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Abstract: In this paper, we consider the stochastic fractional-space Kuramoto–Sivashinsky equa-
tion forced by multiplicative noise. To obtain the exact solutions of the stochastic fractional-space
Kuramoto–Sivashinsky equation, we apply the G′

G -expansion method. Furthermore, we generalize
some previous results that did not use this equation with multiplicative noise and fractional space.
Additionally, we show the influence of the stochastic term on the exact solutions of the stochastic
fractional-space Kuramoto–Sivashinsky equation.

Keywords: stochastic Kuramoto–Sivashinsky; fractional Kuramoto–Sivashinsky; exact stochastic-
fractional solutions; (G′

G )-expansion method

1. Introduction

In recent decades, fractional derivatives have received a lot of attention because
they have been effectively used to problems in finance [1–3], biology [4], physics [5–8],
thermodynamic [9,10], hydrology [11,12], biochemistry and chemistry [13]. Since fractional-
order integrals and derivatives allow for the representation of the memory and heredity
properties of various substances, these new fractional-order models are more suited than
the previously used integer-order models [14]. This is the most important benefit of
fractional-order models in comparison with integer-order models, where such impacts
are ignored.

On the other hand, fluctuations or randomness have now been shown to be important
in many phenomena. Therefore, random effects have become significant when modeling
different physical phenomena that take place in oceanography, physics, biology, meteorol-
ogy, environmental sciences, and so on. Equations that consider random fluctuations in
time are referred to as stochastic differential equations.

Recently, some studies on the approximation solutions of fractional differential equa-
tions with stochastic perturbations have been published, such as those of Taheri et al. [15],
Zou [16], Mohammed et al. [17,18], Mohammed [19], Kamrani [20], Li and Yang [21] and
Liu and Yan [22], while the exact solutions of stochastic fractional differential equations
have not been discussed until now.
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In this study, we take into account the following stochastic fractional-space Kuramoto–
Sivashinsky (S-FS-KS) equation in one dimension with multiplicative noise in the itô sense:

∂tu + ruDα
xu + pD2α

x u + qD4α
x u = ρu∂tβ, (1)

where r, p, and q are nonzero real constants, α is the order of the fractional space derivative,
ρ is the noise strength, and β(t) is the standard Gaussian process and it depends only on t.

The deterministic Kuramoto–Sivashinsky Equation (1) (i.e., ρ = 0) with α = 1 has been
studied by a number of authors to attain its exact solutions by different methods such as
the modified tanh-coth method [23], the tanh method and the extended tanh method [24],
homotopy analysis method [25], the (G′

G )-expansion method [26], perturbation method [27],
the Weiss–Tabor–Carnevale method [28], Painlevé expansion methods [29], the truncated
expansion method [30], the polynomial expansion method [31–37], among many others;
see also the references therein.

The motivation of this article is to find the exact solutions of the S-FS-KS (1) derived
from multiplicative noise by employing the (G′

G )-expansion method. The results presented
here improve and generalize earlier studies, such as those mentioned in [24]. It is also
discussed how multiplicative noise affects these solutions. To the best of our knowledge,
this is the first paper to establish the exact solution of the S-FS-KS (1).

In the next section, we define the order α of Jumarie’s derivative and we state some
significant properties of the modified Riemann–Liouville derivative. In Section 3, we obtain
the wave equation for the S-FS-KS Equation (1), while in Section 4 we have the exact
stochastic solutions of the S-FS-KS (1) by applying the (G′

G )-expansion method. In Section 5,
we show several graphical representations to demonstrate the effect of stochastic terms on
the obtained solutions of the S-FS-KS. Finally, the conclusions of this paper are presented.

2. Modified Riemann–Liouville Derivative and Properties

The order α of Jumarie’s derivative is defined by [38]:

Dα
x g(x) =

{
1

Γ(1−α)
d

dx

∫ x
0 (x− ζ)−α(g(ζ)− g(0))dζ, 0 < α < 1,

[g(n)(x)]α−n, n ≤ α ≤ n + 1, n ≥ 1,

where g :R→ R is a continuous function but not necessarily first-order differentiable and
Γ(.) is the Gamma function.

Now, let us state some significant properties of modified Riemann–Liouville derivative
as follows:

Dα
x xδ =

Γ(1 + δ)

Γ(1 + δ− α)
xδ−α, δ > 0,

Dα
x [ag(x)] = aDα

x g(x),

Dα
x [a f (x) + bg(x)] = aDα

x f (x) + bDα
x g(x),

and
Dα

x g(u(x)) = σx
dg
du

Dα
xu,

where σx is called the sigma indexes [39,40].

3. Wave Equation for S-FS-KS Equation

To obtain the wave equation for the SKS Equation (1), we apply the next wave trans-
formation

u(x, t) = ϕ(η)e(ρβ(t)− 1
2 ρ2t), η =

1
Γ(1 + α)

xα − ct, (2)

where ϕ is the deterministic function and c is the wave speed. By differentiating Equation (2)
with respect to x and t, we obtain
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ut = (−cϕ′ +
1
2

ρ2 ϕ− 1
2

ρ2 ϕ + ρϕβt)e(ρβ(t)− 1
2 ρ2t),

Dα
xu = σx ϕ′e[ρβ(t)−ρ2t], D2α

x u = σ2
x ϕ′′e[ρβ(t)−ρ2t]. (3)

D3α
x = σ3

x e(ρβ(t)− 1
2 ρ2t), D4α

x = σ4
x e(ρβ(t)− 1

2 ρ2t),

where + 1
2 ρ2 ϕ is the Itô correction term. Now, substituting Equation (3) into Equation (1),

we obtain
− cϕ′ + r̃ϕϕ′e(ρβ(t)− 1

2 ρ2t) + p̃ϕ′′ + q̃ϕ′′′′ = 0, (4)

where we put r̃ = σxr, p̃ = σ2
x p and q̃ = σ4

x q. Taking the expectation on both sides and
considering that ϕ is deterministic function, we have

− cϕ′ + r̃ϕϕ′e−
1
2 ρ2tE(eρβ(t)) + p̃ϕ′′ + q̃ϕ′′′′ = 0. (5)

Since β(t) is standard Gaussian random variable, then for any real constant ρ we have

E(eρβ(t)) = e
ρ2
2 t. Now, Equation (5) has the form

− cϕ′ + r̃ϕϕ′ + p̃ϕ′′ + q̃ϕ′′′′ = 0. (6)

Integrating Equation (6) once in terms of η yields

q̃ϕ′′′ + p̃ϕ′ +
r̃
2

ϕ2 − cϕ = 0, (7)

where we set the constant of integration as equal to zero.

4. The Exact Solutions of the S-FS-KS Equation

Here, we apply the G′
G -expansion method [41] in order to find the solutions of

Equation (7). As a result, we have the exact solutions of the S-FS-KS (1). First, we suppose
the solution of the S-FS-KS equation, Equation (7), has the form

ϕ =
M

∑
k=0

bk[
G′

G
]k, (8)

where b0, b1, ..., bM are uncertain constants that must be calculated later, and G solves

G′′ + λG′ + µG = 0, (9)

where λ, µ are unknown constants. Let us now calculate the parameter M by balancing ϕ2

with ϕ′′′ in Equation (7) as follows

2M = M + 3;

hence
M = 3. (10)

From (10), we can rewrite Equation (8) as

ϕ = b0 + b1[
G′

G
] + b2[

G′

G
]2 + b3[

G′

G
]3. (11)

Putting Equation (11) into Equation (7) and utilizing Equation (9), we obtain a polyno-
mial with degree 6 of G′

G as follows



Mathematics 2021, 9, 2712 4 of 10

(
1
2

r̃b2
3 − 60q̃b3)[

G′

G
]6 + (−24q̃b2 + r̃b2b3 − 144q̃λb3)[

G′

G
]5

+(
1
2

r̃b2
2 − 3p̃b3 − 6q̃b1 + r̃b1b3 − 111q̃λ2b3 − 114q̃µb3 − 54q̃λb2)[

G′

G
]4

+(−cb3 + 2p̃b2 + r̃b0b3 + r̃b1b2 − 3p̃λb3 − 38q̃λ2b2 − 40q̃µb2 − 27λ3b3

−12q̃λb1 − 168q̃λµb3)[
G′

G
]3 + (−cb2 +

1
2

r̃b2
1 − p̃b1 + r̃b0b2 − 2p̃λb2

−3p̃µb3 − 7q̃λ2b1 − 8q̃µb1 − 8q̃λ3b2 − 52q̃λµb2 − 60q̃µ2b3

−57q̃λ2µb3)[
G′

G
]2 + (−cb1 + r̃b0b1 − p̃λb1 − 2p̃µb2 − q̃λ3b1

−16q̃µ2b2 − 8q̃λµb1 − 14q̃λ2µb2 − 36q̃µ2λb3)[
G′

G
]+

(−cb0 +
1
2

r̃b2
0 − p̃µb1 − q̃λ2µb1 − 6q̃µ2λb2 − 2q̃µ2b1 − 6q̃µ3b3) = 0.

By equating each coefficient of [G′
G ]i (i = 6, 5, 4, 3, 2, 1, 0) to zero, we have a system of

algebraic equations. By solving this system by using Maple, we obtain two cases:
First case:

b0 = ±30p̃
19r̃

√
− p̃
19q̃

, b1 =
90p̃
19r̃

, b2 = 0, b3 =
120q̃

r̃
,

c = ±30p̃
19

√
− p̃
19q̃

, λ = 0, µ =
p̃

76q̃
, if

p̃
q̃
< 0. (12)

In this situation, the solution of Equation (7) is

ϕ(η) = b0 + b1[
G′

G
] + b3[

G′

G
]3. (13)

By solving Equation (9) with λ = 0, µ = p̃
76q̃ if p̃

q̃ < 0, we obtain

G(η) = c1 exp(

√
− p̃
76q̃

η) + c2 exp(−
√
− p̃
76q̃

η), (14)

where c1 and c2 are constants. Putting Equation (14) into Equation (13), we have

ϕ(η) = ±30p̃
19r̃

√
− p̃
19q̃

+
90p̃
19r̃

√
− p̃
76q̃

[
c1 exp(

√
− p̃
76q̃ η)− c2 exp(−

√
− p̃
76q̃ η)

c1 exp(
√
− p̃
76q̃ η) + c2 exp(−

√
− p̃
76q̃ η)

]

+
120q̃

r̃
(

√
− p̃
76q̃

)3[
c1 exp(

√
− p̃
76q̃ η)− c2 exp(−

√
− p̃
76q̃ η)

c1 exp(
√
− p̃
76q̃ η) + c2 exp(−

√
− p̃
76q̃ η)

]3.

Hence, the exact solution in this case of the S-FS-KS (1), by using (2), has the form

u1(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃h̄

19r̃

+
90p̃h̄
19r̃

[
c1 exp(h̄( 1

Γ(1+α)
xα − ct))− c2 exp(−h̄( 1

Γ(1+α)
xα − ct))

c1 exp(h̄( 1
Γ(1+α)

xα − ct)) + c2 exp(−h̄( 1
Γ(1+α)

xα − ct))
]

+
120q̃h̄3

r̃
[
c1 exp( h̄

Γ(1+α)
xα − ch̄t)− c2 exp(−h̄( 1

Γ(1+α)
xα − ct))

c1 exp( h̄
Γ(1+α)

xα − ch̄t) + c2 exp(−h̄( 1
Γ(1+α)

xα − ct))
]3}, (15)
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where c = ± 30p̃
19

√
− p̃
19q̃ , h̄ =

√
− p̃
76q̃ and p̃

q̃ < 0.
Second case:

b0 = ±30p̃
19r̃

√
11
19q̃

, b1 =
−270p̃

19r̃
, b2 = 0, b3 =

120q̃
r̃

,

c = ±30p̃
19

√
11p̃
19q̃

, λ = 0, µ =
−11p̃
76q̃

, if
p̃
q̃
> 0. (16)

In this situation, the solution of Equation (7) is

ϕ(η) = b0 + b1[
G′

G
] + b3[

G′

G
]3. (17)

Solving Equation (9) with λ = 0, µ = −11p
76q̃ , if p̃

q̃ > 0, we obtain

G(η) = c1 exp(

√
11p̃
76q̃

η) + c2 exp(−
√

11p̃
76q̃

η). (18)

Substituting Equation (14) into Equation (13), we have

ϕ(η) = ±30p̃
19r̃

√
11p̃
19q̃
− 270p̃

19r̃

√
11p̃
76q̃

[
c1 exp(

√
11p̃
76q̃ η)− c2 exp(−

√
11p̃
76q̃ η)

c1 exp(
√

11p̃
76q̃ η) + c2 exp(−

√
11p̃
76q̃ η)

]

+
120q̃

r̃
(

√
11p̃
76q̃

)3[
c1 exp(

√
11p̃
76q̃ η)− c2 exp(−

√
11p̃
76q̃ η)

c1 exp(
√

11p̃
76q̃ η) + c2 exp(−

√
11p̃
76q̃ η)

]3.

Therefore, by using (2), the exact solution in this case of the S-FS-KS (1) has the form

u2(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃

19r̃

√
11p̃
19q̃

−270p̃}
19r̃

[
c1 exp(}( xα

Γ(1+α)
− ct))− c2 exp(−}( xα

Γ(1+α)
− ct))

c1 exp(
√

11p̃
76q̃ (

1
Γ(1+α)

xα − ct)) + c2 exp(−}( xα

Γ(1+α)
− ct))

]

+
120q̃}3

r̃
[
c1 exp(}( xα

Γ(1+α)
− ct))− c2 exp(−}( xα

Γ(1+α)
− ct))

c1 exp(}( xα

Γ(1+α)
− ct)) + c2 exp(−}( xα

Γ(1+α)
− ct))

]3}, (19)

where c = ± 30p̃
19

√
11p̃
19q̃ , } =

√
11p̃
76q̃ and p̃

q̃ > 0.
Special Cases:
Case 1: If we choose c1 = c2 = 1, then Equations (15) and (19) become

u1(x, t) = e(ρβ(t)− 1
2 ρ2t)[±30p̃

19r̃

√
− p̃
19q̃

+
90p̃h̄
19r̃

tanh(h̄(
xα

Γ(1 + α)
− ct))

+
120q̃h̄3

r̃
tanh3(h̄(

xα

Γ(1 + α)
− ct))], (20)
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where c = ± 30p̃
19

√
− p̃
19q̃ , h̄ =

√
− p̃
76q̃ and p̃

q̃ < 0, and

u2(x, t) = e(ρβ(t)− 1
2 ρ2t)[±30p̃

19r̃

√
11p̃
19q̃
− 270p̃}

19r̃
tanh(

}xα

Γ(1 + α)
− c}t)

+
120q̃

r̃
}3 tanh3(

}xα

Γ(1 + α)
− c}t)], (21)

where c = ± 30p̃
19

√
11p̃
19q̃ , } =

√
11p̃
76q̃ and p̃

q̃ > 0.
Case 2: If we choose c1 = 1 and c2 = −1, then Equations (15) and (19) become

u1(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p

19r̃

√
− p̃
19q̃

+
90p̃h̄
19r̃

coth(
h̄xα

Γ(1 + α)
− ch̄t)

+
120q̃h̄3

r̃
coth3(

h̄xα

Γ(1 + α)
− ch̄t))}, (22)

where c = ± 30p̃
19

√
− p̃
19q̃ , h̄ =

√
− p̃
76q̃ and p̃

q̃ < 0, and

u2(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃

19r̃
}− 270p̃}

19r̃
coth(

}xα

Γ(1 + α)
− c}t)

+
120q̃}3

r̃
coth3(

}xα

Γ(1 + α)
− c}t)}, (23)

where c = ± 30p̃
19

√
11p̃
19q̃ , } =

√
11p̃
76q̃ and p̃

q̃ > 0.

Remark 1. If we put ρ = 0 (i.e., Equation (1) without noise) and α = 1 in Equations (20)–(23),
then we obtain the same results stated in [24].

5. The Influence of Noise on the S-FS-KS Solutions

Here, we discuss the influence of stochastic term on the exact solutions of the S-FS-KS
Equation (1) and fix the parameters r̃ = p̃ = q̃ = 1. We present a number of simulations for
different values of ρ (noise intensity). We utilize the MATLAB program to plot the solution
u2(t, x) defined in Equation (21) for t ∈ [0, 5] and x ∈ [0, 6] as follows:

In Figures 1–3, as seen in the first graph in each figure , the surface becomes less flat
when the noise intensity is equal to zero. However, when noise appears and the strength of
the noise grows (ρ = 1, 2, 3), we notice that the surface becomes more planar after minor
transit behaviors. This indicates that the solutions are stable due to the multiplicative
noise effects.
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ρ = 0, α = 1 ρ = 0.5, α = 1

ρ = 1, α = 1 ρ = 2, α = 1

Figure 1. Graph of solution u2 in Equation (21) with α = 1.

ρ = 0, α = 0.5 ρ = 0.5, α = 0.5

ρ = 1, α = 0.5 ρ = 2, α = 0.5

Figure 2. Graph of solution u2 in Equation (21) with α = 0.5.
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ρ = 0, α = 0.2 ρ = 0.5, α = 0.2

ρ = 1, α = 0.2 ρ = 2, α = 0.2

Figure 3. Graph of solution u2 in Equation (21) with α = 0.2.

6. Conclusions

In this paper, we presented different exact solutions of the stochastic fractional-space
Kuramoto–Sivashinsky equation, Equation (1), forced by multiplicative noise. Moreover,
several results were extended and improved such as those described in [24]. These types of
solutions can be utilized to explain a variety of fascinating and complex physical phenom-
ena. Finally, we used the MATLAB program to generate some graphical representations to
show the effect of the stochastic term on the solutions of the S-FS-KS (1). In this paper, we
considered the multiplicative noise and fractional space. In future work, we can consider
the additive noise and fractional time.
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