS-I1.

At the end of this paragraph, we specify the iteration process. Because the difference
Equations (12a)–(12c) are nonlinear ones, for their solvability, the simple iteration method
is applied, in which a nonlinear part of these equations is taken at the previous iteration:

s+1
Aj,z + iD2j·Λtt

s+1
0.5
Aj −

i∆k
2
·
s+1
0.5
Aj + ijγ

s
0.5
Aj·( γj1

s
0.5
·|A1|

2

+ γj3·

s
0.5
|A3|

2

) + iγ·
s
Fj = 0, j = 1, 3 (35a)

with the functions

s
F1 =

s
0.5
A3·

s
Â∗21 +

s
Â∗1 A∗1 + A∗21

3
,

s
F3 =

s
0.5
A3

1 (35b)

or with the functions

s
F1 =

s
0.5
A3·

s
Â∗21 +

s
Â∗1 A∗1 + A∗21

3
,

s
F3 =

s
0.5
A1·

s
Â2

1 +
s

Â1 A1 + A2
1

3
. (35c)

The mesh functions, belonging to the upper layer on z-coordinate, at zero-value
iteration (s = 0) are chosen equal to their values at the previous layer on z-coordinate:

s=0
Âj = Aj , j = 1, 3.

Here, a variable s denotes the number of the iteration. The iteration process is termi-
nated if the following conditions are valid:∣∣∣∣∣s+1

Âj −
s

Âj

∣∣∣∣∣ ≤ ε1

s∣∣Âj
∣∣+ ε2, j = 1, 3, ε1, ε2 = const > 0, ∀tl ∈ ωt. (36)

At the end of this paragraph, we formulate a theorem about an approximation order
of developed FDS, which could be proved using a well-known technique:

Theorem 5. (Without proof) The finite-difference schemes (12a), (12b) and (12a), (12c)
approximate a smooth enough solution of problem (1) with the second order on spatial
coordinate and time with respect to the point

(
zm + h

2 , tl

)
.
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4. FDSs Based on the Split-Step Method

To estimate the efficiency of the CFDSs, we compare them with two FDSs based on the
Strang method. The first of these schemes uses an implicit method for solving nonlinear
system of ODEs, and this scheme is named the implicit split-step method (ISSM). The
second one uses the two stage Runge–Kutta method with the second order of accuracy for
solving ODEs system, and this scheme is named the split-step method with the Runge–
Kutta method (SSMRK).

In a domain G = [0, Lz]× [0, Lt], let us introduce the uniform meshes ωz and ωt (see
(10)) and define additionally two meshes along the z-coordinate:

ωz+0.25 = {zm+0.25 = h(m + 0.25), m = 0, 1, . . . , Nz − 1},

ωz+0.75 = {zm+0.75 = h(m + 0.75), m = 0, 1, . . . , Nz − 1}

and the mesh
Ω′ = ωz ×ωz+0.25 ×ωz+0.75 ×ωt, (37)

to introduce the following index-free notations for the grid functions:

Aj = Aj(zm, tl), Aj = Aj(zm+0.25, tl),
=
Aj = Aj(zm+0.75, tl), Âj = Aj(zm+1, tl),

0.5
Aj = 0.5·

(
Aj +

=
Aj

)
,

0.5∣∣∣Aj

∣∣∣2 = 0.5·
(∣∣∣Aj

∣∣∣2 + ∣∣∣∣=Aj

∣∣∣∣2
)

, j = 1, 3,
0.5

A3
1 = 0.5·

(
A3

1 +
=
A

3

1

)
.

(38)

Thus, the ISSM corresponding to CFDS-I3 is written as follows:

2
Aj − Aj

h
+ i·0.5·D2j ·Λtt

(
Aj + Aj

)
= 0, (39a)

2

=
Aj − Aj

h
− i·∆k·

0.5
Aj + 2 iγ·

j
0.5
Aj ·(

0.5

γj1 ·
∣∣A1

∣∣2 + γj3·
0.5∣∣A3
∣∣2) + Fj

 = 0 (39b)

F1 =
0.5
A3 ·

=
A∗21 +

=
A∗1 A∗1 + A∗21

3
, F3 =

0.5

A3
1,

2
Âj −

=
Aj

h
+ i·0.5· D2j· Λtt

(
Âj +

=
Aj

)
= 0, j = 1, 3 (39c)

The BCs and initial condition for the mesh functions Aj, Âj governed by the difference
Equations (39a) and (39c) are defined in (15), and in addition, a zero-value of the mesh

functions
=
Aj, Aj at the nodes l = 0, Nt is defined.

Because the Equation (39b) are nonlinear, we use the simple iteration method:

2

s+1
=
Aj − Aj

h
− i ·∆k

s+1
0.5
·Aj + 2i·γ·(j

s
0.5
Aj(γj1

s
0.5

·
∣∣A1

∣∣2 + γj3

s
0.5

·
∣∣A3

∣∣2 + s
Fj)) = 0, j = 1, 3 (40a)

with the functions

s
F1 =

s
0.5
A3·

s
=
A∗21 +

s
=
A∗1 A∗1 + A∗21

3
,

s
F3 =

s
0.5

A3
1. (40b)

or with the functions

s
F1 =

s
0.5
A3·

s
=
A∗21 +

s
=
A∗1 A∗1 + A∗21

3
,

s
F3 =

s
0.5
A1 ·

s
=
A2

1 +

s
=
A1 A1 + A2

1

3
. (40c)
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to solve them.
The functions on the upper layer on longitudinal coordinate at a zero iteration (s = 0)

are chosen equal to their values on the previous layer:

s=0
=
Aj = Aj , j = 1, 3. (41)

The iteration process is termitated if both of the following conditions are valid:∣∣∣∣∣∣
s+1
=
Aj −

s
=
Aj

∣∣∣∣∣∣ ≤ ε1

∣∣∣∣∣∣
s
=
Aj

∣∣∣∣∣∣+ ε2, j = 1, 3, ε1, ε2 = const > 0, ∀tl ∈ ωt. (42)

It should be stressed that the FDS (39a)–(39c) approximates a smooth enough solution
of the differential problem with the second order on spatial coordinate and time.

Theorem 6. (Without proof) The FDS (39a)–(39c) is non-conservative and preserves the
difference analogues of the energy’s invariant and the Hamiltonian with the second order
of approximation on a smooth enough solution of the differential problem (1), and there are
the formulas (21), (28) with the additives ∆I1(zm), ∆I3(zm) possessing the second order of
approximation. Consequently, the first invariant and the Hamiltonian in the section z of a
medium and their corresponding values at the input section are related by the expressions:

I1(zm) = I1(0) +
m−1

∑
n=0

h ∆I1(zn) = I1(0) + O
(

h2
)

, (43a)

I3(zm) = I3(0) +
m−1

∑
n=0

h ∆I3(zn) = I3(0) + O
(

h2
)

. (43b)

Using the SSMRK, based on the two-stage Runge–Kutta method [36], to solve the
corresponding nonlinear ordinary differential equations, the computation is made as
follows ([36], p. 124):

Aj,p=0 = Aj, j = 1, 3, (44)

f1
(
zp, A1,p, A3,p

)
=

i∆k
2
·A1,p − iγA1,p·

(∣∣A1,p
∣∣2 + 2

∣∣A3,p
∣∣2)− iγ·A3,p·A∗21,p,

f2
(
zp, A1,p, A3,p

)
=

i∆k
2

A3,p − 3iγA3,p·
(

2
∣∣A1,p

∣∣2 + ∣∣A3,p
∣∣2)− iγ·A3

1,p, (45)

k11 = f1
(
zp, A1,p, A3,p

)
, k12 = f2

(
zp, A1,p, A3,p

)
,

k21 = f1
(
zp + 0.5hp , A1,p + 0.5hpk11 , A3,p + 0.5hpk12

)
,

k22 = f2
(
zp + 0.5hp , A1,p + 0.5hpk11 , A3,p + 0.5hpk12

)
,

A1,p+1 = A1,p + hpk21, A3,p+1 = A3,p + hpk22, p = 0, 1, . . . , Np − 1, (46)
=
Aj = Aj,p=Np , j = 1, 3. (47)

instead of a solution of Equation (39b). Above, Np = 10, denotes intermediate stages
between the layers zj+0.25 and zj+0.75 and hp is the corresponding mesh step. The mesh
functions are defined on the grid Ω′′:

Ω′′ = ωz ×ωz+0.25 ×ωz+0.75 ×ωzp ×ωt,

ωzp =

{
zp = zj+0.25 + php, p = 0, 1, . . . , Np, hp =

0.5h
Np

}
. (48)
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as follows:

Aj = Aj(zm, tl), Aj = Aj(zm+0.25, tl),
=
Aj = Aj(zm+0.75, tl), Âj = Aj(zm+1, tl),

Aj,p = Aj
(
zm+0.25 + php , tl

)
, j = 1, 3.

5. Computer Simulation Results

Before discussing the computer simulation results, it is appropriate to make a few
remarks. First, an investigation of the influence of the conservation laws’ preservation
on the numerical solution attracts the attention of various authors towards a solution of
both ODEs and PDEs. As an example, we mention the paper [37], in which the practical
way for the realization of the conservation laws using one-step methods for the numerical
solution of ODEs is proposed. In a recently published paper [38], the authors proposed
some computational methods, which preserve the energy, for a numerical solution of the
nonlinear Schrödinger equation. They compared various characteristics of the methods in
dependence of the mesh steps and supported their theoretical investigation by the computer
simulation results. In contrast to the current study, they consider only one Schrödinger
equation with a nonlinear response of a medium which is proportional to the eleventh
degree from the electric field strength if the nonlinear optics problem is analyzed. We note
that as a rule, such a type of nonlinear response is accompanied by a nonlinear absorption.

Below, two optical pulses’ interaction in a medium with cubic nonlinear response is
analyzed accounting for an influence of the SOD. As a result, the well-known cascading
process, mutual self-trapping and strong self-focusing as well as self-focusing, and color
solitons can appear [39,40]. That is why the phase relation between interacting pulses plays
a key role, and this feature distinguishes the current study from those considering only one
laser pulse propagation under self-action.

There is another characteristic feature differing the current study from considering
one nonlinear Schrödinger equation: the problem (1) possesses non-uniqueness of its
solution, as we had shown in [14,15,41]. Based on the problem invariant, in those papers
we developed the analytical solution of the problem (1) in the framework of long pulse
duration approximation (D2j = 0, j = 1, 3). It means that the functions do not depend on a
time coordinate. As it was expected, a comparison of the computer simulation results with
the analytical solutions demonstrated their coincidence [14] at appropriate choosing of the
mesh step.

Further, in [15], we investigated numerically the THG process of the femtosecond
pulses for which the SOD influences remarkably on the energy exchange between the
interacting waves. It should be stressed that in that paper, the analytical solution was
generalized to the case of the pulse propagation. Then the CFDSs mentioned above
were written, and the comparison of the numerical solution, obtained using the CFDS-
I3 and analytical one, was performed until the pulse propagation distance at which the
analytical solution was valid. High coincidences were observed in these solutions. We
also emphasized that the CFDS-I3 is preferable for using in a computer simulation in
comparison with using the CFDS-I1. Thus, this study gave a start for a detailed comparison
of these FDSs.

Another remark refers to the role of the SOD. It should be reminded that the SOD at the
pulse propagation (or diffraction at the beam propagation) is responsible for converting the
phase distortions to amplitude distortions and vice versa [39,40]. This is easy to see, if the
complex amplitude is represented via its modulus and its argument and the equations are
written with respect to these variables. In particular, one can see that the pulses’ intensity
evolution depends on the derivative on time from the phase distribution of the pulse.
In turn, the changing in the phase distribution of the pulse influences the pulse shape.
Because the energy’s invariant depends only on the pulse intensity shape, its value is the
same for different phase distribution, and the errors (or changing) in the phase distribution,
appearing due to the Hamiltonian’s non-conservation, do not change the energy’s invariant,
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but they change the distribution of the complex amplitude and, consequently, the pulse
shape. In our opinion, this is the main disadvantage of the CFDS-I1. In contrast, when
using the CFDS-I3, we follow the Hamiltonian of the problem, and the phase distribution
is defined unambiguously if the problem possesses the unique solution, and in turn, this
distribution defines the intensity distribution unambiguously. Non-conservation of the
energy’s invariant leads only to linear decay of the pulse energy without losses of its
temporal distribution. This is a short explanation of behavior of the computer simulation
results obtained using both FDSs.

The last remark here is about the spectra of the pulses at their nonlinear interaction.
As is well-known, due to the nonlinear response of a medium, the pulse spectrum is
broadened. Therefore, it is necessary to choose the mesh step on time coordinate in such a
way that the spectral intensity of harmonic with maximal frequency must be equal to zero
in the limits of roundoff error. If this condition is not fulfilled, then, despite the conservation
of FDS, the computer simulation result will be incorrect because the real spectrum of the
pulse will differ from the spectrum of the computed pulse by using FDS.

To estimate an accuracy of the developed FDSs, let us introduce the following charac-
teristics of the invariant deviations:

(
∆Ij
)com

max = max
zm

∣∣Ij(zm)− Ij(0)
∣∣, (∆Ij

)com
int =

Nz−1

∑
m=1

h
(

Ij(zm)− Ij(0)
)

, j = 1, 3. (49)

The first one characterizes the maximal differences between invariant’s values at the
input section and their values in the sections of a medium. This is a local characteristic of
the invariant deviation. The second one demonstrates a deviation of the invariant over
whole mesh. These characteristics supplement each other. For example, a value of

(
∆Ij
)com

max
can be small in each of the mesh nodes, but the sum of all deviations can be large. Such
a situation occurs as a rule when using the split-step method while increasing the pulse
propagation distance because this method does not possess asymptotic stability. These
differences are defined from the computer simulation results.

Similar estimations are computed using the theoretical analysis:

(
∆Ij
)theory

max = max
zm

∣∣∆Ij(zm)
∣∣, (∆Ij

)theory
int =

Nz−1

∑
m=1

h∆Ij(zm) , j = 1, 3. (50)

Here, an additive to the Hamiltonian or to the energy’s invariant when using the
CFDS-I1 or CFDS-I3 is defined by the Formula (22) or (29), respectively. We also follow the
optical pulses maximal intensities:∣∣Amax,j

∣∣2 = max
zm,tl

∣∣Aj(zm, tl)
∣∣2, j = 1, 3. (51)

This is an important characteristic of the laser pulse propagation because the energy
exchange between interacting waves (the last terms in (1)), as well as the pulse phase self-
modulation and cross-modulation (terms with modulus in (1)) [39,40], depends on the pulse
intensity. Therefore, appearance of a difference in the intensities of the pulses computed
using various FDSs results in a difference of the pulses shapes under further propagation.

We note that all computer simulations were provided using original code realizing
numerical methods described above, and the code was developed by Fortran 90 language.

5.1. Comparison of CFDSs

First of all, we compare the CFDSs to identify which one is preferable for computer
simulation. With this aim, we choose the Gaussian shape of the incident pulse

A10(t) = exp
(
−(t− 0.5Lt)

2
)

, A30(t) = 0 (52)
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because it is widely used in practice. In this case, the energy invariant equals I10 = I1(0) = 1.25.
For definiteness, we fix the parameter γ being equal to 2. As a rule, we consider the laser
pulse propagation in time interval [0, Lt = 10]. However, sometimes, we will change its
size. The mesh step on time coordinate is chosen as τ =0.001.

The iteration parameters are chosen as ε1 = 10−8, ε2 = 10−10, and they remain
unchangeable below for all computer simulations under discussion. The choice of iteration
parameters ε1, ε2 influences the invariants deviations and (more important) the pulses’
maximal intensities. Obviously, a choice of ε1, ε2 must correlate with the mesh steps and
beginning with certain ε1, ε2 values and their further decrease does not influence the
invariant saving.

In Table 1, the theoretical estimations and computed values of the problem invariants
are shown if the pulse propagates until the section Lz = 10, and the parameters of the
THG are chosen as ∆k = 0, D1 = D3 = 10−4. These SOD coefficients are small enough to
transfer the phase distortion of the pulses to their shapes at such a propagation distance.
Therefore, the pulses’ propagation is described by a set of the ODEs. Table 1 demonstrates
that the first invariant is approximated both locally and integrally with the second order
when conducting a computer simulation based on the CFDS-I3. Therefore, at the fixed
mesh step on time, the maximal value of invariant distortion changes with the second
degree of the mesh step on z-coordinate. However, using CFDS-I,1, both the integral
and local deviation of the Hamiltonian decrease with the first order of approximation
despite Formula (30) demonstrating the second order. It is a consequence of the chosen
point for the computation of the invariants—we compute in the section zm instead of
zm+1/2. Therefore, the theoretical estimations of the approximation orders of the invariants
are valid. The second important conclusion is that the CFDS-I3 allows us to make the
computer simulation with a significantly larger mesh step on the longitudinal coordinate
in comparison with its value using CFDS-I1.

Table 1. Influence of the spatial step on the invariant deviation at constant mesh step on time τ = 10−3.

h
(∆I1)

theory
max , CFDS-I3 (∆I1)

theory
int , CFDS-I3 (∆I3)

theory
max , CFDS-I1 (∆I3)

theory
int , CFDS-I1

(∆I1)
com
max, CFDS-I3 (∆I1)

com
int , CFDS-I3 (∆I3)

com
max, CFDS-I1 (∆I3)

com
int , CFDS-I1

0.1
0.025 0.08 0.58 2.92

7.3·10−3 0.033 0.67 1.87

0.01
2.7·10−4 7.6·10−4 5.2·10−2 0.28

6.7·10−5 3.7·10−4 6.8·10−2 0.11

0.001
2.7·10−6 7.2·10−6 5.1·10−3 0.027

6.8·10−7 3.8·10−6 6.9·10−3 0.012

Change of the invariants, if the pulses pass a distance Lz = 5, at mesh steps changing,
is shown in Table 2 for the parameters ∆k = −0.8, D1 = D3 = 10−3 , and the corresponding
Hamiltonian is equal to I30 = I3(0) = 4.16. We see that if the mesh step on z-coordinate is
small enough, then variations of both mesh steps do not practically influence the Hamilto-
nian changing when using the CFDS-I3. However, changing the energy invariant for this
FDS occurs with the second order of accuracy. In contrast, the CFDS-I1 preserves the energy
invariant only with the second order of accuracy despite its conservation property on this
invariant, and this preservation correlates with the order of accuracy for the Hamiltonian
preservation. This is a consequence of using the iteration process. As a result, one can see
a strong change in the pulses’ maximal intensities at their centers (Figure 1). Thus, the
computer simulation results are more sensitive to the Hamiltonian preservation.
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Table 2. Dependence of the invariant deviations and maximal intensities |Amax,1|2, |Amax,3|2 at the
pulse centers on mesh steps. Iteration maximal number does not exceed Niter = 4.

(h, τ)·10−4 FDS (∆I1)
com
max (∆I3)

com
max |Amax,1|2 |Amax,3|2

(1,4)
CFDS-I3 3.37·10−7 5.32·10−8 9.96 26.14

CFDS-I1 4.73·10−9 2.28·10−5 9.96 26.14

(5,4)
CFDS-I3 8.44·10−6 1.88·10−9 9.99 26.155

CFDS-I1 1.16·10−7 5.79·10−4 9.995 26.158

(5,8)
CFDS-I3 9.4·10−6 3.31·10−9 10.4 26.77

CFDS-I1 1.27·10−7 6.86·10−4 10.45 27.77

(40,4)
CFDS-I3 3.5·10−4 1.82·10−9 14.2 27.1

CFDS-I1 2.1·10−5 0.016 5.2 31.2

Figure 1. The intensity evolution at the pulse center (t = 0.5Lt) (a) and pulse shapes in sections z = 3 (b), 4 (c), 5 (d) for the
BW (dashed line) and TH (solid line) wave.

This occurs due to a very complicated interaction of two waves. It is illustrated by
Figure 1 in which the pulse shapes for the first harmonic (FH) wave and third harmonic
(TH) wave, as well as the intensity evolution at the pulse centers, are depicted during
computation using both FDSs with small mesh steps τ = 4·10−4, h = 10−4. Because the
computer simulation results obtained using both FDSs coincide, we depict only the results
computed using the CFDS-I3. The mutual focusing of the pulses occurring after a certain
propagation distance is observed in Figure 1a. As a result, a strong nonlinear regime of
the pulse interaction is realized, and the pulse intensities grow significantly and achieve a
value that is approximately 27 times greater than the incident pulse intensity.
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The pulse shape evolution is depicted in Figure 1b–d. We see in Sections 4 and 5 of
a medium (Figure 1c,d) a formation of high intensity sub-pulses which may propagate
separately, and the duration of these sub-pulses is about ten times shorter than the inci-
dent pulse duration. In section z = 5, one can see the sub-pulses with soliton-like shape
(Figure 1d) with their centers at time moments t = 5.37, 5.45 (and two other ones local-
ized symmetrically), respectively. Therefore, the influence of the second-order derivative
on time increases about hundred times and that is why the role of the Hamiltonian is
enhanced.

However, if the mesh step on z-coordinate is increased, for example, until h = 0.004,
the difference between the computer simulation results obtained using two FDSs appears
when the pulse propagation distance exceeds 4.5. Therefore, the main difference between
two FDSs is observed when a mutual self-compression of the pulses appears. Up to the
section z = 4 of a medium, the pulse shapes computed using both FDSs coincide and are
the same as they are depicted in Figure 1b,c. However, after this distance, we see a very
clear difference between the problem solutions computed using CFDS-I3 and CFDS-I1 (see
Figure 2a,b). Analysis of the pulse shapes depicted in Figure 2c,d confirms this conclusion;
one can see changing certain sub-pulse shapes in section z = 5 of a medium. Nevertheless,
sub-pulses with soliton-like shapes are the same at computation using both FDSs. This
means that the pulse carrier frequencies do not contain a time-dependent modulation.
Another very important conclusion following from numerical modeling is that the CFDS-I3
allows us to use a significantly larger mesh step on z-coordinate (at least ten times greater)
in comparison with the corresponding value for the CFDS-I1 to achieve the adequate
computer simulation results.

Figure 2. The intensity evolution at the pulse center (t = 0.5Lt) of the BW (dashed line) and TH (solid line) wave (a,b) and
their pulse shapes in section z = 5 (c,d) computed using the CFDS-I3 (a,c) and CFDS-I1 (b,d).
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5.2. The Invariant Approximation Order for the Split-Step Methods

The approximation order of the invariants when using the Strang methods is illus-
trated by Table 3 for the parameters: ∆k = 0.2, D1 = D3 = 10−3, Lz = 5 and fixed
mesh step τ = 10−3 on time coordinate. One can see that both invariants preserve the
second order of approximation to the spatial coordinate in accordance with the theoretical
estimations (Theorem 3), and the SSMRK preserves the energy’s invariant even better
than the ISSM. However, if the SOD coefficients are increased ten times (until the value
D1 = D3 = 10−2), then the invariant deviations increase, and their approximation order
decreases up to the first order (Table 4) when using the ISSM for computer simulation.
Moreover, both numerical methods become sensitive to the mesh step on the longitudinal
coordinate, and for the mesh step h = 0.01, one can see the Hamiltonian deviation dra-
matically increasing, which results in the problem solution distortion. This is a result of
increasing influence of the SOD coefficients because they define changing the phases of the
pulses at mesh fixed steps. If a change of the pulse phase increases for two neighboring
mesh steps on a spatial coordinate, then their product can be greater than 2π

3 , and therefore,
less than two mesh nodes will belong to the period of the phase changing. As a result,
the solution becomes wrong, and the problem Hamiltonian deviates from its initial value.
Because using of SSMRK requires introducing additional mesh step at solving the stage
of the pulse’s nonlinear propagation, computation of the pulse phase is more accurate,
and more than three mesh nodes on the spatial coordinate will belong to the period of the
phase change compared to using ISSM. That is why the SSMRK demonstrates partly better
results in comparison with computation based on ISSM.

Table 3. Influence of the spatial step on the energy invariant deviation and the Hamiltonian deviation when using the ISSM
and the SSMRK for computation. The upper row corresponds to the local invariant deviation, the low row–to the integral
deviation of the invariants.

h

(∆I1)
theory
max ,

ISSM
(∆I1)

com
max , ISSM (∆I3)

theory
max ,

ISSM
(∆I3)

com
max, ISSM (∆I1)

com
max,

SSMRK
(∆I3)

com
max ,

SSMRK

(∆I1)
theory
int ,

ISSM
(∆I1)

com
int , ISSM (∆I3)

theory
int ,

ISSM
(∆I3)

com
int , ISSM (∆I1)

com
int ,

SSMRK
(∆I3)

com
int ,

SSMRK

0.001
1.8·10−5 1.79·10−5 4.4·10−4 1.5·10−4 2.73·10−7 3.17·10−4

5.64·10−6 7.56·10−6 4.1·10−4 1.0·10−4 1.80·10−7 6.8·10−5

0.0033
4.68·10−4 2.28·10−4 0.0063 0.002 7.63·10−6 0.0036

1.6·10−4 5.4·10−4 0.0043 0.001 1.88·10−6 7.6·10−4

0.01
0.0087 0.0015 0.066 0.045 1.7·10−4 0.03

0.0011 0.001 0.022 0.038 7.51·10−5 0.0065

Thus, one can see that the approximation order of the problem invariants correlates
with those of FDS only at enough small values of the SOD coefficients.

Although the invariant deviations do not change practically by decreasing the time
step from τ = 0.02 to τ = 0.0066, the computed solution for these time steps changes and
may be wrong. Therefore, the true solution of the problem occurs for τ = 0.002 (Figure 3a)
when using the ISSM or the SSMRK. When increasing the mesh step on the time coordinate,
a deviation of the problem solution is not significant until z = 4. (Figure 3b,c). However,
change in the problem solution becomes pronounced at τ = 0.02. The reason may be the
insufficient size of the spectral domain because of the strong broadening of the pulses’
spectra due to the cubic nonlinear response of a medium while the size of the spectral
domain decreases by increasing the mesh step on the time coordinate. Therefore, it is
necessary to compute at a small enough mesh step in the regime of the waves’ strong
nonlinear coupling.
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Table 4. Influence of the spatial step on the first invariant and the Hamiltonian deviation when using the ISSM and the
SSMRK for computation. The upper row corresponds to the local invariant deviation, the low row–to the integral deviation
of the invariants.

h

(∆I1)
theory
max ,

ISSM
(∆I1)

com
max , ISSM (∆I3)

theory
max ,

ISSM
(∆I3)

com
max, ISSM (∆I1)

com
max,

SSMRK
(∆I3)

com
max,

SSMRK

(∆I1)
theory
int ,

ISSM
(∆I1)

com
int , ISSM (∆I3)

theory
int ,

ISSM
(∆I3)

com
int , ISSM (∆I1)

com
int ,

SSMRK (∆I3)
com
int , SSMRK

0.001
4.63·10−4 6.61·10−5 0.0074 0.0024 1.62·10−6 0.0018

3.5·10−4 3.3·10−5 0.014 0.0026 10−6 0.0018

0.0033
0.0039 4.77·10−4 0.045 0.023 5.04·10−5 0.0175

0.002 7.0·10−4 0.04 0.027 3.52·10−5 0.018

0.01
0.08 0.083 0.62 0.41 1.07·10−3 0.13

0.056 0.01 0.67 0.44 8.2·10−4 0.12

Figure 3. The intensity evolution at the pulse center (t = 0.5Lt) for the BW (dashed line) and the TH (solid line) wave
computed using the SSMI with mesh steps h = 0.001 and τ = 0.002 (a), 0.0066 (b), and 0.02 (c), respectively.

5.3. Comparison of CFDS with Split-Step Methods

Below, a comparison is made between the computer simulation results obtained using
both the CFDS-I3 and the ISSM or the SSMRK for parameters ∆k = 0.2, D1 = D3 = 10−2,
which correspond to the initial Hamiltonian’s value equal I30 = 2.245. For definiteness
and to achieve a large enough domain in the spectral space, we fix the time mesh step as
τ = 5·10−4 because such a value is optimal for the problem solution with many sub-pulses.
Because the CFDS-I3, ISSM, and SSMRK demonstrate a very small deviation, about 10−5

of the energy’s invariant, we do not discuss this invariant change. In turn, because the
maximal Hamiltonian deviation using CFDS-I3 is less than 10−6 − 10−8 in dependence of
the mesh step h, we also do not show its change along the z-coordinate.

In Figure 4, the pulse intensity evolution at time moment t = 0.5Lt, changing pulse
shapes, and the Hamiltonian evolution, are depicted. Their value deviates slightly if a
computation is made on the basis of the ISSM, and the worst results demonstrate the SSMRK
method (Figure 4c,k), but we clearly see a difference between the solutions computed
(Figure 4) when using various FDSs after the coordinate z ∼ 3.2. For example, the
TH maximum intensity reaches up to 15 dimensionless units (Figure 4c) at the end of
the propagation distance, and this value correlates with a significant deviation of the
Hamiltonian (Figure 4k) in this section of a medium. In Figure 4d–f, a difference between
the problem solutions computed using the SSMRK and other methods is observed. In
section z = 4.5 a difference in the solutions, computed using the CFDS-I3 and the ISSM,
also appears.
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Figure 4. The intensity evolution at the pulse center (t = 0.5Lt) (a–c) and pulse shapes in the sections z = 4 (d–f), 4.5 (g–i)
for the BW (dashed line) and the TH wave (solid line) and the Hamiltonian deviation computed using the CFDS-I3 (a,d,g),
ISSM (b,e,h,j), and SSMRK (c,f,i,k) for h = 0.00625, respectively.

To avoid the difference between the problem solutions computed using various FDSs,
it is necessary to decrease the mesh step on z-coordinate up to h = 0.002. In this case, change
in the Hamiltonian becomes essentially lower in comparison with the previous case, even
for the FDSs based on the Strang method (Figure 5b,c). Consequently, the changing of
intensities at the pulse centers (Figure 5a–c) and pulse shapes (Figure 5d–f) become closer
to each other if the propagation distance is less than 4.5. Nevertheless, beginning from
section z = 4.7, the solutions differ, and we see in Figure 5d–f, depicting the pulse shapes
in section z = 5, a very pronounced difference between the solutions in time interval from
t = 4.55 to t = 5.45, for example.
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Figure 5. The intensity evolution at the pulse center (a–c) and pulse shapes in sections z = 5 (d–f), 6 (g–i), 5.5 (j–l), for the
BW (dashed line) and the TH wave (solid line) computed using the CFDS-I3 (a,d,g,j), ISSM (b,e,h,k), and SSMRK (c,f,i,l)
with h = 0.002, (a–f) and 0.0002 (g–l), respectively.

Further decreasing the mesh step on z-coordinate up to the value h = 2 · 10−4, a
difference between the FDSs solutions appears only after the section z = 5.6 (Figure 5g–i).
The pulse shapes computed using all methods coincide before section z = 5.0 of a medium
(Figure 5j–l). The Hamiltonian does not change practically if a computation is based on the
ISSM until the propagation distance is about 1.5 dimensionless units: its maximal changing
is less than 0.0006. Thereby, if the split-step method is applied for the numerical solution of
the THG problem, then with increasing propagation distance, it is necessary to decrease
the mesh step on the coordinate along which the laser pulse propagates. This requirement
is absent when using the CFDS-I3 for computer simulation.
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5.4. Influence of Time Domain on the Computer Simulation Results When Using the
Split-Step Method

Clearly, decreasing the time domain leads to enhancing computer simulation efficiency.
However, this may lead to losing computation accuracy when using FDSs based on the
Strang method. This statement is illustrated by the example depicted in Figure 5j–l for
the parameters ∆k = 0.2, D1 = D3 = 10−2 and for the mesh steps h = 2·10−4 and
τ = 5·10−4 but for the decreased time domain: Lt = 6. The corresponding computation
results are shown in Figure 6. The Hamiltonian does not change if the computation is
conducted on the basis of CFDS-I3 (see Figure 6g), and evolution of the pulse center
intensity (Figure 6a) coincides with the intensity evolution depicted in Figure 5a, which
computed for Lt = 10. It should be stressed that the pulse shapes are also the same as
in the previous case. However, using the ISSM and the SSMRK for numerical simulation
leads to distortions of the computer simulation results beginning with the section z = 4.5
approximately (Figure 6b,c,e,f) despite the small changes on the Hamiltonian (Figure 6h,i).
However, in the section z = 4, the pulses shapes computed using all FDSs coincide with
each other (Figure 6j–l). In turn, if the time domain was equal to Lt = 10 then the pulses
shapes coincided for all FDSs until the section z = 5.5 (Figure 5j–l).

Thus, using CFDS-I3 allows us to decrease a domain size on the time coordinate
without any losses in computation accuracy. At the same time, the split-step method is very
sensitive to this domain size. Hence, when using the split-step method, it is necessary to
solve the nonlinear Schrödinger equations in the time domain with a large size to avoid any
solution distortion due to the non-zero value of the intensity near the domain boundaries.

5.5. Correlation between the Hamiltonian Deviation and the Intensity Evolution When Using the
Strang Method

The disadvantage of the split-step method can appear even for a small value of the
SOD coefficients, for example, D1 = D3 = 10−3. We illustrate this with the computer
simulation results obtained for ∆k = 0.2 and computed in time domain Lt = 10 with the
mesh step τ = 0.002. The first series of computations are made with the mesh step h equal
0.02 (see Figure 7a,c,d,c/,d/,k/). Computation based on using the SSMRK does not finish
(Figure 7d), and the Hamiltonian changes the sign (see Figure 7d/). The ISSM gives a
distorted result (Figure 7c) with large deviation of the Hamiltonian (Figure 7c/), while
using CFDS-I3 leads to the numerical solution (Figure 7a) that is very close to the accurate
solution and without visible change of the Hamiltonian (Figure 7k/).

By decreasing the mesh step to h = 0.0125 (Figure 7b,e,f,e/,f/), a difference in the
problem solutions obtained using various numerical methods occurs after the section
z = 4.8 (Figure 7b,e,f). However, this difference is much smaller in comparison with
those observed in the previous case. We also observe an essentially small deviation of the
Hamiltonian (Figure 7e/,f/) when using the split-step methods. The Hamiltonian does
not change at all when conducting computer simulations based on the CFDS-I3. Further
decreasing the mesh step h (to h = 0.0025) leads to coinciding solutions obtained using
various numerical methods. The Hamiltonian deviation becomes very small (Figure 7i/,j/),
and the numerical solution, obtained using the SSMI (Figure 7i) and the SSMRK (Figure 7j),
differs from those obtained using the CFDS-I3 (Figure 7g) insignificantly. One can see that
Figure 7g does not differ from Figure 7b; there is only the stronger intensity decreasing,
and this can be expected because of more accurate computation of the pulse phase change.

Thus, with the appropriate choice of mesh step on the time coordinate, the validity
of the numerical solution obtained using the split-step method depends strongly on the
Hamiltonian’s preservation. The CFDS-I3 demonstrates accurate results, at least for the
spatial mesh step which is six times greater than those using the Strang method.
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Figure 6. The intensity evolution at the pulse center (a–c) and pulse shapes in sections z = 4.6 (d–f), 4 (j–l) for the BW
(dashed line) and the TH wave (solid line), the Hamiltonian deviation (g–i) computed using the CFDS-I3 (a,d,g,j), ISSM
(b,e,h,k), and SSMRK (c,f,i,l), respectively.
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Figure 7. The intensity evolution at the pulse center (t = 0.5Lt) (a–f) for the BW (dashed line) and the TH wave (solid line)
and the Hamiltonian deviation (c/–f/,i/–k/) computed using the CFDS-I3 (a,b,g,k/), the ISSM (c,e,I,c/,e/,i/), and the SSMRK
(d,f,j,d/,f/,j/) for mesh step h = 0.02 (a,c,d,c/,d/,k/); 0.0125 (b,e,f,e/,f/); 0.0025 (g,i,j,i/,j/).
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6. Conclusions

For the set of nonlinear Schrödinger equations describing the THG problem, two
CFDSs were developed. Each of the FDSs preserves one of two differential problem’s
invariants while another one is preserved with the second order of approximation. These
statements were proved theoretically and numerically.

It was shown that the accuracy of the computer simulation results obtained using
conservative FDSs depends on which of the problem’s invariants is preserved by the FDS.
Therefore, it is preferable if the FDS possess a conservation property on the Hamiltonian
because it preserves both a phase relation and intensity shapes between interacting waves.

To demonstrate the efficiency of the developed conservative FDSs, they were compared
to a widely used Strang method (split-step method). To improve the stability property
of the split-step method, it was modified by using the iteration process on the stage
of a solution of the nonlinear ODEs instead of usually used the Runge–Kutta method.
Computer simulation results have shown advantages of the CFDSs. In particular, the
split-step method is very sensitive to the domain’s size by time coordinate and to the SOD
of the pulses. Nevertheless, if the laser pulses’ interaction is not accompanied by a strong
self-compression regime, all FDSs give the same results at the corresponding choice of the
mesh steps and size of the time domain.

To prove that the conservative FDS gives true results, we compare the numerical
solution with the analytical solution developed using the invariants of the problem un-
der consideration. This comparison is shown in Appendix A. A very good coincidence
between both solutions is seen. Let us notice that the analytical solution is exact if the SOD
coefficients are equal to zero. In the opposite case, this solution is valid on a bounded
distance of the laser pulse interaction.

It should be stressed that similar features to those of the FDSs, consisting in their
preservation of the Hamiltonian or the energy’s invariant, appear in any problem of optical
waves interaction when the energy exchange between interacting waves is present.
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Appendix A. Comparison of the Analytical Solution with Computer Simulation Results

Below we demonstrate an example of a comparison of one of the analytical solutions
developed in [12,14,15,41] with a numerical solution obtained using CFDS-I3. The shape of
both incident pulses is a Gaussian function (see (52)) with maximal intensities:∣∣Aj0

∣∣2
m = max

t

∣∣Aj0(t )
∣∣2, j = 1, 3 (A1)

which are equal to
|A10|2m = 0.7,|A30|2m = 0.3. (A2)

The parameters of the laser pulses interaction are chosen as

∆k = −1.789, γ = 2, D2j = 10−5, j = 1, 3. (A3)
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For these parameters, an evolution of the TH intensity (a2
3(z)) at the pulse center

(t = 0.5Lt) is described by the following formula:

a2
3(z) =

cx2 + dx1 + cn
(
−
√

13cdγz, m
)
(cx2 + dx1)

cn
(
−
√

13cdγz, m
)
(c− d) + c + d

, (A4)

c =
√
(x2 − x3)

2 + x2
4, d =

√
(x1 − x3)

2 + x2
4, m =

1
2

√
(d + c)2 −

(
x2

2 + x2
1
)

cd
.

Here, cn is an elliptic cosine. Parameters xj are the roots of the characteristic equation,
obtained and discussed in our papers. Different solutions corresponding to various modes
of the THG were derived in [41]. We emphasize that this solution is accurate, and it was
derived in the framework of the long pulse approximation (D2j = 0.0, j = 1, 3) based on the
problem invariants without using the basic wave non-depletion approximation.

The solution (A4) is generalized for the case of the Gaussian shapes of the incident
pulses neglecting the influence of the SOD, and in Figure A1, we compare the pulse
shape computed using a generalized analytical solution with the results of computer
simulation conducted with small mesh steps for the parameters (A2, A3). We see a very
good coincidence between these solutions. It means that the developed FDS has high
accuracy at an appropriate choice of the mesh steps.

Figure A1. TH pulse shape in the sections z = 1 (a), 3 (b), 5 (c) computed using CFDS-I3 (solid line) and using analytical
formula (red crosses).
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At the end of Appendix A, we note that the proposed approach for developing the
analytical solution on the basis of the problem invariant allows us not only to derive an
evolution of the pulse shape but also the phase evolution. This was demonstrated in [42]
under the analysis of the SHG problem.
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