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Abstract: In this paper, statistical inference and prediction issue of left truncated and right censored
dependent competing risk data are studied. When the latent lifetime is distributed by Marshall–Olkin
bivariate Rayleigh distribution, the maximum likelihood estimates of unknown parameters are
established, and corresponding approximate confidence intervals are also constructed by using a
Fisher information matrix and asymptotic approximate theory. Furthermore, Bayesian estimates and
associated high posterior density credible intervals of unknown parameters are provided based on
general flexible priors. In addition, when there is an order restriction between unknown parameters,
the point and interval estimates based on classical and Bayesian frameworks are discussed too.
Besides, the prediction issue of a censored sample is addressed based on both likelihood and Bayesian
methods. Finally, extensive simulation studies are conducted to investigate the performance of the
proposed methods, and two real-life examples are presented for illustration purposes.

Keywords: left truncated and right censored; dependent competing risk model; Bayesian estimates;
order restriction; prediction

1. Introduction

In lifetime data analysis, due to the complex internal structure and external environ-
ment, units frequently fail for a variety of causes, such failure causes are called competing
risks in the literature and compete with each other in the whole life cycle. In standard
sketches, the observed competing risks data of each unit is the earliest occurrence among
all the causes, and the data includes the lifetime as well as the cause indicator. Under
conventional studies, discussions for the competing risks model are usually made based on
the assumption that all causes of failure are independent for the purpose of simplicity and
concision. Such independent based competing risks models have been discussed by many
authors, for example, some works of Mao and Shi [1], Varghese and Vaidyanathan [2],
Davies and Volterman [3], Lodhi et al. [4], and Ren and Gui [5]. For more details, one
can refer to the monographs by Crowder [6] for review. However, according to the actual
operating mechanism of living products, the assumption of independence is often unten-
able in practice. For example, in the study of colon cancer, the factors of failure are cancer
recurrence or death, and Lin et al. [7] mentioned that these two factors are dependent.
For a plane with four engines, if one of the engines breaks down, the other engines will
bear more pressure and have a greater possibility of failure. Thus, the plane has a higher
risk of breaking down. It can be found that as the causes of plane failure, these engines
are positively dependent. In addition, the dependent competing risks also exist in the
diabetic retinopathy study that was carried out by the National Eye Institute. This study
aimed to discuss the effect of laser treatment in delaying the onset of blindness in patients
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with diabetic retinopathy. For each patient in this study, one eye was chosen for laser
treatment and the other was not. The final observed data includes the minimum time to
blindness and indicator pointing the treated or other eye failed first. Besides, the study
also recorded the associated data on simultaneous blindness of both eyes. Obviously, there
is some connection between the lifetimes of two eyes for each patient in this situation.
Hence, it is more appropriate to utilize a dependent competing risks model to describe
the relationship between all failure causes. In general, the dependent competing risks
model could be used to provide more accurate inferential results than the independent one.
When two dependent failure causes of an individual exist, the Marshall–Olkin bivariate
type model may provide better fitting for dependent competing risk data. In literature,
the Marshall–Olkin bivariate exponential (MOBE) distribution was firstly proposed by
Marshall and Olkin [8] due to its nice distributional properties and concise form, and
some other Marshall–Olkin bivariate type distributions have also been further extended
and studied by many authors. For instance, Feizjavdian and Hashemi [9] investigated
Diabetic retinopathy data by using Marshall–Olkin bivariate Weibull distribution (MOBW).
Bayesian analysis of dependent competing risks model utilizing Marshall–Olkin bivariate
Pareto (MOBP) distribution was considered by Paul et al. [10]. Shen and Xu [11] studied the
parameter estimation of MOBW distribution based on different methods. Wang et al. [12]
considered the statistical inference of the dependent competing risks model by using the
MOBW distribution.

Observations collected in practice often appear as censored data and/or truncated data
due to complex practical limitations. When both truncation and censoring phenomenon
occur, such observations are called truncated and censored data in literature, and the left
truncated and right censored (LTRC) data is one of the most important characteristics
among them. This type of data is very common in many application fields such as eco-
nomics, medicine, engineering, biology, among others. For left truncation, it means that
only after a certain time point, the failure of a product occurs and is observed; whereas
right censoring means that a product fails after a certain time point, but its specific failure
time cannot be observed. In recent years, the inferential studies for LTRC data has been
discussed by many researchers (e.g., Shen [13], Zhao et al. [14] and Ranjan et al. [15]). Es-
pecially, there is successful application of LTRC data from the real-life example introduced
by Hong et al. [16], where the mentioned data set is about the lifetimes of approximately
150,000 high-voltage power transformers in the electrical industry of the US. These power
transformers were installed at different time points, and their working status began to
be recorded after 1980 but the recording work stopped after 2008. Obviously, the power
transformers data could be viewed as LTRC data. If a power transformer was installed
before 1980 and failed afore 1980, then its information would be unobserved. If it was
installed before 1980 but failed after 1980, then its information could be available and it
was regarded as left truncated data. Further, if a transformer failed after 2008 and the
real failure time could not be obtained, then it would be recorded as right censored data.
Therefore, due to its widely applications in practice, analysis work for LTRC data has been
extensively discussed by many authors. For example, Emura and Shiu [17] studied the
estimation of unknown parameters and model selection for LTRC data. Jiang et al. [18]
developed a nonparametric likelihood-based estimation procedure by using B-splines.
Kundu et al. [19] provided the Bayesian inference for the unknown parameters of MOBW
distribution when LTRC competing risk model is available with independent causes.

Motivated by the reasons mentioned above and due to the simplicity and practicability
of the Marshall–Olkin type bivariate distribution, this paper aims to discuss the statistical
inference for LTRC data with dependent competing risks. When the dependent causes of
failure is modeled by Marshall–Olkin Rayleigh (MOBR) distribution, various estimators
are provided for unknown model parameters from classical and Bayesian perspectives,
and extensive simulation studies and real life examples are carried out to compare the
performance of different methods.In addition, for the sake of clarity, the main motivations
and contributions of our paper could be presented as follows. Firstly, although there are
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many inferential works along with LTRC data, studies for LTRC data with multiple causes
of failure is rare in existing literatures. One of main applicability of the proposed approaches
is that our paper takes the competing risks into account for LTRC data which sometimes
seems more meaningful and proper for practical situations. Secondly, due to complex
internal and external operating mechanism of components, dependent failure causes
are more appropriate to model the cross correlation between different causes of failure.
Thus, the later proposed dependent lifetime distribution may feature appealing fitting
performance for various competing risks. Finally, from practical perspective, competing
risks are mostly positively dependent due to the phenomenon that one cause’s survival
would increase the chance of another cause’s survival in many applicative situations.
Therefore, multivariate statistical models having positive dependence will provide proper
fitting performance in analysis. In this paper, a Marshall–Olkin type bivariate model is
used for LTRC competing risks data. To the best of our acknowledge, this problem has not
been discussed before in literature.

The rest of this paper is organized as follows. Model description, some notations,
and prior information are presented in Section 2. When there is no order restriction
among parameters, classical and Bayesian estimations are discussed in Sections 3 and 4,
respectively. In Section 5, both classical and Bayesian inferences are presented under
parameter restriction situation. The prediction issue for right censored sample is addressed
in Section 6. In Section 7, simulation studies are conducted and two real life examples are
analyzed for illustration. Finally, some concluding remarks are given in Section 8.

2. Model Description and Priors
2.1. Marshall–Olkin Bivariate Rayleigh Distribution

Let Xi, i = 1, 2, 3 be independent random variables that follow the Rayleigh distri-
butions with parameters σi > 0, i = 1, 2, 3, respectively. The aforementioned Rayleigh
distributions with parameters σi > 0, i = 1, 2, 3, are respectively labeled by Rayleigh(σi),
i = 1, 2, 3 and have the associated probability density function (PDF) and cumulative
distribution function (CDF) can be expressed respectively as

f (x; σi) = xσie−
x2
2 σi and F(x; σi) = 1− e−

x2
2 σi , σi > 0, x > 0. (1)

Correspondingly, the associated Survival function (SF) can be written as

S(x; σi) = e−
x2
2 σi , σi > 0, x > 0. (2)

Let T1 = min(X1, X3) and T2 = min(X2, X3), then the random vector (T1, T2) is
said to follow MOBR distribution with parameters σ1, σ2 and σ3, denoted as (T1, T2) ∼
MOBR(σ1, σ2, σ3). Further, the joint SF of (T1, T2) can be presented as

ST1,T2(t1, t2) =


S(t1; σ1)S(t2; σ2 + σ3), t1 < t2
S(t1; σ1 + σ3)S(t2; σ2), t1 > t2
S(t; σ123), t1 = t2 = t

,

whereas the associated joint PDF of (T1, T2) is given by

fT1,T2(t1, t2) =


f (t1; σ1) f (t2; σ2 + σ3), t1 < t2
f (t1; σ1 + σ3) f (t2; σ2), t1 > t2
σ3

σ123
f (t; σ123), t1 = t2 = t

with σ123 = σ1 + σ2 + σ3.
Moreover, T1 and T2 follow Rayleigh distributions with parameters σ1 + σ3 and

σ2 + σ3, respectively, and T = min(T1, T2) follows the Rayleigh distribution with parameter
σ1 + σ2 + σ3. Further, when σ3 = 0, one could note from the joint SF that the random vari-
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ables T1 and T2 are statistically independent. Hence, σ3 can be regarded as the dependence
structure between T1 and T2.

2.2. Notation

Suppose a lifetime testing experiment with n ∈ N identical units. For each experimen-
tal unit, let T be the lifetime of the unit, and there is a left truncated time point τL and a
pre-determined right censored point τR(> τL) for T. In testing, every unit can be placed
before or after τL, whereas it can fail before or after τR. In our studies, if one unit was put
on the test before τL, and failed before τL, then it is discarded. The information can be
recorded only if the unit fails after τL or is censored after τR. Thus, the observations under
this test are regarded as LTRC data. For the sake of completeness and concision, following
notations are used in the rest of the paper.

Tij : latent failure time of the ith unit due to cause j, j = 1, 2

τiL : left truncated time of the ith unit

τiR : right censored time of the ith unit

Ti : observed lifetime of the ith unit, i.e., Ti = min{Ti1, Ti2}
δi : the indicator variable of the ith unit with

δi =


1, ith unit fails due to cause 1
2, ith unit fails due to cause 2
3, ith unit fails due to both causes 1 and 2
0 ith unit is censored

νi : truncated indicator variable of the ith unit with

νi =

{
1, ith unit is not truncated
0, ith unit is truncated

I0 : set of indices of censored observations

Ij : set of indices of failures due to cause j, j = 1, 2, 3

nj : cardinality of Ij, j = 1, 2, 3. Let n123 = n1 + n2 + n3.

In this paper, for n units, the random vectors of causes of failures (Ti1, Ti2), i = 1, 2, . . . , n
are independent and identically distributed following MOBR(σ1, σ2, σ3). Under such experi-
mental sketch, the latent LTRC competing risks failure observations can be recorded as

(t1, δ1, ν1), (t2, δ2, ν2), . . . , (tn, δn, νn). (3)

2.3. Prior Assumptions
2.3.1. Prior without Order Restriction

In this subsection, for model parameters σ1, σ2 and σ3, a general flexible prior is
considered here when there is no order restriction among the model parameters.

Following the similar line of Pena and Gupta [20], let σ123 follow a gamma prior with
hyper-parameters (a0, b0) and density

π0(σ123|a0, b0) =
ba0

0
Γ(a0)

σa0−1
123 e−b0σ123 , a0 > 0, b0 > 0, σ123 > 0. (4)

Further, for given σ123, the bivariate random vector
(

σ1
σ123

, σ2
σ123

)
is assumed to have a

Dirichlet prior with hyper-parameters c1, c2, c3 and density

π

(
σ1

σ123
,

σ2

σ123

∣∣∣∣σ123, c1, c2, c3

)
=

Γ(c1 + c2 + c3)

Γ(c1)Γ(c2)Γ(c3)

(
σ1

σ123

)c1−1( σ2

σ123

)c2−1( σ3

σ123

)c3−1
. (5)
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Therefore, the joint prior density of (σ1, σ2, σ3) can be written from (4) and (5) as

π(σ1, σ2, σ3|a0, b0, c1, c2, c3) = Γ(c1+c2+c3)
Γ(a0)

(b0σ123)
a0−c1−c2−c3

× b
c1
0

Γ(c1)
σc1−1

1 e−b0σ1
bc2

0
Γ(c2)

σc2−1
2 e−b0σ2

b
c3
0

Γ(c3)
σc3−1

3 e−b0σ3 .
(6)

It is seen from (6) that the joint prior density of (σ1, σ2, σ3) is characterized by Gamma–
Dirichlet model with parameters a0, b0, c1, c2 and c3, denoted as GD(a0, b0, c1, c2, c3). One
could also observe that the Gamma–Dirichlet prior is a very flexible model and the prior
information among σ1, σ2 and σ3 can be dependent and independent in consequence by
choosing proper hyper-parameters. For example, when a0 = c1 + c2 + c3, the model
parameters σi, i = 1, 2, 3 are independent gamma priors with hyper-parameters b0 and
ci, i = 1, 2, 3, respectively.

2.3.2. Prior with Order Restriction

In addition, according to historical information, expert experience as well as other
information, sometimes there may be extra priori information that one failure cause is more
likely to occur than the other one. In view of this situation, it is more reasonable to consider
an order restriction between the unknown model parameters. In this paper, following
the suggestion of Samanta and Kundu [21], an order prior distribution is considered for
(σ1, σ2, σ3) when the order restriction is σ1 < σ2 is available and the associated density
function of the order restriction prior is given by

πo(σ1, σ2, σ3|a0, b0, c1, c2, c3) = Γ(c1+c2+c3)
Γ(a0)

(b0σ123)
a0−(c1+c2+c3)

[
∏3

i=1
b

ci
0

Γ(ci)

]
×σc3−1

3 e−b0σ123
(

σc1−1
1 σc2−1

2 + σc1−1
2 σc2−1

1

)
,

(7)

denoted as OGD(a0, b0, c1, c2, c3). Here, this order prior distribution could be viewed as
ordered Gamma–Dirichlet distribution.

3. Classical Inference

In this section, when there is no order restriction, the maximum likelihood estimates
(MLEs) for unknown parameters are established, and associated approximate confidence
intervals (ACIs) are also constructed as well.

3.1. Maximum Likelihood Estimation

In order to construct the likelihood function of parameters σ1, σ2 and σ3, a helpful
theorem about the likelihood contribution for each LTRC data (ti, δi, νi), i = 1, 2, . . . , n is
proposed as follows.

Theorem 1. Let the latent LTRC competing risks data (3) be from MOBR(σ1, σ2, σ3). The likeli-
hood contribution of (ti, δi, νi), i = 1, 2, . . . , n can be given as follows

L(ti, δi, νi) =



tiσ1e−t2
i σ123/2, δi = 1, νi = 1

tiσ2e−t2
i σ123/2, δi = 2, νi = 1

tiσ3e−t2
i σ123/2, δi = 3, νi = 1

e−t2
i σ123/2, δi = 0, νi = 1

tiσ1e−t2i σ123/2

e−τ2
iLσ123/2

, δi = 1, νi = 0

tiσ2e−t2i σ123/2

e−τ2
iLσ123/2

, δi = 2, νi = 0

tiσ3e−t2i σ123/2

e−τ2
iLσ123/2

, δi = 3, νi = 0

e−t2i σ123/2

e−τ2
iLσ123/2

, δi = 0, νi = 0

(8)
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Proof. See Appendix A.

Based on Theorem 1, the likelihood function of parameters σ1, σ2 and σ3 can be
expressed as

L(σ1, σ2, σ3) = ∏i∈I1

{
tiσ1e−t2

i σ123/2
}νi
{

tiσ1e−t2i σ123/2

e−τ2
iLσ123/2

}1−vi

×∏i∈I2

{
tiσ2e−t2

i σ123/2
}νi
{

tiσ2e−t2i σ123/2

e−τ2
iLσ123/2

}1−νi

×∏i∈I3

{
tiσ3e−t2

i σ123/2
}νi
{

tiσ3e−t2i σ123/2

e−τ2
iLσ123/2

}1−νi

×∏i∈I0

{
e−t2

i σ123/2
}νi
{

e−t2i σ123/2

e−τ2
iLσ123/2

}1−νi

= σn1
1 σn2

2 σn3
3 exp

{
−σ123 ∑n

i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

]}
·∏i∈I1∪I2∪I3

ti,

(9)

and corresponding log-likelihood function can be written as

l(σ1, σ2, σ3) = n1 log σ1 + n2 log σ2 + n3 log σ3

−σ123 ∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

]
+ ∑i∈I1∪I2∪I3

log ti.
(10)

The MLEs of unknown parameters σ1, σ2 and σ3 are established in the following
theorem.

Theorem 2. Let the latent LTRC competing risks data (3) be from the MOBR(σ1, σ2, σ3). For
nj > 0, j = 1, 2, 3, the MLE of σj can be given by

σ̂j =
nj

∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] , j = 1, 2, 3.

Proof. See Appendix B.

3.2. Approximate Confidence Intervals

In this section, the ACIs of the unknown parameters σ1, σ2 and σ3 are constructed
by using Fisher information matrix and asymptotic approximation theory under no order
restriction case. The Fisher information matrix of ρ = (σ1, σ2, σ3) is given by

Iρ = [Iij]i,j=1,2,3 = E

[
−∂l2(σ1, σ2, σ3)

∂σi∂σj

]
,

where for i, j = 1, 2, 3, the elements of the Fisher information matrix are

I11 =
n1

σ2
1

, I22 =
n2

σ2
2

, I33 =
n3

σ2
3

and Iij = 0.

Under some mild regularity conditions, the asymptotic distribution of the MLE ρ̂ of
ρ is

ρ̂− ρ
d−→ N(0, I−1(ρ̂)),
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where ‘ d−→’ denotes convergence in distribution and I−1(ρ̂) is the inverse of the Fisher
information matrix I(ρ) which can be given by

I−1(ρ̂) =

 Var(σ̂1) Cov(σ̂1, σ̂2) Cov(σ̂1, σ̂3)
Cov(σ̂2, σ̂1) Var(σ̂2) Cov(σ̂2, σ̂3)
Cov(σ̂3, σ̂1) Cov(σ̂3, σ̂2) Var(σ̂3)

.

For arbitrary 0 < α < 1, a 100(1− α)% ACIs of the parameters σj, j = 1, 2, 3 can be
constructed by (

σ̂j − zα/2

√
Var(σ̂j), σ̂j + zα/2

√
Var(σ̂j)

)
, j = 1, 2, 3,

where zα/2 is the upper α-th quantile of the standard normal distribution.
Sometimes, the ACIs constructed by this method may have a negative lower bound.

In order to overcome this shortcoming, the logarithmic transformation and delta method
are utilized to obtain the asymptotic normality distribution of log σ̂j, j = 1, 2, 3 as

log(σ̂j)− log(σj)√
Var(log σ̂j)

d−→ N(0, 1), j = 1, 2, 3,

where Var(log(σ̂j)) ≈ Var(σ̂j)/σ̂2
j , j = 1, 2, 3. Therefore, a 100(1− α)% ACI of σj, j = 1, 2, 3

can be established asσ̂j exp

−zα/2

√
Var(σ̂j)

σ̂j

, σ̂j exp

zα/2

√
Var(σ̂j)

σ̂j

, j = 1, 2, 3.

4. Bayesian Inference

As an alternative method to likelihood inference, Bayesian inference has received
wide attentions in statistical analysis due to its capability of incorporating prior knowledge.
In this section, the Bayesian estimates (BEs) under squared error loss function are provided
when there is no order restriction for model parameters and corresponding Bayesian high
posterior density (HPD) credible intervals of unknown parameters are also constructed.

Based on expressions (6) and (9) and denote w = ∑n
i=1

(
t2
i
2 −

τ2
iL
2

)
, the posterior density

of σ1, σ2 and σ3 can be obtained as

π(σ1, σ2, σ3|data) ∝ σ
(a0+n123)−(n1+c1)−(n2+c2)−(n3+c3)
123 σn1+c1−1

1 e−(b0+w)σ1

×σn2+c2−1
2 e−(b0+w)σ2 σn3+c3−1

3 e−(b0+w)σ3 .
(11)

From (11), it can be known that the posterior distribution of parameter vector (σ1, σ2, σ3)
follows GD(a0 + n123, b0 + w, n1 + c1, n2 + c2, n3 + c3). Besides, for any function of σ1, σ2
and σ3 namely η(σ1, σ2, σ3), its Bayesian estimation η̂(σ1σ2, σ3) under squared error loss
can be expressed as

η̂B(σ1, σ2, σ3) =
∫ +∞

0
η(σ1, σ2, σ3)π(σ1, σ2, σ3|data)dσ1dσ2dσ3. (12)

It is seen that there is no closed form for BE η̂B(σ1, σ2, σ3). In order to find the associated
estimate, following Algorithm 1 is utilized where the associated HPD credible interval is
also provided.
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Algorithm 1 The Bayesian estimate for η(σ1, σ2, σ3).

Step 1: Generate parameter (σ1, σ2, σ3) from Gamma–Dirichlet distribution
GD(b0 + w1, a0 + n123, n1 + c1, n2 + c2, n3 + c3).
Step 2: Repeat Step 1 M times, and (σ1

1 , σ1
2 , σ1

3 ), (σ
2
1 , σ2

2 , σ2
3 ), . . . , (σM

1 , σM
2 , σM

3 ) can be
obtained.
Step 3: The approximate Bayesian estimate can be computed from

η̂B =
1
M

M

∑
i=1

η(σi
1, σi

2, σi
3).

Step 4: Denote ηi = η(σi
1, σi

2, σi
3), i = 1, . . . , M. To construct credible interval of η,

arrange ηi, i = 1, . . . , M in ascending order as η(1), η(2), . . . , η(M). Then for arbitrary
0 < α < 1, a 100(1− α)% credible interval of η can be established as(

η([s]), η([s+(1−α)M])
)

, s = 1, 2, . . . , [Mα],

where [y] denotes the greatest integer less than or equal to y. Therefore, the 100(1− α)%
HPD credible interval can be constructed as(

η([s? ]), η([s?+(1−α)M])
)

,

where s?th satisfying

η([s?+(1−α)M]) − η([s? ]) = min
s=1,2,...,[Mα]

(
η([s+(1−α)M]) − η(s)

)
.

5. Inference with Order Restriction

In this section, under the condition of order restriction information σ1 < σ2, the
estimates for unknown parameters σ1, σ2 and σ3 are established from both classical and
Bayesian perspectives, respectively.

5.1. Classical Inference with Order Restriction

Theorem 3. Let the latent LTRC competing risks data (3) follow MOBR(σ1, σ2, σ3) and the order
restriction σ1 < σ2 be available. For given nj, j = 1, 2, 3, the MLEs of σj, j = 1, 2, 3 can be
presented as

σ̃j =
nj

∑n
i=1

[
t2i
2 −(1−νi)

τ2
iL
2

] , j = 1, 2, n1 < n2

σ̃1 = σ̃2 = n1+n2

2 ∑n
i=1

[
t2i
2 −(1−νi)

τ2
iL
2

] , n1 > n2
and σ̃3 =

n3

∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] .

Proof. See Appendix C.

5.2. Bayesian Inference with Order Restriction

From (7) and (9), the joint posterior distribution of σ1, σ2 and σ3 can be written as

πo(σ1, σ2, σ3|data) ∝ π̃(σ1, σ2, σ3)h(σ1, σ2, σ3), (13)

where

π̃(σ1, σ2, σ3) = σ
(a0+n123)−(2n123+c1+c2+c3)
123 σ2n3+c3−1

3 e−(b0+w)σ123

×
(

σn1+n2+c1−1
1 σn1+n2+c2−1

2 + σn1+n2+c1−1
2 σn1+n2+c2−1

1

)
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and

h(σ1, σ2, σ3) =
σ

n123
123

σn2
1 σn1

2 σn3
3

.

It is seen that π̃(σ1, σ2, σ3) is OGD(a0 +n123, b0 +w, n1 + c1 +n2, n1 +n2 + c2, 2n3 + c3),
and one could use the way suggested by Samanta and Kundu [21] to generate random
samples from the ordered Gamma–Dirichlet distribution. Similarly, since it is difficult to
obtain the explicit form of BE for unknown parameters under squared error loss function,
Algorithm 2 is presented as follows.

Algorithm 2 The Bayesian estimate for η(σ1, σ2.σ3) with order restriction.

Step 1: Generate (σ1, σ2, σ3) from OGD(a0 + n123, b0 + w, n1 + c1 + n2, n1 + n2 + c2,
2n3 + c3).
Step 2: Repeat Step 1 M times, and (σ1(1), σ2(1), σ3(1)), . . . , (σ1(M), σ2(M), σ3(M)) can be
obtained.
Step 3: Compute ηi = η(σ1(i), σ2(i), σ3(i)).
Step 4: Calculate the weights

wi =
h(σ1(i), σ2(i), σ3(i))

∑M
i=1 h(σ1(i), σ2(i), σ3(i))

.

Step 5: Compute the BE of η(σ1, σ2, σ3) under squared error loss function as
η̂B(σ1, σ2, σ3) = ∑M

j=1 wjηj.
Step 6: To construct a 100(1− α)%(0 < α < 1) credible interval of η(σ1, σ2, σ3), order
ηj for j = 1, 2, . . . , M, say η(1) < η(2) < · · · < η(M) and arrange wj accordingly to get
w(1), . . . , w(M). Note that w(1), . . . , w(M) may not be ordered.
Step 7: A 100(1− α)% credible interval can be obtained as (ηj1 , ηj2), where j1 and j2
satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2 and
j2

∑
i=j1

w(i) 6 1− α <
j2+1

∑
i=j1

w(i).

The 100(1 − α)% HPD credible interval of η(σ1, σ2, σ3) becomes (η(j?1 )
, η(j?2 )

), where
1 6 j?1 6 j?2 6 M satisfy

j?2

∑
i=j?1

w(i) 6 1− α 6
j?2+1

∑
i=j?1

w(i) and η(j?2 )
− η(j?2 )

6 η(j2) − η(j1).

6. Prediction

Besides parameter estimation, it is of importance to discuss the prediction issue for
the lifetime of censored samples in both theoretical study and practical application. This
prediction problem has been discussed by many authors. For example, the work of Abdel-
Hamid [22], Ahmed [23], Kotb and Raqab [24] and Zhang and Shi [25]. Recall that I0
and τiR are the set of right censored samples and right censored time of the ith sample
respectively. Since the real failure time of right censored sample is unobserved, we focus
on the sample which belongs to I0 in this section. The likelihood-based point predictions
(LPPs) for the lifetime of right censored samples are established, and associated likelihood-
based prediction intervals (LPIs) are constructed too. Besides, the Bayesian predictors (BPs)
and Bayesian prediction intervals (BPIs) for the lifetime of these right censored samples are
also given as another alternative prediction methods.
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For i ∈ I0, let Yi be the future failure time of censored sample, the conditional PDF
and SF of Yi for given τiR can be written as

f (yi|Yi > ci; σ1, σ2, σ3) = yiσ123e−σ123(
y2

i
2 −

τ2
iR
2 ), yi > τiR, (14)

and

S(yi|Yi > ci; σ1, σ2, σ3) = e−σ123(
y2

i
2 −

τ2
iR
2 ), yi > τiR, (15)

respectively.

6.1. Classical prediction

In order to obtain the LPP and LPI for Yi, a theorem is presented as follows.

Theorem 4. Let the latent LTRC competing risk data (3) follow MOBR(σ1, σ2, σ3) and Yi, i ∈ Io
be the future time of censored sample. For given nj > 0, j = 1, 2, 3, one has that

(1) the point prediction of Yi is given by

yi =

√
−2 log 0.5

σ123
+ τ2

iR. (16)

(2) the 100(1− α)% prediction interval for Yi is constructed as(√
τ2

iR −
2

σ123
log

α

2
,

√
τ2

iR −
2

σ123
log(1− α

2
)

)
. (17)

Proof. See Appendix D.

Based on Theorem 4, by using the substitution method as (σ̂1, σ̂2, σ̂3) for (σ1, σ2, σ3),
then the LPP and LPI for Yi can be established respectively.

6.2. Bayesian Prediction

In order to find the BP and BPI for Yi, another theorem is proposed as follows.

Theorem 5. Let the latent LTRC competing risk data (3) follow MOBR(σ1, σ2, σ3) and Yi, i ∈ Io
be the future failure time of censored sample. For given joint prior density GD(a0, b0, c1, c2, c3)
and nj > 0, j = 1, 2, 3, one has that

(1) The BP of Yi under squared error loss function can be given by

ŶiB = τiR + (b0 + w)a0+n123

∫ +∞

ci

(
b0 + w +

y2
i

2
−

τ2
iR
2

)−(a0+n123)

dyi. (18)

(2) The associated BPI (L?, U?) of Yi can be obtained by solving the following equations

1− 2λU(a0+n123)(2b0+2w)a0+n123

(2b0+2w+U2−τ2
iR)

a0+n123+1 = 0

−1 + 2λL(a0+n123)(2b0+2w)a0+n123

(2b0+2w+L2−τ2
iR)

a0+n123+1 = 0(
2b0+2w

2b0+2w+L2−τ2
iR

)a0+n123

−
(

2b0+2w
2b0+2w+U2−τ2

iR

)a0+n123

− (1− α) = 0

.

Proof. See Appendix E.
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7. Numerical Illustration
7.1. Simulation Studies

In this section, a Monte Carlo simulation study is conducted to evaluate the perfor-
mance of proposed estimation methods when LTRC dependent competing risks data are
obtained. For comparison, the absolute bias (ABs) and mean square errors (MSEs) are used
to assess the performance of point estimates, while average lengths (ALs) and coverage
probabilities (CPs) are utilized to assess the performance of interval estimates under differ-
ent combinations of sample size n and truncation rate p. In this paper, we take two sets
of parameters as true parametric values, which are σ1 = 1.5, σ2 = 2, σ3 = 2.5 and σ1 = 1,
σ2 = 1.3, σ3 = 2 respectively. For these two sets of parameters, we consider the informative
priors whose corresponding setting of hyper-parameters (a0, b0, c1, c2, c3) are chosen as
(360,60,0.7185,0.9583,1.1979) and (185.43,0.6476,0.8419,1.2952), respectively. Furthermore,
we make different choices for the sample size n such as 50, 80 and 100. Besides, the fixed
truncation rates p (TR) are chosen to be 0.2, 0.4 and 0.6. In various combinations of designed
scenarios, the classical and Bayesian estimates of the unknown parameters are established,
and the corresponding evaluation quantities are obtained based on 10,000 simulation
runs. For both non order restriction and order restriction cases, the simulation results are
presented in Tables 1–8, where the confidence level for interval estimates is set to be 0.95.

From the results in Tables 1–4, it is observed for point estimates that

(1) For fixed truncation rate, the performance of MLEs in terms of ABs and MSEs gets
better with increase of sample size n. Furthermore, BEs show the same trend as well.

(2) When there is no order restriction between unknown parameters, for fixed sample
size n, the ABs and MSEs of point estimates based on both classical and Bayesian
inference increase as truncation rate increases.

(3) Regardless of an order restriction between unknown parameters, the ABs and MSEs
of BEs are always smaller than those of MLEs.

Moreover, from the results in Tables 5–8, we can observe following conclusions for
interval estimates

(1) For fixed sample size n, the ALs of interval estimates get smaller as truncation rate
decreases.

(2) For fixed truncation rate, the performance of both ACIs and HPD credible intervals in
terms of ALs get better with the sample size increases.

(3) Under different combinations of sample size and truncation rate, the ALs of HPD
credible intervals are always smaller than those of ACIs and the CPs of HDP credible
intervals are always around the nominal confidence level and better than the CPs of
ACIs.

(4) According to the results of ALs and CPs, interval estimates from both classical and
Bayesian methods work satisfactory in general. Especially, it is noted that the CPs
of some ACIS are consistently too high. One possible explanation for this may be
that ACIs based on asymptotic normality of the MLEs have nearly two to three times
estimated interval lengths compared with HPD intervals.
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Table 1. ABs and MSEs (within bracket) for parameters without order restriction when (σ1, σ2, σ3) =

(1.5, 2, 2.5).

σ1 σ2 σ3

n TR MLE BE MLE BE MLE BE

50 20% 0.3577 0.2827 0.4133 0.3084 0.4655 0.3221
[0.2039] [0.1246] [0.2744] [0.1492] [0.3423] [0.1625]

40% 0.3721 0.2828 0.4405 0.3115 0.4963 0.3243
[0.2254] [0.1264] [0.3208] [0.1517] [0.4105] [0.1639]

60% 0.4744 0.2914 0.6440 0.3169 0.7620 0.3333
[0.4676] [0.1332] [0.6986] [0.1586] [0.9613] [0.1735]

80 20% 0.2813 0.2311 0.3255 0.2524 0.3688 0.2621
[0.1234] [0.0832] [0.1655] [0.0993] [0.2121] [0.1071]

40% 0.2991 0.2357 0.3475 0.2554 0.3839 0.2623
[0.1436] [0.0867] [0.1981] [0.1027] [0.2424] [0.1084]

60% 0.4535 0.2408 0.5623 0.2615 0.6793 0.2794
[0.3356] [0.0915] [0.5031] [0.1072] [0.7146] [0.1224]

100 20% 0.2475 0.2043 0.2932 0.2270 0.3328 0.23781
[0.0962] [0.0655] [0.1339] [0.0801] [0.1723] [0.0880]

40% 0.2636 0.2085 0.3058 0.2262 0.3512 0.2395
[0.1120] [0.0680] [0.1505] [0.0811] [0.1995] [0.0903]

60% 0.4203 0.2230 0.5281 0.2435 0.6431 0.2615
[0.2837] [0.0786] [0.4337] [0.0926] [0.6297] [0.1079]

Table 2. ABs and MSEs (within bracket) for parameters without order restriction when (σ1, σ2, σ3) =

(1, 1.3, 2).

σ1 σ2 σ3

n TR MLE BE MLE BE MLE BE

50 20% 0.2420 0.1987 0.2845 0.2166 0.3539 0.2379
[0.0940] [0.0615] [0.1262] [0.0745] [0.1993] [0.0895]

40% 0.2550 0.1987 0.2919 0.2197 0.3817 0.2424
[0.1061] [0.0622] [0.1424] [0.0750] [0.2413] [0.0915]

60% 0.3606 0.2111 0.4327 0.2305 0.5990 0.2564
[0.2202] [0.0701] [0.3120] [0.0835] [0.5835] [0.1024]

80 20% 0.1916 0.1625 0.2235 0.1792 0.2813 0.1980
[0.0579] [0.0411] [0.0786] [0.0505] [0.1243] [0.0620]

40% 0.2012 0.1635 0.2332 0.1796 0.2991 0.2021
[0.0655] [0.0420] [0.0879] [0.0507] [0.2435] [0.0640]

60% 0.3074 0.1771 0.3717 0.1939 0.5319 0.2258
[0.1555] [0.0504] [0.2217] [0.0600] [0.4375] [0.0805]

100 20% 0.1719 0.1462 0.1980 0.1600 0.2546 0.1805
[0.0467] [0.0338] [0.0612] [0.0402] [0.0997] [0.0510]

40% 0.1817 0.1497 0.2081 0.1637 0.2677 0.1859
[0.0534] [0.0352] [0.0703] [0.0422] [0.1176] [0.0539]

60% 0.2827 0.1632 0.3523 0.1849 0.5069 0.2183
[0.1291] [0.0426] [0.1937] [0.0537] [0.3816] [0.0746]
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Table 3. ABs and MSEs (within bracket) for parameters with order restriction when (σ1, σ2, σ3) =

(1.5, 2, 2.5).

σ1 σ2 σ3

n TR MLE BE MLE BE MLE BE

50 20% 0.3277 0.2016 0.3831 0.2301 0.4655 0.3290
[0.1670] [0.0646] [0.2408] [0.0867] [0.3423] [0.1700]

40% 0.3359 0.1987 0.4132 0.2356 0.4963 0.3332
[0.1791] [0.0627] [0.2925] [0.0902] [0.4105] [0.1726]

60% 0.4744 0.1923 0.6440 0.2519 0.7620 0.3403
[0.3696] [0.0589] [0.7006] [0.1045] [0.9613] [0.1810]

80 20% 0.2633 0.1576 0.3055 0.1800 0.3688 0.2700
[0.1070] [0.0399] [0.1461] [0.0526] [0.2121] [0.1140]

40% 0.2776 0.1563 0.3305 0.1857 0.3839 0.2692
[0.1209] [0.0392] [0.1826] [0.0559] [0.2424] [0.1143]

60% 0.4258 0.1557 0.5654 0.2076 0.6793 0.2866
[0.2857] [0.0387] [0.5080] [0.0703] [0.7146] [0.1295]

100 20% 0.1390 0.0862 0.1626 0.1213 0.2448 0.1723
[0.0862] [0.0310] [0.1213] [0.0425] [0.1723] [0.0934]

40% 0.2482 0.1386 0.2932 0.1640 0.3512 0.2459
[0.0976] [0.0308] [0.1403] [0.0440] [0.1995] [0.0955]

60% 0.3988 0.1458 0.5309 0.1919 0.6431 0.2680
[0.2473] [0.0333] [0.4365] [0.0596] [0.6297] [0.1141]

Table 4. ABs and MSEs (within bracket) for parameters with order restriction when (σ1, σ2, σ3) =

(1, 1.3, 2).

σ1 σ2 σ3

n TR MLE BE MLE BE MLE BE

50 20% 0.2207 0.1498 0.2614 0.1686 0.3539 0.2427
[0.0762] [0.0348] [0.1087] [0.0466] [0.1993] [0.0933]

40% 0.2278 0.1471 0.2731 0.1730 0.3817 0.2467
[0.0815] [0.0336] [0.1289] [0.0491] [0.2413] [0.0951]

60% 0.3194 0.1416 0.4339 0.1994 0.5990 0.2620
[0.1659] [0.0313] [0.3149] [0.0633] [0.5835] [0.1075]

80 20% 0.1779 0.1197 0.2077 0.1329 0.2813 0.2030
[0.0493] [0.0225] [0.0684] [0.0290] [0.1243] [0.0654]

40% 0.1841 0.1163 0.2200 0.1402 0.2991 0.2066
[0.0535] [0.0212] [0.0802] [0.0321] [0.1456] [0.0668]

60% 0.2828 0.1138 0.3747 0.1715 0.5319 0.2302
[0.1270] [0.0205] [0.2243] [0.0468] [0.4375] [0.0840]

100 20% 0.1618 0.1066 0.1867 0.119 0.2546 0.1851
[0.0410] [0.0182] [0.0546] [0.0234] [0.0997] [0.0537]

40% 0.1682 0.1048 0.1976 0.1267 0.2677 0.1898
[0.0446] [0.0174] [0.0646] [0.0262] [0.1176] [0.0565]

60% 0.2652 0.1076 0.3537 0.1638 0.5069 0.2222
[0.1104] [0.0184] [0.1950] [0.0421] [0.3816] [0.0776]
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Table 5. ALs and CPs (within bracket) for parameters without order restriction when (σ1, σ2, σ3) =

(1.5, 2, 2.5).

σ1 σ2 σ3

n TR ACI HPD ACI HPD ACI HPD

50 20% 2.2336 1.4066 2.9780 1.5310 3.7182 1.6287
[0.9569] [0.9494] [0.9763] [0.9446] [0.9899] [0.9528]

40% 2.4501 1.4165 3.2695 1.5407 4.0997 1.6407
[0.9718] [0.9588] [0.9865] [0.9461] [0.9939] [0.9548]

60% 3.2467 1.4437 4.3219 1.5701 5.4062 1.6708
[0.9860] [0.9573] [0.9949] [0.9450] [0.9986] [0.9523]

80 20% 1.6819 1.1469 2.2278 1.2474 2.8015 1.3341
[0.9605] [0.9515] [0.9793] [0.9479] [0.9913] [0.9571]

40% 1.8399 1.1576 2.4583 1.2630 3.0685 1.3484
[0.9750] [0.9521] [0.9887] [0.9446] [0.9951] [0.9575]

60% 2.4379 1.1909 3.2315 1.2993 4.0529 1.3868
[0.9748] [0.9584] [0.9898] [0.9533] [0.9960] [0.9525]

100 20% 1.4828 1.0381 1.9788 1.1341 2.4646 1.2122
[0.9641] [0.9529] [0.9819] [0.9528] [0.9907] [0.9549]

40% 1.6263 1.0518 2.1564 1.1457 2.7036 1.2277
[0.9790] [0.9566] [0.9900] [0.9536] [0.9950] [0.9552]

60% 2.1291 1.0865 2.8394 1.1858 3.5548 1.2699
[0.9670] [0.9509] [0.9829] [0.9527] [0.9916] [0.9485]

Table 6. ALs and CPs (within bracket) for parameters without order restriction when (σ1, σ2, σ3) =

(1, 1.3, 2).

σ1 σ2 σ3

n TR ACI HPD ACI HPD ACI HPD

50 20% 1.2274 0.9909 1.5961 1.0803 2.4567 1.2363
[0.9216] [0.9529] [0.9471] [0.9445] [0.9792] [0.9572]

40% 1.3388 1.0016 1.7468 1.0938 2.6954 1.2512
[0.9373] [0.9549] [0.9630] [0.9479] [0.9877] [0.9604]

60% 1.7814 1.0366 2.3200 1.1317 3.5646 1.2927
[0.9398] [0.9580] [0.9705] [0.9507] [0.9936] [0.9564]

80 20% 0.9352 0.8096 1.2148 0.8842 1.8695 1.0221
[0.9222] [0.9522] [0.9461] [0.9407] [0.9803] [0.9549]

40% 1.0178 0.8225 1.3279 0.8994 2.0458 1.0401
[0.9405] [0.9542] [0.9672] [0.9503] [0.9914] [0.9590]

60% 1.3523 0.8645 1.7535 0.9440 2.7009 1.0908
[0.9156] [0.9529] [0.9491] [0.9504] [0.9796] [0.9479]

100 20% 0.8236 0.7326 1.0778 0.8038 1.6496 0.9325
[0.9198] [0.9483] [0.9551] [0.9495] [0.9803] [0.9565]

40% 0.9038 0.7480 1.1746 0.8184 1.8107 0.9516
[0.9416] [0.9562] [0.9666] [0.9512] [0.9905] [0.9576]

60% 1.1842 0.7905 1.5451 0.8664 2.3762 1.0068
[0.9038] [0.9522] [0.9313] [0.9475] [0.9683] [0.9412]
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Table 7. ALs and CPs (within bracket) for parameters with order restriction when (σ1, σ2, σ3) =

(1.5, 2, 2.5).

σ1 σ2 σ3

n TR ACI HPD ACI HPD ACI HPD

50 20% 2.1373 0.9885 3.0872 1.3142 3.7182 1.7206
[0.9572] [0.9662] [0.9936] [0.9825] [0.9899] [0.9358]

40% 2.3461 0.9958 3.3872 1.3239 4.0997 1.7315
[0.9724] [0.9696] [0.9964] [0.9844] [0.9939] [0.9380]

60% 3.1078 1.0137 4.4799 1.3449 5.4062 1.7596
[0.9907] [0.9749] [0.9971] [0.9821] [0.9986] [0.9411]

80 20% 1.6405 0.8289 2.2727 1.1020 2.8015 1.4584
[0.9615] [0.9746] [0.9923] [0.9742] [0.9913] [0.9422]

40% 1.7949 0.8376 2.5071 1.1103 3.0685 1.4714
[0.9779] [0.9718] [0.9963] [0.9761] [0.9951] [0.9433]

60% 2.3821 0.8620 3.3132 1.1372 4.0635 1.5053
[0.9870] [0.9691] [0.9905] [0.9840] [0.9960] [0.9457]

100 20% 1.4586 0.7638 2.0048 1.0189 2.4646 1.3472
[0.9650] [0.9743] [0.9911] [0.9655] [0.9907] [0.9431]

40% 1.5993 0.7720 2.1852 1.0288 2.7036 1.3626
[0.9808] [0.9756] [0.9964] [0.9728] [0.9950] [0.9474]

60% 2.0913 0.7980 2.8800 1.0561 3.5548 1.4035
[0.9807] [0.9631] [0.9835] [0.9829] [0.9916] [0.9476]

Table 8. ALs and CPs (within bracket) for parameters with order restriction when (σ1, σ2, σ3) =

(1, 1.3, 2).

σ1 σ2 σ3

n TR ACI HPD ACI HPD ACI HPD

50 20% 1.1663 0.7101 1.6656 0.8267 2.4567 1.1797
[0.9262] [0.9615] [0.9824] [0.9562] [0.9792] [0.9063]

40% 1.2724 0.7176 1.8224 0.8361 2.6954 1.1930
[0.9440] [0.9636] [0.9865] [0.9597] [0.9877] [0.9096]

60% 1.6896 0.7438 2.4249 0.8645 3.5646 1.2351
[0.9647] [0.9661] [0.9768] [0.9480] [0.9936] [0.9100]

80 20% 0.9070 0.6000 1.2455 0.6729 1.8695 0.9861
[0.9276] [0.9610] [0.9741] [0.9482] [0.9803] [0.9073]

40% 0.9878 0.6092 1.3606 0.6830 2.0458 1.0041
[0.9488] [0.9607] [0.9841] [0.9536] [0.9914] [0.9078]

60% 1.3118 0.6401 1.7980 0.7174 2.7009 1.0527
[0.9398] [0.9585] [0.9523] [0.9480] [0.9796] [0.9049]

100 20% 0.8061 0.5518 1.0966 0.6090 1.6496 0.9055
[0.9259] [0.9622] [0.9751] [0.9320] [0.9803] [0.9084]

40% 0.8833 0.5624 1.1967 0.6216 1.8107 0.9257
[0.9527] [0.9623] [0.9813] [0.9448] [0.9905] [0.9057]

60% 1.1589 0.5950 1.5724 0.6569 2.3762 0.9784
[0.9273] [0.9378] [0.9343] [0.9494] [0.9683] [0.9095]

7.2. Illustrative Examples

Dataset 1: The dataset is the aforementioned diabetic retinopathy complete risks data,
which can be obtained from Samanta and Kundu [21]. The original complete competing
risks failure times were presented in terms of day and we rescale the times in terms of
500 days which will do not affect the analysis results. In order to generate LTRC competing
risks data, we have randomly chosen 20% data from the original complete dataset as
left-truncated data and their 5% values are used as left truncated times. Correspondingly,
another 4% data from the origin dataset are randomly chosen as right-censored data. That is
to say, the truncation rate and censoring rate are 20% and 4% respectively in this illustration.
The detailed LTRC competing risks data set is presented in Table A1 of Appendix F.
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In this data set, δ = 1 means that the eye was selected for laser treatment, while
δ = 2 means that the eye was not given the laser treatment. Besides, if both two eyes of a
patient have failed simultaneously, then δ = 3; and if there is no eye failure until the end
of observation, then δ = 0. ti is the observed time to ith patient, and νi is the indicator
that shows whether ith blindness is left truncated. Further, τiL denotes left truncated time
of ith blindness. Since there is no prior information about the unknown parameters, we
adopted the almost non-informative prior suggested by Samanta and Kundu [21], which
has hyper-parameters (a0, b0, c1, c2, c3) = (0.001, 0.001, 1, 1, 1). The confidence level for ACI
and credible interval is set to be 0.95.

In order to check the goodness-of-fit of this data set, the Kolmogorov-Smirnov (KS)
test is used. The results show that KS distance is 0.1282, and related p-value is 0.1936,
which means the empirical and fitted CDF are very close. Based on classical and Bayesian
framework, the point estimates with their estimated standard errors (ESEs) of unknown
parameters are established, and associated interval estimates are constructed as well,
which are presented in Table 9. From this table, it is seen that MLEs and BEs of unknown
parameters are very close to each other, but the latter performs better in terms of their
ESEs. Furthermore, the lengths of HPD credible intervals are smaller than those of ACIs.
Recall that T = min(T1, T2) follows Rayleigh(σ123), then the corresponding PDF and CDF
plots based on both MLEs and BEs can be obtained and shown in Figure 1. While there
are some differences between the MLEs and BEs of each parameter, σi, i = 1, 2, 3, the MLE
and BE based of σ123 are almost the same. Thus, it can be found that both PDF and CDF
plots obtained by the two methods are almost coincident in Figure 1, which also means
the performance of Bayesian inference based on non-informative prior is similar to that of
classical inference. In addition, from Table A1, it can be found that three censored patients,
whose numbers are 15, 31 and 65. The associated real lifetimes of them can be obtained
from the original table in Samante and Kundu [21], which are 1.5800, 1.4340 and 1.4540.
The prediction results for them are shown in Table 10.
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Figure 1. The PDF and CDF plots based on MOBR distribution with MLEs and BEs under Dataset 1.

Table 9. Estimates for unknown parameters under Diabetic retinopathy data.

Parameter MLE [ESE] BE [ESE] ACI [Length] HPD [Length]

σ1 0.5342 [0.1010] 0.5292 [0.0366] (0.4661,0.6023) [0.1362] (0.4427,0.5761) [0.1334]
σ2 0.5723 [0.1045] 0.5668 [0.0369] (0.5019,0.6428) [0.1045] (0.4774,0.6159) [0.0369]
σ3 0.1908 [0.0603] 0.2003 [0.0269] (0.1501,0.2315) [0.0603] (0.1502,0.2295) [0.0269]
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Table 10. Prediction under Diabetic retinopathy data.

i LPP BP LPI BPI

15 1.1822 1.7174 (0.8790,1.5704) (0.7932,1.7819)
31 1.1642 1.7020 (0.8545,1.5569) (0.7869,1.7906)
65 1.1726 1.7092 (0.8660,1.5632) (0.7899,1.7866)

Dataset 2: The dataset used from from Kundu et al. [19] is about the LTRC competing
risks lifetimes of high-voltage power transformers, where there are just two failure causes.
In order to obtain the dependent LTRC competing risks data, we randomly select 10%
data from Kundu et al. [19] example, and treated these data as failure times due to causes
one and two simultaneous. In addition, for the purpose of computational convenience,
we divide all data by 100 for sake of simplicity. The final data are shown in Table A2 of
Appendix G, where the truncation rate and the censoring rate are set to be 30% and 53%,
respectively, in this illustration which are as same as the dataset given in Kundu et al. [19].

Similar to Dataset 1, the significance level is set to be 0.05. We take (0.1, 0.1, 0.1, 0.1, 0.1)
as the values of hyper-parameter (a0, b0, c1, c2, c3), which are also almost non-informative
prior. The estimates of unknown parameters are specifically presented in Table 11. It is
seen that MLEs and BEs are very close to each other, but the ESEs of the latter is smaller
than that of the former. Besides, the interval lengths of HPD credible intervals are smaller
than ACIs. In general, in terms of estimation for model parameters in this dataset, the
Bayesian method performs better than classical methods. Figure 2 shows that two curves
are very close to each other in both PDF and CDF plots, which also reflects the estimates
of σ123 based on two different methods are not much different. In addition, there are 53%
censored samples in this dataset, and the prediction issue of them is considered. Since the
size of censored samples is very large, we only present the predictions of partial censored
samples shown in Table 12.
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Figure 2. The PDF and CDF plots based on MOBR distribution with MLEs and BEs under Dataset 2.

Table 11. Estimates for unknown parameters under high-voltage power transformers data.

Parameter MLE [ESE] BE [ESE] ACI [Length] HPD [Length]

σ1 4.1205 [1.3030] 3.9760 [0.4878] (3.2416,4.9994) [1.7578] (2.9046,4.5173) [1.6127]
σ2 11.1253 [2.1411] 10.6770 [0.5888] (9.6812,12.5694) [2.8882] (8.9477,11.6209) [2.6732]
σ3 4.1205 [1.3030] 3.9644 [0.4878] (3.2416,4.9994) [1.7578] (2.7957,4.3822) [1.5865]
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Table 12. Prediction results under high-voltage power transformers data.

i LPP BP LPI BPI
95 0.3340 0.4939 (0.2640,0.4280) (0.2259,0.4814)
96 0.3464 0.5038 (0.2795,0.4377) (0.2300,0.4758)
99 0.3731 0.5252 (0.3119,0.4591) (0.2387,0.4640)

100 0.3282 0.4892 (0.2565,0.4234) (0.2239,0.4841)

8. Conclusions

In this paper, classical and Bayesian inferences for LTRC dependent competing risks
data have been discussed. When the dependent competing risks is distributed by the
Marshall–Olkin bivariate Rayleigh model, the maximum likelihood estimators of unknown
parameters are established, and associated approximate confidence intervals are also
constructed. Furthermore, Bayesian estimates and corresponding high posterior density
credible intervals are developed as well. In addition, when order restriction information
between parameters is available, the point and interval estimates for unknown parameters
are also provided based on classical and Bayesian frameworks. In order to investigate the
lifetimes of censored samples, prediction formulae are also developed from classical and
Bayesian perspectives, respectively. Finally, extensive simulation studies and two real life
examples are carried out to evaluate the performance of proposed methods, and the results
show that both classical and Bayesian inference works satisfactorily. Moreover, if the priori
information is sufficient, the results indicate that the Bayesian method perform better than
the classical one under both order and non-order restriction situations.

In addition, although the main contents of the paper focus on the LTRC competing
risks data with MOBR model, the work can also be extended (with proper modifications)
to a more general Marshall–Olkin type bivariate model with baseline CDF as

F(x; θ) = 1− [F̄0(x)]θ , x ∈ B, θ > 0,

where F̄0(·) = 1− F0(·), F0(·) is a baseline CDF and B is the support of the baseline CDF
F0(·). This distribution family is called the proportional hazard rate model in literature
and includes exponential distribution, Rayleigh distribution, Pareto distribution (one
parameter) as its special cases. To be specific, let Ui, i = 1, 2, 3 follow proportional hazard
rate model with parameter θi, i = 1, 2, 3, T1 = min(U1, U3) and T2 = min(U2, U3), then the
joint SF of (T1, T2) can be expressed as

ST1,T2(t1, t2) =


[F̄0(t1)]

θ1 [F̄0(t2)]
θ2+θ3 , t1 < t2

[F̄0(t1)]
θ1+θ3 [F̄0(t2)]

θ2 , t1 > t2

[F̄0(t)]
θ1+θ2+θ3 , t1 = t2 = t

.

Following the similar procedures established above, statistical inferences for the LTRC
dependent competing risks data from this Marshall–Olkin type bivariate model could be
obtained based on both likelihood and Bayesian methods.

The current study includes the statistical inferences of population parameters and
prediction of failure time for the censored units based on the LTRC dependent competing
risks data from identical Marshall–Olkin type bivariate distribution. The left truncated
time and right censored time for each unit under study could be different. When all left
truncated times are equal to 0 and all right censored times are infinity, the LTRC dependent
competing risks data is random sample obtained from the identical Marshall–Olkin type
bivariate distribution. Therefore, the developed methodologies are not for non-stationary
data. Based on the application and theoretical experiences from random sample, both
Bayesian and MLE procedures are getting more accurate results when sample size is getting
larger. Tables 1–4 show both methods are getting more accurate estimates in terms of MSE
and AB and Tables 5–8 show both methods are getting more accurate confidence or credible
interval in terms of AL as well as CP when sample size is getting larger under the same
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TR rate. Hence, both proposed estimation procedures are applicable for larger datasets.
Specially, the limit distribution of MLE has been proved to be normal distribution when
sample size n approaches to infinity in Section 3.2. The asymptotic normal distribution has
true unknown parameters as mean vector and variance-covariance that is the inverse of
Fisher information. When using a finite sample size, the estimated variance-covariance is
usually not accurate and the estimated variance of MLE is usually inflated due to the TR
rate and/or censored rate. However, the Bayesian procedure does not use limit distribution
that usually requires larger sample size to get more accurate results. Therefore, the ACIs
are usually not stable and have larger length than the HPDs given a sample size and TR
rate; meanwhile the CPs for ACIs are sometimes much larger than or less than the nominal
level; while all HPDs have CPs nearby the nominal level. However, the Bayesian method
through the MCMC procedure usually needs more computation time than MLE does.
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Appendix A. The Proof of Theorem 1

When δi = 1, νi = 1, it means that the ith unit is not left truncated and fails due to
cause 1. That is to say, T1i = ti and T2i > ti. Thus, the likelihood contribution of the ith unit
can be expressed as

lim
dti1→0

p(ti1 < Ti1 < ti1 + dti1, Ti2 > ti2)

dti1

∣∣∣∣∣
(ti1,ti2)=(ti ,ti)

.

When δi = 1, νi = 0, it means that the ith unit is left truncated and its failure factor
is cause 1. These messages imply that Ti = min(T1i, T2i) > τiL, T1i = ti and T2i > ti.
Therefore, the likelihood contribution of the ith unit under this case can be written as

lim
dti1→0

p(ti1 < Ti1 < ti1 + dti1, Ti2 > ti2|min(Ti1, Ti2) > τiL)

dti1

∣∣∣∣
(ti1,ti2)=(ti ,ti)

.

For other failure cases of the ith unit, the likelihood contributions can be obtained by
the above approaches similarly. Finally, the likelihood contribution of the ith unit under
different values of δi and νi can be presented as

L(ti, δi, νi) =



f (ti; σ1)S(ti; σ2 + σ3), δi = 1, νi = 1
S(ti; σ1 + σ3) f (ti; σ2), δi = 2, νi = 1
σ3 f (ti ;σ123)

σ123
, δi = 3, νi = 1

S(ti; σ123), δi = 0, νi = 1
f (ti ;σ1)S(ti ;σ2+σ3)

S(τiL ;σ123)
, δi = 1, νi = 0

S(ti ;σ1+σ3) f (ti ;σ2)
S(τiL ;σ123)

, δi = 2, νi = 0
σ3 f (ti ;σ123)

σ123S(τiL ;σ123)
, δi = 3, νi = 0

S(ti ;σ123)
S(τiL ;σ123)

, δi = 0, νi = 0

.
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Based on expressions (1) and (2), this theorem can be proved.

Appendix B. The Proof of Theorem 2

Taking derivative of l(σ1, σ2, σ3) with respect to σj, j = 1, 2, 3 respectively and equating
them to zero, one has that

σ̂j =
nj

∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] , j = 1, 2, 3.

Using inequality log
σj
σ̂j
6

σj
σ̂ j − 1, j = 1, 2, 3 for

σj
σ̂j

> 0, it can be obtained that

nj log σj 6 σj

n

∑
i=1

[
t2
i
2
− (1− νi)

τ2
iL
2

]
− nj + nj log σ̂j.

Utilizing above equality and the expression nj = σ̂j ∑m
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

]
, it is

seen that

l(σ1, σ2, σ3) 6 n1 log σ̂1 + n2 log σ̂2 + n3 log σ̂3 − (n1 + n2 + n3) + ∑
i∈I1∪I2∪I3

log ti

= n1 log σ̂1 + n2 log σ̂2 + n3 log σ̂3 − σ̂123

n

∑
i=1

[
t2
i
2
− (1− νi)

τ2
iL
2

]
+ ∑

i∈I1∪I2∪I3

log ti,

where σ̂123 = σ̂1 + σ̂2 + σ̂3, and equality holds iff σj = σ̂j, j = 1, 2, 3. Therefore, the assertion
is proved.

Appendix C. The Proof of Theorem 3

Similar to the proof of Theorem 2, when n1 < n2, the MLEs of unknown parameters
(σ1, σ2, σ3) under the order restriction σ1 < σ2 can be obtained and the values are same as
those of Theorem 1, which can be given by

σ̃j =
nj

∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] , j = 1, 2, 3.

When n1 > n2, the MLEs obtained in Theorem 1 do not hold under the order restriction
σ1 < σ2. In this situation, the likelihood function (10) is maximized in the line σ1 = σ2 = σ
under the order restriction σ1 < σ2. Therefore, corresponding MLEs σ̃j, j = 1, 2, 3 can be
obtained by satisfying

max
(σ,σ3)

=

{
(n1 + n2) log σ + n3 log σ3 − (2σ + σ3)

n

∑
i=1

[
t2
i
2
− (1− νi)

τ2
iL
2

]
+ ∑

i∈I1∪I2∪I3

log ti

}
.

By taking derivative with respect to σ and σ3 of the above expression and equating it
to zero, then it can be obtained that

σ̃1 = σ̃2 = σ =
n1 + n2

2 ∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] and σ̃3 =
n3

∑n
i=1

[
t2
i
2 − (1− νi)

τ2
iL
2

] .

Thus, this Theorem is proved.
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Appendix D. The Proof of Theorem 4

According to (14), it is seen that Zi =
Y2

i
2 −

c2
i
2 follows exponential distribution with

parameter σ123. Let E0.5 be the median of this distribution, and regard it as the point
where Zi is most likely to be. From equation 1 − exp{−σ123E0.5} = 0.5, it can be ob-
tained that E0.5 = − log 0.5/σ123. Thus, the point prediction of Yi can be computed by
Zi = − log 0.5/σ123, which is

yi =

√
−2 log 0.5

σ123
+ c2

i .

Further, the 100(1− α)% prediction interval (L?, U?) for Yi can be constructed by the
following two equations

p

(
Zi <

L2

2
−

c2
i

2

)
=

α

2
, and p

(
Zi >

U2

2
−

c2
i

2

)
=

α

2
.

Therefore, the theorem is proved.

Appendix E. The Proof of Theorem 5

From expression (11) and (14), the predictive density of Yi can be given as

f ?(yi|ci) = Eposterior−GD[ f (yi|Yi > ci; σ1, σ2, σ3)]

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
f (yi|Yi > ci; σ,σ2, σ3)π(σ1, σ2, σ3|data)dσ1dσ2dσ3

= yi(a0 + n123)
(b0 + w)a0+n123

(b0 + w + w1)a0+n123+1 ,

where c123 = c1 + c2 + c3 and w1 =
y2

i
2 −

c2
i
2 . For above integral, its integrand function

is the pdf of GD(a0 + n123 + 1, b0 + w + w1, n1 + c1, n2 + c2, n3 + c3), so integral value is
equal to 1. Hence, the BE of Yi under squared error loss function can be obtained by

ŶiB =
∫ +∞

ci

yi f ?(yi|ci)dt = ci + (b0 + w)a0+n123

∫ +∞

ci

(b0 + w +
y2

i
2
−

c2
i

2
)−(a0+n123)dyi.

Similarly, the predictive survival function of Yi can be presented based on (11) and (15) as

S?(yi|ci) = Eposterior−GD[S(yi|Yi > ci; σ,σ2, σ3)]

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
S(yi|Yi > ci; σ1, σ2, σ3)π(σ1, σ2, σ3|data)dσ1dσ2dσ3

=

(
b0 + w

b0 + w + w1

)a0+n123

. (A1)

From expression (A1), S?(L|ci)− S?(U|ci) = 1− α can be written as(
2b0 + 2w

2b0 + 2w + L2 − c2
i

)a0+n123

−
(

2b0 + 2w
2b0 + 2w + U2 − c2

i

)a0+n123

− (1− α) = 0, (A2)
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In order to minimize U− L under the restriction of expression (A2), Lagrange method
can be utilized. Hence, the HPD predictive interval (L?, U?) of Yi, can be obtained by
solving the following equations:

1− 2λU(a0+n123)(2b0+2w)a0+n123

(2b0+2w+U2−c2
i )

a0+n123+1 = 0

−1 + 2λL(a0+n123)(2b0+2w)a0+n123

(2b0+2w+L2−c2
i )

a0+n123+1 = 0(
2b0+2w

2b0+2w+L2−c2
i

)a0+n123

−
(

2b0+2w
2b0+2w+U2−c2

i

)a0+n123

− (1− α) = 0

.

Thus, the theorem is proved.

Appendix F. Dataset 1

Table A1. Diabetic retinopathy data.

i 1 2 3 4 5 6 7 8 9 10
ti 0.5320 0.1820 0.3080 0.5700 1.1660 1.0940 0.1580 1.2440 1.4140 0.9380
δi 1 2 2 3 1 2 1 3 2 2
νi 1 1 0 1 0 1 1 1 0 1
τiL 0 0 0.1966 0 0.2512 0 0 0 1.1992 0

i 11 12 13 14 15 16 17 18 19 20
ti 0.1860 2.6260 1.6100 0.6880 0.5737 0.2500 1.5540 0.6120 0.8300 0.6140
δi 1 2 1 1 0 2 2 1 1 2
νi 1 1 1 1 1 0 1 1 1 1
τiL 0 0 0 0 0 0.0816 0 0 0 0

i 21 22 23 24 25 26 27 28 29 30
ti 1.2740 1.1540 0.3560 1.0340 0.5440 2.2740 2.9680 0.6300 0.5740 2.5040
δi 2 2 1 2 3 3 1 1 2 1
νi 0 1 1 1 1 1 0 1 0 0
τiL 0.8675 0 0 0 0 0 0.7382 0 0.0578 1.0616

i 31 32 33 34 35 36 37 38 39 40
ti 0.5354 1.2840 0.2820 0.8140 0.7120 3.3060 0.8540 1.3980 0.0720 1.3340
δi 0 1 2 1 1 3 2 1 2 1
νi 1 0 1 1 1 1 1 1 1 0
τiL 0 0.8570 0 0 0 0 0 0 0 0.1557

i 41 42 43 44 45 46 47 48 49 50
ti 1.1760 0.9420 0.2520 0.7000 0.7000 1.3260 1.1340 1.9320 0.4060 0.1680
δi 2 3 1 2 1 3 2 3 3 1
νi 1 1 1 1 1 0 1 1 0 1
τiL 0 0 0 0 0 0.9948 0 0 0.0755 0

i 51 52 53 54 55 56 57 58 59 60
ti 0.7840 2.2800 1.8020 2.4940 0.8960 1.8080 0.5520 1.0400 0.9700 0.4960
δi 1 2 1 3 2 2 1 1 2 2
νi 1 1 1 1 0 1 1 1 1 1
τiL 0 0 0 0 0.2114 0 0 0 0 0

i 61 62 63 64 65 66 67 68 69 70
ti 1.0060 0.8460 0.5700 0.6300 0.5536 0.4200 0.8180 1.1680 0.7100 2.6040
δi 1 2 2 2 0 2 2 1 1 1
νi 1 1 1 1 1 0 1 1 1 1
τiL 0 0 0 0 0 0.0648 0 0 0 0

i 71
ti 0.4540
δi 2
νi 0
τiL 0.2233
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Appendix G. Dataset 2

Table A2. High-voltage power transformers data.

i 1 2 3 4 5 6 7 8 9 10 11 12
ti 0.35 0.21 0.45 0.24 0.31 0.25 0.29 0.24 0.34 0.33 0.45 0.37
δi 2 1 2 3 2 3 2 2 2 2 0 1
νi 0 0 0 0 0 0 0 0 0 0 0 0
τiL 0.19 0.16 0.18 0.18 0.19 0.18 0.16 0.20 0.17 0.18 0.17 0.17

i 13 14 15 16 17 18 19 20 21 22 23 24
ti 0.21 0.21 0.30 0.28 0.20 0.35 0.47 0.42 0.28 0.32 0.29 0.26
δi 2 2 3 2 2 3 0 1 1 2 3 1
νi 0 0 0 0 0 0 0 0 0 0 0 0
τiL 0.20 0.17 0.17 0.16 0.19 0.20 0.19 0.20 0.20 0.19 0.19 0.20

i 25 26 27 28 29 30 31 32 33 34 35 36
ti 0.46 0.18 0.21 0.27 0.34 0.31 0.21 0.28 0.20 0.23 0.19 0.27
δi 0 3 1 2 2 1 0 0 0 0 0 0
νi 0 0 0 0 0 0 1 1 1 1 1 1
τiL 0.18 0.16 0.17 0.20 0.18 0.17 0 0 0 0 0 0

i 37 38 39 40 41 42 43 44 45 46 47 48
ti 0.23 0.18 0.07 0.19 0.28 0.26 0.22 0.24 0.09 0.22 0.21 0.22
δi 0 2 2 3 0 0 0 0 2 0 0 0
νi 1 1 1 1 1 1 1 1 1 1 1 1
τiL 0 0 0 0 0 0 0 0 0 0 0 0

i 49 50 51 52 53 54 55 56 57 58 59 60
ti 0.22 0.24 0.17 0.25 0.20 0.20 0.23 0.22 0.20 0.26 0.23 0.20
δi 0 0 2 0 0 0 0 0 0 0 0 0
νi 1 1 1 1 1 1 1 1 1 1 1 1
τiL 0 0 0 0.01 0 0 0 0 0 0 0 0

i 61 62 63 64 65 66 67 68 69 70 71 72
ti 0.22 0.28 0.22 0.24 0.18 0.21 0.21 0.25 0.23 0.10 0.19 0.19
δi 2 0 2 0 3 2 0 0 2 1 0 0
νi 1 1 1 1 1 1 1 1 1 1 1 1
τiL 0 0 0 0 0 0 0 0 0 0 0 0

i 73 74 75 76 77 78 79 80 81 82 83 84
ti 0.22 0.17 0.23 0.22 0.26 0.16 0.28 0.20 0.25 0.08 0.17 0.24
δi 0 3 0 0 0 1 0 2 2 1 2 0
νi 1 1 1 1 1 1 1 1 1 1 1 1
τiL 0 0 0 0 0 0 0 0 0 0 0 0

i 85 86 87 88 89 90 91 92 93 94 95 96
ti 0.28 0.26 0.14 0.11 0.22 0.22 0.26 0.19 0.24 0.28 0.20 0.22
δi 0 0 2 2 0 0 0 0 0 0 0 0
νi 1 1 1 1 1 1 1 1 1 1 1 1
τiL 0 0 0 0 0 0 0 0 0 0 0 0

i 97 98 99 100
ti 0.14 0.26 0.26 0.19
δi 3 0 0 0
νi 1 1 1 1
τiL 0 0 0 0

References
1. Mao, S.; Shi, Y.M. Exact inference for joint Type-I hybrid censoring model with exponential competing risks data. Acta. Math.

Appl. Sin. 2017, 33, 645–658. [CrossRef]
2. Varghese, A.S.; Vaidyanatha, V.S. Parameter estimation of Lindley step stress model with independent competing risk under

Type-I censoring. Commun. Stat. Theor. Meth. 2020, 49, 3026–3043. [CrossRef]
3. Davies, K.F.; Volterman, W. Progressively Type-II censored competing risks data from the linear exponential distribution. Commun.

Stat. Theor. Meth. 2020, 1–17. [CrossRef]

http://doi.org/10.1007/s10255-017-0688-8
http://dx.doi.org/10.1080/03610926.2019.1584317
http://dx.doi.org/10.1080/03610926.2020.1764044


Mathematics 2021, 9, 2703 24 of 24

4. Lodhi, C.; Tripathi, Y.M.; Wang, L. Inference for a general family of inverted exponentiated distributions with partially observed
competing risks under generalized progressive hybrid censoring. J. Stat. Comput. Simul. 2021, 91, 2503–2526. [CrossRef]

5. Ren, J.; Gui, W. Statistical Analysis of Adaptive Type-II Progressively Censored Competing Risks for Weibull Models. App. Math.
Model. 2021, 98, 323–342.[CrossRef]

6. Crowder, M.J. Classical competing risks. In Classical Competing Risks; CRC Press: Boca Raton, FL, USA, 2001.
7. Lin, D.Y.; Sun, W.; Ying, Z. Nonparametric estimation of the gap time distribution for serial events with censored data. Biometrika

1999, 86, 59–70. [CrossRef]
8. Marshall, A.W.; Olkin, I. A multivariate exponential distribution. J. Am. Stat. Assoc. 1967, 62, 30–44. [CrossRef]
9. Feizjavadian, S.H.; Hashemi, R. Analysis of dependent competing risks in the presence of progressive hybrid censoring using

Marshall–Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 2015, 82, 19–34. [CrossRef]
10. Paul, B.; Dey, A.K.; Kundu, D. Bayesian analysis of three parameter absolute continuous Marshall–Olkin bivariate Pareto

distribution. Commun. Stat. Case Stud. Data Anal. Appl. 2018, 4, 57–68. [CrossRef]
11. Shen, Y.; Xu, A. On the dependent competing risks using Marshall–Olkin bivariate Weibull model: Parameter estimation with

different methods. Commun. Stat. Theor. Meth. 2018, 47, 5558–5572. [CrossRef]
12. Wang, Y.; Shi, Y.M.; Wu, M. Statistical inference for dependence competing risks model under middle censoring. J. Syst. Engrg.

Electron. 2019, 30, 209–222.
13. Shen, P.S. Semiparametric analysis of transformation models with dependently left truncated and right censored data. Commun.

Stat. Simul. Comput. 2017, 46, 2474–2487. [CrossRef]
14. Zhao, M.; Jiang, H.; Zhou, Y. Estimation of percentile residual life function with left truncated and right censored data. Commun.

Stat. Theor. Meth. 2017, 46, 995–1006. [CrossRef]
15. Ranjan, R.; Sen, R.; Upadhyay, S.K. Bayes analysis of some important lifetime models using MCMC based approaches when the

observations are left truncated and right censored. Reliab. Eng. Syst. Safe. 2021, 214, 10747. [CrossRef]
16. Hong, Y.; Meeker, W.Q.; McCalley, J.D. Prediction of remaining life of power transformers based on left truncated and right

censored lifetime data. Ann. Appl. Stat. 2009, 857–879. [CrossRef]
17. Emura, T.; Shiu, S.K. Estimation and model selection for left truncated and right censored lifetime data with application to electric

power transformers analysis. Commun. Stat. Simul. Comput. 2016, 45, 3171–3189. [CrossRef]
18. Jiang, W.W.; Ye, Z.S.; Zhao, X.Q. Reliability estimation from left truncated and right censored data using splines. Stat. Sin. 2020,

30, 845–875.
19. Kundu, D.; Mitra, D.; Ganguly, A. Analysis of left truncated and right censored competing risks data. Comput. Stat. Data Anal.

2017, 108, 12–26. [CrossRef]
20. Pena, E.A.; Gupta, A.K. Bayes estimation for the Marshall–Olkin exponential distribution. J. R. Stat. Soc. B. 1990, 52, 379–389.
21. Samanta, D.; Kundu, D. Bayesian inference of a dependent competing risk data. J. Stat. Comput. Simul. 2021, 91, 3069–3086.

[CrossRef]
22. Abdel-Hamid, A.H. Properties, estimations and predictions for a Poisson-half-logistic distribution based on progressively Type-II

censored samples. App. Math. Model. 2016, 40, 7164–7181. [CrossRef]
23. Ahmed, E.A. Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-

censored data with application. J. Appl. Stat. 2017, 44, 1576–1608. [CrossRef]
24. Kotb, M.S.; Raqab, M.Z. Inference and prediction for modified Weibull distribution based on doubly censored samples. Math.

Comput. Simul. 2017, 132, 195–207. [CrossRef]
25. Zhang, C.; Shi, Y.M. Statistical prediction of failure times under generalized progressive hybrid censoring in a simple step-stress

accelerated competing risks model. J. Syst. Engrg. Electron. 2017, 28, 282–291.

http://dx.doi.org/10.1080/00949655.2021.1901290
http://dx.doi.org/10.1016/j.apm.2021.05.008
http://dx.doi.org/10.1093/biomet/86.1.59
http://dx.doi.org/10.1080/01621459.1967.10482885
http://dx.doi.org/10.1016/j.csda.2014.08.002
http://dx.doi.org/10.1080/23737484.2018.1482479
http://dx.doi.org/10.1080/03610926.2017.1397170
http://dx.doi.org/10.1080/03610918.2015.1048879
http://dx.doi.org/10.1080/03610926.2015.1010006
http://dx.doi.org/10.1016/j.ress.2021.107747
http://dx.doi.org/10.1214/00-AOAS231
http://dx.doi.org/10.1080/03610918.2014.925923
http://dx.doi.org/10.1016/j.csda.2016.10.020
http://dx.doi.org/10.1080/00949655.2021.1917575
http://dx.doi.org/10.1016/j.apm.2016.03.007
http://dx.doi.org/10.1080/02664763.2016.1214692
http://dx.doi.org/10.1016/j.matcom.2016.07.014

	Introduction
	Model Description and Priors
	Marshall–Olkin Bivariate Rayleigh Distribution
	Notation
	Prior Assumptions
	Prior without Order Restriction
	Prior with Order Restriction


	Classical Inference
	Maximum Likelihood Estimation
	Approximate Confidence Intervals

	Bayesian Inference
	Inference with Order Restriction
	Classical Inference with Order Restriction
	Bayesian Inference with Order Restriction

	Prediction
	Classical prediction
	Bayesian Prediction

	Numerical Illustration
	Simulation Studies
	Illustrative Examples

	Conclusions
	The Proof of Theorem 1
	The Proof of Theorem 2
	The Proof of Theorem 3
	 The Proof of Theorem 4
	The Proof of Theorem 5
	Dataset 1
	Dataset 2
	References

