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Abstract: With deterministic differential equations, we can understand the dynamics of tumor-
immune interactions. Cancer-immune interactions can, however, be greatly disrupted by random
factors, such as physiological rhythms, environmental factors, and cell-to-cell communication. The
present study introduces a stochastic differential model in infectious diseases and immunology of the
dynamics of a tumor-immune system with random noise. Stationary ergodic distribution of positive
solutions to the system is investigated in which the solution fluctuates around the equilibrium of
the deterministic case and causes the disease to persist stochastically. In some conditions, it may be
possible to attain infection-free status, where diseases die out exponentially with a probability of one.
Some numerical simulations are conducted with the Euler–Maruyama scheme in order to verify the
results. White noise intensity is a key factor in treating infectious diseases.

Keywords: infectious diseases; cancer-immune system; steady states; random noise; stochastic
differential equations

1. Introduction

A cancerous tumor grows with abnormal hormones, causing it to spread throughout
the body and potentially spread to other organs or parts of the body. An initial stage
is called a tumor, which does not spread. The highest death rate among all diseases
worldwide is cancer because of such risk factors as drinking alcohol, smoking, being
overweight, physical inactivity, irregular reproductive patterns, an unhealthy lifestyle,
monetary development and urbanization. Tumor cells develop and grow in three stages:
first, they escape the immune system; then, they reduce the extracellular matrix; and
finally, they help blood vessels survive in their tissue by suppressing the extracellular
matrix [1]. Cancer can be treated with a variety of methods, such as chemotherapy [2],
radiotherapy [3], surgery or hormone therapy [4] to inhibit and eradicate tumor cell growth.
Rihan et al. [5,6] explained the stability, optimal control and bifurcation results of the
tumor-immune system with the interaction between tumor cells, natural killer cells and
cytotoxic T cells, with time delays and the Michaelis–Menten functional response. The
author in [7] discusses multiple delays effect on the interaction between brain tumors and
immune components in conjunction with T11 (CD2) target administration as well as the
conditions for the local stability of steady states, bifurcation results, and the maximum
delay to keep limit cycles stable. Many other researchers have investigated tumor-immune
models to understand how the immune system works and examine how immune cells
eliminate tumors in different ways [8,9].

Recent studies incorporated different random noises into deterministic tumor-immune
models in order to discuss the dynamical behaviors of the corresponding stochastic models
(see [10,11]). Basically, the environmental fluctuations stimulate mainly the intrinsic growth
rate of host, tumor cells and death rate of effector cells. Moreover, the modeling of such
phenomena, stochastic differential equations (SDEs), are more suitable than deterministic
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models, which offer a more reasonable representation for discussing the long-term kinetics
of cell population. Liu et al. [12] studied the dynamical behaviors of tumor-immune
responses under chemotherapy treatment; deterministic and stochastic differential equation
models were constructed to characterize the dynamical changes in tumor and immune cells.
The deterministic model was extended to the stochastic differential equations (SDEs) model
and the continuous-time Markov chain (CTMC) model, which accounts for the variability
in cellular reproduction, interspecific competition, growth, death, immune response, and
chemotherapy. Yang et al. [13] derived the global positive solution and qualitative
behaviors of the tumor-immune model with the combination of pulsed immunotherapy,
pulsed chemotherapy and white noise effect. Das et al. [14] investigated the deterministic
and stochastic modeling of the tumor-immune system under Michaelis–Menten kinetics
and also studied the stochastic permanence, global attractivity and weak persistence in
mean. The authors in [15] discussed the threshold condition about immune strength for
survival, extinction and weak persistence results of a stochastic tumor-immune system.

In this paper, white noise is incorporated into an existing deterministic tumor-immune
model to analyze the dynamics of the system. The presence and uniqueness of the global
non-negative solution of the stochastic tumor-immune model with a Holling type III
functional response is investigated. Using a stochastic Lyapunov function combined with
Ito’s formula, we provide a sufficient condition for determining the existing results of
stationary distribution, weak persistence, and extinction of tumor cells. The rest of this
paper is organized as follows: In Section 2, we formulate the tumor-immune model and
study the existence of global positive solution. The stationary distribution and extinction
results of this model are derived in Sections 3 and 4. Some numerical simulations are given
in Section 5 to verify the obtained theoretical results. Section 6 contains the conclusion.

2. Stochastic Model for Tumor-Immune Interaction

It worth mentioning here that deterministic models are assumed for tumor-immune
interactions; however, there is increasing evidence that better consistency with some
phenomena can be provided if the effects of random processes in the system are taken into
account. One of the important facts about the impact of the environmental noise is that it
can suppress a potential population explosion [16–18].

The interaction between cancer and the immune system (IS) has been investigated by
many authors using deterministic mathematical models (see [19–25]). The challenge is to
obtain the known biological features without making the mathematics too complex. We
include here the following features: The immune system is a multifunctional multipathway.
We, therefore, use two immune effectors. The cross-reactivity of the immune system is also
taken into account. The model is given by the following:

Ṫ(t) = aT − r1TE1 − r2TE2,

Ė1(t) = −d1E1 +
T2E1

T2 + k1
,

Ė2(t) = −d2E2 +
T2E2

T2 + k2
,

(1)

where T ≡ T(t) is the tumor cells; E1 ≡ E1(t), E2 ≡ E2(t) are immune effectors with initial
values of T(0) > 0, E1(0) > 0, E2(0) > 0; a is the growth rate of T(t); d1 and d2 are the
decay rate of E1(t) and E2(t), respectively; k1, k2 represent the half saturation parameters;
and r1 and r2 are the suppress rate of T(t) due to presence of E1(t) and E2(t), respectively.
All the above parameters are positive constants. The interaction terms in the second and
third equations of system (1) satisfy the cross reactivity property of the immune system.

Lemma 1. The solution of model (1) with non-negative initial values is non-negative.
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Proof. The right hand sides of model (1) are continuous functions of dependent variables,
and we can easily obtain the following:

T(t) = T(0)exp
( ∫ t

0

[
a− r1E1(s)− r2E2(s)

]
ds
)

,

E1(t) = E1(0)exp
( ∫ t

0

[
− d1 +

T2(s)
T2(s) + k1

]
ds
)

,

E2(t) = E2(0)exp
( ∫ t

0

[
− d2 +

T2(s)
T2(s) + k2

]
ds
)

.

Therefore, it is clear from the above expressions that T(t), E1(t) and E2(t) remain
positive for all t > 0 if they initiate from an interior point of the following:

R3
+ = {T(t), E1(t), E2(t) : T(t) > 0, E1(t) > 0, E2(t) > 0}.

Thus, R3
+ is positively invariant for (1).

The steady states of the system (1) are the following:

(0, 0, 0); (
√

d1k1/(1− d1), a/r1, 0); (
√

d2k2/(1− d2), 0, a/r2). (2)

We assume that in order to avoid the non-biological interior solution in which both
immune effectors coexist, we have the following:

(d1k1/(1− d1)) << (d2k2/(1− d2)). (3)

According to the size of the tumor, the first steady state is naive, the second is memory,
and the third is endemic. Analyzing the stability of naive state shows that they are unstable.
Locally, the memory state is asymptotically stable if the following holds:

d1 < 1, and d1 < d2. (4)

As long as the endemic state remains locally stable, the following holds:

d2 < 1, and d2 < d1. (5)

Hence, we arrive at the following propositions:

Proposition 1. When (4) is satisfied, then the memory state is asymptotically stable on the local
level. Therefore, there is a bifurcation when d1 = 1.

Growing and interacting cancer cells differ depending on the cell properties, the
immune system’s functioning, and the environment where the interaction occurs [26].
An individual’s overall health determines the environment in which the body operates.
In order to discuss the impact of body environmental factors on the dynamics of cancer
infection, we could extend the deterministic description of the tumor-immune interaction
to include stochastic forcing, either additively or multiplicatively. Several researchers have
studied mathematical models for studying epidemics in environmental noise, such as [27].

Some authors have introduced randomness into deterministic models to demonstrate
the influence of environmental variation on biological systems by taking this into consider-
ation; see [28,29]. For more realistic situation of the development process of the disease, we
incorporate the effect of randomization within host by introducing nonlinear perturbation
on the natural death rate with white noise into each equation of model (1). The parameters
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associated with the tumor-immune system are not certain, but the interval to which it
belongs can easily be determined. We therefore suggest the following stochastic model:

dT(t) = (aT − r1TE1 − r2TE2)dt + σ1T(t)dW1(t),

dE1(t) = (−d1E1 +
T2E1

T2 + k1
)dt + σ2E1(t)dW2(t),

dE2(t) = (−d2E2 +
T2E2

T2 + k2
)dt + σ3E2(t)dW3(t),

(6)

where σ2
1 , σ2

2 , σ2
3 are intensities of the environmental white noises. W1(t), W2(t), W3(t) are

mutually independent standard Brownian motions with Wi(0) = 0 (i = 1, 2, 3). We define
the basic concepts of probability theory and SDEs. Let (Ω,F, {Ft}t≥0, P) be complete
probability space with filtration {Ft}t≥0 satisfying the usual conditions. See more details
about Ito’s formula (see [16,30,31]).

Let y(t) be a regular time-homogeneous Markov process in Rn defined by SDE:

dy(t) = f (y(t))dt + g(y(t))dW(t). (7)

The diffusion matrix of the process y(t) is described as A(y) = (bij(y)), bij(y) =

gi(y)gj(y).

Lemma 2 (Ref. [32]). The Markov process y(t) has a unique ergodic stationary distribution π(·) if
there exists a bounded open domainD ⊂ Rn with regular boundary Γ, having the following properties:

i. The diffusion matrix A(y) is strictly positive definite for all y ∈ D.

ii. There exists a non-negative C2− function V such that LV is negative for any Rn \ D.

Theorem 1. Model (6) has a unique positive solution (T(t), E1(t), E2(t)) on t ≥ 0 with
(T(0), E1(0), E2(0)) ∈ R3

+, and the solution remains in R3
+ with probability 1.

Proof. Basically, the coefficients of system (6) satisfy the local Lipschitz condition. Then,
(6) has a unique local solution (T(t), E1(t), E2(t)) on [0, τe], where τe is an exposure time.
Then, we prove that τe = +∞. Let us follow the similar proof of Theorem 3.1 in [16].
The major step is to describe a non-negative C2 function V : R3

+ → R+ such that
limh→∞,(T,E1,E2)∈R3

+\Dh
inf V(T, E1, E2) = +∞, and LV(T, E1, E2) ≤ K, where Dh =

( 1
h , h)× ( 1

h , h)× ( 1
h , h), and K is a non-negative constant. Define a function V : R3

+ → R+

as follows

V(T, E1, E2) = (T − 1− lnT) + (E1 − 1− lnE1) + (E2 − 1− lnE2).

The non-negativity of this function can be seen from ς − 1− lnς ≥ 0, ∀ς > 0. By
applying the Ito’s formula, we can obtain the following:

dV(T, E1, E2) =LV(T, E1, E2)dt + σ1(T − 1)dW1(t)

+ σ2(E1 − 1)dW2(t) + σ3(E2 − 1)dW3(t),

LV(T, E1, E2) =(1− 1
T
)(aT − r1TE1 − r2TE2) + (1− 1

E1
)(−d1E1 +

T2E1

T2 + k1
)

+ (1− 1
E2

)(−d2E2 +
T2E2

T2 + k2
) +

σ2
1 + σ2

2 + σ2
3

2
,

≤aT + r1E1 + r2E2 + T2(E1 + E2) + d1 + d2 +
σ2

1 + σ2
2 + σ2

3
2

,

Applying the superior of the co-efficient of above inequality and using the positiveness
of T, E1 and E2, there exists a positive constant K such that LV ≤ K. The rest of the proof
follows that of [16,31] and hence, it is omitted.
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3. Existence of Ergodic Stationary Distribution

Here, we discuss the stationary distribution and extinction results for model (6), which
helps to identify whether the disease is persistent or can be eradicated.

Theorem 2. If d− σ2
1∨σ2

2∨σ2
3

2 > 0, then model (6) has a unique ergodic stationary distribution for
any (T(0), E1(0), E2(0)) ∈ R3

+.

Proof. The diffusion matrix of (6) is calculated as follows:

A =

 σ2
1 T2 0 0
0 σ2

2 E2
1 0

0 0 σ2
3 E2

2

,

which is positive definite for any compact subset of R3
+. Condition (i) in Lemma 2

is verified.
Define the C2− function V : R3

+ → R as follows:

V(T, E1, E2) = −lnT − lnE1 − lnE2 + T−θ + E−θ
1 +

1
ϑ + 1

(T + E1 + E2)
ϑ+1,

= V1 + V2 + V3.

Further, V(T, E1, E2) is not only continuous, but also goes to +∞, as (T, E1, E2) tends to
the boundary ofR3

+ and ‖(T, E1, E2)‖ → ∞. V must have a minimum point (T(0), E1(0), E2(0))
in the interior of R3

+. Define a C2−function Ṽ : R3
+ → R+ as

Ṽ(T, E1, E2) = V(T, E1, E2)−V(T(0), E1(0), E2(0)).

Let V1 = −lnT − lnE1 − lnE2, V2 = T−θ + E−θ
1 , V3 = 1

ϑ+1 (T + E1 + E2)
ϑ+1, θ > 0,

d = max{d1, d2} and constant ϑ > 1 satisfies d− ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 ) > 0, and the following:

M1 = sup
(T,E1,E2)∈R3

+

{
((a + d)T + (E1 + E2)T2)(T + E1 + E2)

ϑ − 1
2
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]

× (Tϑ+1 + Eϑ+1
1 + Eϑ+1

2 )
}
< ∞,

M2 = sup
(T,E1,E2)∈R3

+

{
θT−θr1E1 + M1 −

1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )](T
ϑ+1 + Eϑ+1

1 + Eϑ+1
2 )

+ θE−θ
1 (d1 +

(θ + 1)
2

σ2
2 ) + r1E1 + r2E2 + H

}
.

Applying Ito’s formula L on the functions V1, V2 and V3 give the following:

LV1 ≤ r1E1 + r2E2 + d1 + d2 +
σ2

1 + σ2
2 + σ2

3
2

, (8)

LV2 ≤ −θT−θ(a− r1E1 − r2E2) +
θ(θ+1)

2 σ2
1 T−θ − θE−θ

1 (−d1 +
T2

T2+k1
) + θ(θ+1)

2 σ2
2 E−θ

1 ,

≤ −θT−θ(a− (θ+1)
2 σ2

1 )− θE−θ
1 T2 + θT−θ(r1E1 + r2E2) + θE−θ

1 (d1 +
(θ+1)

2 σ2
2 ),

(9)
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LV3 ≤ (T + E1 + E2)
ϑ
{
(a + d)T + (E1 + E2)T2 − d(T + E1 + E2)

}
+ ϑ

2 (T + E1 + E2)
ϑ−1

×[σ2
1 T2 + σ2

2 E2
1 + σ2

3 E2
2 ],

≤ (T + E1 + E2)
ϑ
{
(a + d)T + (E1 + E2)T2 − d(T + E1 + E2)

}
+ ϑ

2 (T + E1 + E2)
ϑ+1

×(σ2
1 ∨ σ2

2 ∨ σ2
3 ),

≤
{
(a + d)T + (E1 + E2)T2

}
(T + E1 + E2)

ϑ − (T + E1 + E2)
ϑ+1[d− ϑ

2 (σ
2
1 ∨ σ2

2 ∨ σ2
3 )],

≤ M1 − 1
2 [d−

ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1 + Eϑ+1
1 + Eϑ+1

2 ).

(10)

From Equations (8)–(10), we have the following:

LṼ ≤ −θT−θ(a− (θ+1)
2 σ2

1 )− θE−θ
1 T2 + θT−θ(r1E1 + r2E2) + θE−θ

1 (d1 +
(θ+1)

2 σ2
2 ) + r1E1

+r2E2 + d1 + d2 +
σ2

1+σ2
2+σ2

3
2 + M1 − 1

2 [d−
ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1 + Eϑ+1
1 + Eϑ+1

2 ),

≤ −θT−θ(a− (θ+1)
2 σ2

1 )− θE−θ
1 T2 + θT−θr2E2 − 1

4 [d−
ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1

+Eϑ+1
1 + Eϑ+1

2 ) + θT−θr1E1 + M1 − 1
4 [d−

ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1 + Eϑ+1
1 + Eϑ+1

2 )

+θE−θ
1 (d1 +

(θ+1)
2 σ2

2 ) + r1E1 + r2E2 + H.

Define a bounded closed set as follows:

D =
{
(T, E1, E2) ∈ R3

+ : ε ≤ T ≤ 1
ε

, ε2 ≤ E1 ≤
1
ε2 , ε2 ≤ E2 ≤

1
ε2

}
.

In the set R3
+ \ D, let us choose ε > 0 satisfies the following:

− θ

εθ
(a− (θ + 1)

2
σ2

1 ) + M2 ≤ −1, (11)

− θε2

ε2θ
+ M2 ≤ −1, (12)

0 < ε <
1
r2

, (13)

− 1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

εϑ+1 + M2 ≤ −1, (14)

− 1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

ε2(ϑ+1)
+ M2 ≤ −1, (15)

− 1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

ε2(ϑ+1)
+ M2 ≤ −1, (16)

where M2 = sup(T,E1,E2)∈R3
+

{
θT−θr1E1 + M1 − 1

4 [d −
ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1 + Eϑ+1
1 +

Eϑ+1
2 ) + θE−θ

1 (d1 +
(θ+1)

2 σ2
2 ) + r1E1 + r2E2 + H

}
and H = d1 + d2 +

σ2
1+σ2

2+σ2
3

2 .
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Let us prove condition (ii) of Lemma 2 to show that LṼ ≤ −1 for (T, E1, E2) ∈ R3
+ \D

and R3
+ \ D =

⋃6
i=1 Di, where the following holds:

D1 = {(T, E1, E2) ∈ R3
+; 0 < T < ε},

D2 = {(T, E1, E2) ∈ R3
+; 0 < E1 < ε2, T ≥ ε},

D3 = {(T, E1, E2) ∈ R3
+; 0 < E2 < ε2, E1 ≥ ε2, T ≥ ε},

D4 = {(T, E1, E2) ∈ R3
+; T >

1
ε
},

D5 = {(T, E1, E2) ∈ R3
+; E1 >

1
ε2 },

D6 = {(T, E1, E2) ∈ R3
+; E2 >

1
ε2 }.

Case (i) For (T, E1, E2) ∈ D1, we obtain the following:

LṼ ≤ −θT−θ(a− (θ+1)
2 σ2

1 ) + θT−θr1E1 + M1 − 1
4 [d−

ϑ
2 (σ

2
1 ∨ σ2

2 ∨ σ2
3 )](T

ϑ+1 + Eϑ+1
1 + Eϑ+1

2 )

+θE−θ
1 (d1 +

(θ+1)
2 σ2

2 ) + r1E1 + r2E2 + H,

≤ −θT−θ(a− (θ+1)
2 σ2

1 ) + M2,

≤ − θ
εθ (a− (θ+1)

2 σ2
1 ) + M2 ≤ −1,

which is obtained from (11).
Case (ii). For (T, E1, E2) ∈ D2, we have the following:

LṼ ≤ −θE−θ
1 T2 + M2,

≤ −θ
ε2

ε2θ
+ M2 ≤ −1,

which is obtained from (12).
Case (iii). For (T, E1, E2) ∈ D3, we have the following:

LṼ ≤ −θE−θ
1 T2 + r2E2 + M2,

≤ −θ
ε2

ε2θ
+ r2ε2 + M2 < −1,

which is obtained from (13) and −θ ε2

ε2θ + M2 ≤ −2.
Case (iv). For (T, E1, E2) ∈ D4, we have the following:

LṼ ≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]T
ϑ+1 + M2,

≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

ε(ϑ+1)
+ M2 ≤ −1,

which is obtained from (14).
Case (v). For (T, E1, E2) ∈ D5, we obtain the following:

LṼ ≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]E
ϑ+1
1 + M2,

≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

ε2(ϑ+1)
+ M2 ≤ −1,

which is obtained from (15).
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Case (vi). For (T, E1, E2) ∈ D6, it yields the following:

LṼ ≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]E
ϑ+1
2 + M2,

≤ −1
4
[d− ϑ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 )]
1

ε2(ϑ+1)
+ M2 ≤ −1,

which is obtained from (16).
Therefore, following the above discussion, there exists a ε > 0, such that LṼ(T, E1, E2) ≤

−1, for all (T, E1, E2) ∈ R3
+ \ D. Based on Lemma 2, the model (6) has unique ergodic

stationary distribution.

4. Extinction

Theorem 3. Let (T(t), E1(t), E2(t)) be the solution of (6) with (T(0), E1(0), E2(0)) ∈ R3
+. If

a <
σ2

1
2 , then the tumor cell T(t) populations will die out, i.e., limt→∞ T(t) = 0.

Proof. Applying Ito’s formula to the first equation of (6), one can obtain the following:

d(lnT(t)) = (a− r1E1 − r2E2 −
σ2

1
2
)dt + σ1dW1(t).

Taking integration from 0 to t on both sides and dividing by t, we have the following:

lnT(t)− lnT(0)
t

= a− r1

t

∫ t

0
E1(s)ds− r2

t

∫ t

0
E2(s)ds−

σ2
1

2
+

σ1W1(t)
t

,

≤ a−
σ2

1
2

+
σ1W1(t)

t
.

By using the strong law of large numbers for local martingales, limt→∞
W1(t)

t = 0, a.s

lim
t→∞

sup
lnT(t)

t
≤ a−

σ2
1

2
< 0,

Moreover, lim
t→∞

T(t) = 0.

Defining ln(E1(t) + E2(t)) and applying Ito’s formula, we obtain the following:

d(ln(E1(t) + E2(t))) = 1
E1(t)+E2(t)

{
− d1E1(t)− d2E2(t) +

T2(t)E1(t)
T2(t)+k1

++ T2(t)E2(t)
T2(t)+k2

}
dt

− σ2
2 E2

1(t)+σ2
3 E2

2(t)
2(E1(t)+E2(t))2 dt + σ2E1(t)

E1(t)+E2(t)
dW2(t) +

σ3E2(t)
E1(t)+E2(t)

dW3(t).

Based on limt→∞ T(t) = 0, there exists t1 > 0 such that T(t) < ε when t > t1 and
k = min{k1, k2} and d0 = min{d1, d2}.

d(ln(E1(t) + E2(t))) ≤
{1

k
− d0

}
dt +

σ2E1(t)
E1(t) + E2(t)

dW2(t) +
σ3E2(t)

E1(t) + E2(t)
dW3(t).

Let P1(t) =
∫ t

0
σ2E1(t)

E1(t)+E2(t)
dW2(s) and P2(t) =

∫ t
0

σ3E2(t)
E1(t)+E2(t)

dW3(s) be local martingales
with quadratic variations as follows:

< P1(t), P1(t) >t= σ2
2

∫ t

0

( E1(t)
E1(t) + E2(t)

)2ds ≤ σ2
2 t,

< P2(t), P2(t) >t= σ2
3

∫ t

0

( E2(t)
E1(t) + E2(t)

)2ds ≤ σ2
3 t.
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Using the strong law of large numbers for the local martingales, limt→∞
P1(t)

t = 0,

limt→∞
P2(t)

t = 0, a.s. Taking integration from 0 to t on both sides and dividing by t, we
have the following:

ln(E1(t) + E2(t))− ln(E1(0) + E2(0))
t

≤
{1

k
− d0

}
+

1
t

∫ t

0

σ2E1(s)
E1(s) + E2(s)

dW2(s)

+
1
t

∫ t

0

σ3E2(s)
E1(s) + E2(s)

dW3(s),

≤
{1

k
− d0

}
+

P1(t)
t

+
P2(t)

t
,

lim
t→∞

sup
ln(E1(t) + E2(t))

t
≤
{1

k
− d0

}
.

We arrive at the following remarks:

Remark 1. If a >
σ2

1
2 and

{
1
k − d0

}
< 0, we can obtain results, such as limt→∞ SupT(t) > 0,

limt→∞ E1(t) = 0 and limt→∞ E2(t) = 0. Clearly, the tumor cells T(t) are weakly persistent in
the mean a.s.

Remark 2. Theorem 2 shows that under small white noises, the tumor cell T(t) and effector cells
E1(t) and E2(t) distribution approaches to an invariant measure as t→ ∞. That is, the tumor cell
T(t) tends to a dormant steady state, stochastic in nature.

Remark 3. Theorem 3 shows that when the stochastic perturbation for tumor cells T(t) is strong
enough, the tumor goes to extinction, while the effector cells E1(t) and E2(t) distribution converges
to a steady state 1

k − d0. We can easily see that σ1 is a critical parameter to eradicate the tumor cells
T(t), and the effector cells E1(t) and E2(t) approach a steady state stochastic in nature.

5. Numerical Simulations

In this section, we use Euler–Maruyama method for solving SDEs discussed in detail
in Refs. [16,33], to obtain the discretization transformation of (6) as follows:

Tj+1 =Tj + [aTj − r1TjE1,j − r2TjE2,j]∆t + σ1Tj
√

∆tζ1,j,

E1,j+1 =E1,j + [−d1E1,j +
T2

j E1,j

T2
j + k1

]∆t + σ2E1,j
√

∆tζ2,j,

E2,j+1 =E2,j + [−d2E2,j +
T2

j E2,j

T2
j + k2

]∆t + σ3E2,j
√

∆tζ3,j,

(17)

where ∆t > 0 is the time increment, ζi,j, (i = 1, 2, 3) are independent Gaussian random
variables, which follow the distribution N(0, 1).

We assign the following parameter values: a = 1, r1 = 1, r2 = 1, k1 = 0.3, k2 = 0.7,
d1 = 0.3, d2 = 0.7.

The deterministic model (1), with long-range temporal memory has endemic steady
states, which are locally asymptotically stable, according to conditions (4) and (5): d1 =
0.3 < 1, d2 = 0.7 and d2 = 0.3 < 1, d1 = 0.7, respectively. Figures 1 and 2 show the
numerical simulations of the model with stable memory and endemic steady states. With
two cases of parameter values d1 = d2 = 0.92 < 1 and d1 = d2 = 1.02 > 1, the stability
and instability conditions of model (1) are presented in Figure 3.
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Figure 1. Left banner shows the numerical solutions of the deterministic model (1) when the
conditions given in (4) are satisfied (a = 1, r1 = r2 = 1, k1 = 0.3, k2 = 0.7, d1 = 0.3 < d2 = 0.7 and
d1 < 1). Right (top and bottom banners): the relation between the tumor cells and effector cells E1(t),
E2(t). The system converges to a stable steady state.
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Figure 2. Left banner displays the numerical simulations of the deterministic model (1) when the
conditions given in (5) are satisfied (a = 1, r1 = r2 = 1, k1 = 0.7, k2 = 0.3, d1 = 0.7 > d2 = 0.3 and
d2 < 1). Right (top and bottom banners): the relation between the tumor cells T(t) and effector cells
E1(t), E2(t). The endemic state is locally asymptotically stable.

0
200

400
600

800
1000

0

1

2

3
0

0.2

0.4

0.6

0.8

1

T(t)E
1
(t)

E
2
(t

)

0

1

2

3

4

x 10
38

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

T(t)E
1
(t)

E
2
(t

)

Figure 3. Shows the stability (left) of the solution of the deterministic system (1) when d1 = 0.92 =

d2 < 1 and instability (right) of the solution when d1 = d2 = 1.02 > 1.
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Now, we incorporate white noise in the model to show the dynamics of the stochastic
model (6). Initially, we consider the white noise values σ1 = 0.5, σ2 = 0.6, σ3 = 0.8, k1 = 0.3,
k2 = 0.7, d1 = 0.3, d2 = 0.7 (right banner of Figure 4) and k1 = 0.7, k2 = 0.3, d1 = 0.7,
d2 = 0.3 (left banner of Figure 4); the threshold conditions of unique stationary distribution

d− σ2
1∨σ2

2∨σ2
3

2 = 0.075 > 0 are satisfied. The left and right banners of Figure 4 show that the
tumor cells T(t), effector cells E1(t) and E2(t) fluctuate randomly. We then slightly increase
the white noise values: σ1 = 0.9, σ2 = 1.1, σ3 = 1.3, k1 = 0.3, k2 = 0.7, d1 = 0.3, d2 = 0.7
(right banner of Figure 5) and k1 = 0.7, k2 = 0.3, d1 = 0.7, d2 = 0.3 (left banner of Figure 5).

When the condition of weak persistence a − σ2
1
2 = 0.595 > 0 is satisfied, we can see in

the left and right banners of Figure 5 a weak persistence in the mean of T(t). Tumor cell
load T(t) gradually decreases and fluctuates in the neighborhood of zero, defining weak
persistence in the mean. The intensities of white noise can reduce the certain degree of
cancer cells and suppress tumor growth, but not completely eliminate the cancer cells.
Thus, the mutation and diffusion of tumor cells can be controlled by varying the strength
of noise.
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Figure 4. Shows time trajectories for tumor cells T(t), and effector cells E1(t), E2(t) of the stochastic
model (6) with k1 = 0.7, k2 = 0.3, d1 = 0.7, d2 = 0.3 (right banner) and k1 = 0.3, k2 = 0.7, d1 = 0.3,

d2 = 0.7 (left banner) and d− σ2
1∨σ2

2∨σ2
3

2 = 0.075 > 0. The threshold conditions of unique stationary
distribution is satisfied based on Theorem 2.

0 50 100 150 200
0

20

40

60

80

100

120

140

160

Time (t)

 T
(t

)

0 50 100 150 200
0

20

40

60

80

100

120

Time (t)

 T
(t

)

Figure 5. Shows time trajectories for tumor cell T(t) of the stochastic model (6) with k1 = 0.7, k2 =

0.3, d1 = 0.7, d2 = 0.3 (right banner) and k1 = 0.3, k2 = 0.7, d1 = 0.3, d2 = 0.7 (left banner) and

a− σ2
1

2 = 0.595 > 0. The weak persistence condition is satisfied under Remark 1.

By increasing the white noise values σ1 = 1.5, σ2 = 1.6, σ3 = 1.8, k1 = 0.3, k2 = 0.7, d1 =
0.3, d2 = 0.7 (right banner of Figure 6) and k1 = 0.7, k2 = 0.3, d1 = 0.7, d2 = 0.3 (left banner
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of Figure 6), the condition of extinction results in Theorem 3 a− σ2
1
2 = −0.125 < 0 is satisfied.

Figure 6 shows that the tumor cells T(t) can die out if the white noise value increases. This
serves as evidence that the intensity of environmental noise plays an important role to
accelerate tumor extinction.
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Figure 6. Shows time trajectories for tumor cells T(t) of the stochastic model (6) with k1 = 0.7,
k2 = 0.3, d1 = 0.7, d2 = 0.3 (right banner) and k1 = 0.3, k2 = 0.7, d1 = 0.3, d2 = 0.7 (left banner) and

a− σ2
1

2 = −0.125 < 0. The threshold conditions of extinction is verified based on Theorem 3. In it,
stochastic noise is shown to suppress the explosion of population T(t).

Remark 4. As compared to Figures 4–6, white noise perturbations on growth and destruction rates
promote the elimination of tumor cells T(t). However, increasing the white noise values alters the
intra-specific competition rate, which affects the persistence–extinction properties of tumor cells.

6. Conclusions

As enzymatic reactions of proteins are sensitive to environmental changes in the
bio-chemical system, in the present paper, we incorporated the noise effect into a tumor-
immune model with Holling type III response functions to discuss the fluctuations in cell
dynamics. We investigated the existence of global non-negative solutions to such a model.
We derived sufficient conditions for unique stationary distribution/stochastic persistence,
extinction, and weak persistence of tumor cells, using Ito’s formula and the Lyapunov
function. As a result of the stochastic tumor immune model, the following theoretical
conditions are obtained:

(i) If d− σ2
1∨σ2

2∨σ2
3

2 > 0, then the tumor cells T(t) are stochastic persistent and permanent
in the tissue a.s.

(ii) If a >
σ2

1
2 , then T(t) shows weak persistence/non-persistence in the mean a.s.

(iii) If a <
σ2

1
2 , then the tumor cells T(t) are eradicated/eliminated a.s.

The numerical simulations are verified based on these sufficient conditions. Further-
more, theoretical and numerical analyses show that the intensity of the noise effect is
a prominent factor in controlling and suppressing tumor cell growth in the presence of
immune effectors. Dynamical behavior in deterministic and stochastic tumor-immune
models is useful to an oncologist and treatment protocols. Treatment protocols can be
adapted to cancer patients with the help of environmental fluctuations for better outcomes
during public interventions.

Stochastic epidemic models with Markovian switching and time delays are the focus
of our future research.



Mathematics 2021, 9, 2707 13 of 14

Author Contributions: Data curation, C.R.; Formal analysis, F.A.R. and C.R.; Funding acquisition,
F.A.R.; Methodology, F.A.R.; Software, F.A.R. and C.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by UAE University, fund # 12S005-UPAR 2020.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the reviewers and editor for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mallet, D.G.; Pillis, L.G.D. A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 2006, 239, 334–350.
2. Nastoupil, L.J.; Rose, A.C.; Flowers, C.R. Diffuse large B-cell lymphoma: Current treatment approaches. Oncology 2012,

26, 488–495.
3. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci.

2012, 9, 193–202.
4. Puhalla, S.; Bhattacharya, S.; Davidson, N.E. Hormonal therapy in breast cancer: A model disease for the personalization of

cancer care. Mol. Oncol. 2012, 6, 222–236.
5. Rihan, F.A.; Velmurugan, G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos Solitons

Fractals 2020, 132, 109592.
6. Rihan, F.A.; Lakshmanan, S.; Maurer, H. Optimal Control of Tumour-Immune Model with Time-Delay and Immuno-

Chemotherapy. Appl. Math. Comput. 2019, 353, 147–165.
7. Khajanchia, S.; Banerjee, S. Influence of multiple delays in brain tumor and immune system interaction with T11 target structure

as a potent stimulator. Math. Biosci. 2018, 302, 116–130.
8. Adam, J.; Bellomo, N. A Survey of Models for Tumor-Immune System Dynamics; Springer: Berlin/Heidelberg, Germany, 2012.
9. Sharma, S.; Samanta, G. Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and

quadratic optimal control. Differ. Equ. Dyn. Syst. 2016, 24, 149–171.
10. Tuong, T.D.; Nguyen, N.N.; Yin, G. Longtime behavior of a class of stochastic tumor-immune systems. Syst. Control Lett. 2020,

146, 104806.
11. Wang, J.; Wang, H. Stochastic effects of the tumor-T cell immune model. Math. Meth. Appl. Sci. 2021, 44, 7228–7237.
12. Liu, X.; Li, Q.; Pan, J. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy.

Phys. A 2018, 500, 162–176.
13. Yang, H.; Tan, Y.; Yang, J.; Liu, Z. Extinction and persistence of a tumor-immune model with white noise and pulsed comprehen-

sive therapy. Math. Comput. Simul. 2021, 182, 456–470.
14. Das, P.D.; Mukherjee, S. Stochastic dynamics of Michaelis-Menten kinetics based tumor-immune interactions. Phys. A 2020,

541, 123603.
15. Li, D.; Cheng, F. Threshold for extinction and survival in stochastic tumor-immune system. Commun. Nonlinear Sci. Numer.

Simulat. 2017, 51, 1–12.
16. Mao, X. Stochastic Differential Equations and Their Applications; Horwood: Chichester, UK, 1997.
17. Mao, X.; Wei, F.; Wiriyakraikul, T. Positivity preserving truncated Euler–Maruyama Method for stochastic Lotka–Volterra

competition model. J. Comput. Appl. Math. 2021, 394, 113566.
18. Cai, S.; Cai, Y.; Mao, X. A stochastic differential equation SIS epidemic model with regime switching. Discret. Contin. Dyn. Syst. B

2021, 26, 4887.
19. Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer: Singapore, 2021. doi:10.1007/978-981-16-0626-7.
20. Kirschner, D.; Panetta, J. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 1998, 37, 23–52.
21. Anderson, A.; Maini, P. Mathematical Oncology. Bull. Math. Biol. 2018, 80, 945–953.
22. Chaplain, M. Multiscale mathematical modelling in biology and medicine. IMA J. Appl. Math. 2011, 76, 371–388.
23. de Pillis, L.; Radunskaya, A. A Mathematical Model of Immune Response to Tumor Invasion A2—Bathe KJ Computational Fluid and Solid

Mechanics; Elsevier: Amsterdam, The Netherlands, 2003.
24. de Pillis, L.; Radunskaya, A.; Wiseman, C. A Validated Mathematical Model of Cell-Mediated Immune Response to Tumor

Growth. Cancer Res. 2005, 65, 7950–958.
25. Rihan, F.; Abdelrahman, D.; Lakshmanan, S. A Time Delay Model of Tumour-Immune System Interactions: Global dynamics,

Parameter estimation, Sensitivity analysis. Appl. Math. Comput. 2014, 232, 606–623.
26. Luzyanina, T.; Bocharov, G. Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection. Math.

Comput. Simul. 2014, 96, 54–65.
27. Kiouach, D.; Sabbar, Y. Ergodic Stationary Distribution of a Stochastic Hepatitis B Epidemic Model with Interval-Valued

Parameters and Compensated Poisson Process. Comput. Math. Methods Med. 2020, 2020, 9676501.
28. Zhang, X.; Peng, H. Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching.

Appl. Math. Lett. 2020, 102, 106095.



Mathematics 2021, 9, 2707 14 of 14

29. Rihan, F.A.; Alsakaji, H.J.; Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. 2020,
2020, 1–20.

30. ksendal, B. Stochastic Differential Equations: An Introduction with Applications, 6th ed.; Springer: New York, NY, USA, 2003.
31. Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A. Dynamics of a stochastic tuberculosis model with antibiotic resistance. Chaos Solitons

Fractals 2018, 109, 223–230.
32. Hasminskii, R.Z. Stochastic Stability of Differential Equations; Springer Science & Business Media: Alphen aan den Rijn, The

Netherlands; p. 1980.
33. Higham, D.J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001,

43, 525–546.


	Introduction
	Stochastic Model for Tumor-Immune Interaction
	Existence of Ergodic Stationary Distribution
	Extinction
	Numerical Simulations
	Conclusions
	References

