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Abstract: Market making is the process whereby a market participant, called a market maker,
simultaneously and repeatedly posts limit orders on both sides of the limit order book of a security
in order to both provide liquidity and generate profit. Optimal market making entails dynamic
adjustment of bid and ask prices in response to the market maker’s current inventory level and
market conditions with the goal of maximizing a risk-adjusted return measure. This problem is
naturally framed as a Markov decision process, a discrete-time stochastic (inventory) control process.
Reinforcement learning, a class of techniques based on learning from observations and used for
solving Markov decision processes, lends itself particularly well to it. Recent years have seen a
very strong uptick in the popularity of such techniques in the field, fueled in part by a series of
successes of deep reinforcement learning in other domains. The primary goal of this paper is to
provide a comprehensive and up-to-date overview of the current state-of-the-art applications of
(deep) reinforcement learning focused on optimal market making. The analysis indicated that
reinforcement learning techniques provide superior performance in terms of the risk-adjusted return
over more standard market making strategies, typically derived from analytical models.

Keywords: deep reinforcement learning; reinforcement learning; finance; market making; machine
learning; deep learning; survey; literature review

1. Introduction

Modern financial markets are increasingly order-driven and electronic, with the elec-
tronic limit order book (LOB) becoming the dominant trading form for multiple asset
classes. This electronification of financial markets has led to the increased importance of
certain (algorithmic) trading strategies, in particular market making strategies.

Market making (MM) is the process whereby a market participant simultaneously
and repeatedly posts limit orders on both sides of the limit order book of a given security,
with the goal of capturing the difference between their prices, known as the quoted spread.
A limit order book (LOB) is simply a collection of outstanding offers to buy or sell (limit
orders). Traders that rely on MM strategies are simply referred to as market makers.
A market maker might, for example, post a buy limit order at USD 99 and a sell limit
order at USD 101. If both orders become executed (i.e., if both a counterparty willing to
sell at USD 99 and a counterparty willing to buy at USD 101 emerge), the market maker
will capture the spread, i.e., earn USD 2, all while providing the market with liquidity.
However, if only one of the limit orders becomes executed, the market maker will not
only fail to capture the spread, but also obtain a nonzero inventory and consequently take
on the inventory risk that stems from fluctuations in the market value of the held asset.
A risk-averse market maker hence adjusts its quotes to increase the probability of selling
when its inventory is strictly positive, and vice versa, in order to dispose of the inventory
and mitigate the associated risk.

Market makers act to maximize their risk-adjusted returns while at the same time
playing a key role in the market by providing it with liquidity. Optimal MM entails
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dynamic adjustment of bid and ask prices in response to the market maker’s current
inventory level, current market conditions, and potentially additional variables. It is a
salient and well-studied problem in the field of quantitative finance, as well as a topic
of immense interest to both institutional (banks, large-scale companies) and individual
investors (such as private stock or cryptocurrency traders). Due to engaging in the MM
mechanism, market makers are exposed to multiple risks, including not only the inventory
and execution, but also adverse selection, latency, and model uncertainty risks. Most of
the research in the field focuses on the inventory risk and, to a somewhat lesser extent,
the adverse selection risk. Due to the need for inventory control, MM is naturally framed
as a Markov decision process (MDP), a discrete-time stochastic control process. Under such
a formulation, the market maker acts at discrete time steps by selecting prices at which to
post limit orders, and this selection constitutes a control mechanism.

Analytical approaches to MM abound in the literature. Arguably the most promi-
nent such approach was provided by Avellaneda and Stoikov [1], who introduced a
novel analytical MM model, the Avellaneda–Stoikov (AS) model, and used the under-
lying Hamilton–Jacobi–Bellman (HJB) equations to derive closed-form approximations
to the optimal quotes of a market maker. Most analytical approaches follow a similar
recipe, deriving (near-)optimal strategies via the use of a system of differential equations
underpinning the assumed model. However, such models (1) are typically predicated
upon a set of strong, naive assumptions, (2) employ multiple parameters that need to be
laboriously calibrated on historical market data, and (3) fail to properly take into account
the market microstructure dynamics, especially by assuming inconsistent limit order book
models [2]. For example, the AS model assumes that the reference price follows a driftless
diffusion process, that the intensities at which the market maker’s limit orders become
filled only depend on the distance from the reference price, and that the order arrivals
and the reference price are completely independent, all of which are proven not to be
reliable assumptions. Despite differing with respect to many facets, such as the choice of
the objective function and other modeling details, approaches belonging to this category
tend to be ill-suited for real-world MM modeling. Hence, there is a glaring need for novel,
more robust, data-driven approaches, ideally even capable of learning directly from data
in a model-free fashion.

Reinforcement learning (RL) is a class of machine learning techniques for direct
adaptive control. It comprises various data-driven approaches for efficiently solving MDPs
from observations and, as such, lends itself particularly well to the problem of optimal
MM. Lately, the popularity of deep reinforcement learning (DRL), the combination of
RL and deep learning (DL) in which deep neural networks (DNNs) are used as function
approximators for the RL state–action value function and/or policy, has grown immensely
due to a series of outstanding successes in various complex sequential decision-making
tasks, including the game of Go [3], continuous robotic control [4], and autonomous
driving [5].

Partly fueled by this, recent years (especially from 2018 onwards) have witnessed a
very strong uptick in the popularity of RL, and especially DRL approaches in the field. This
surge of interest is far from being confined to the topic of optimal MM. Au contraire, (D)RL
applications in finance are numerous and include, for example, portfolio optimization [6],
options pricing [7], and optimal execution [8], a research area intimately related to optimal
MM, with multiple researchers working across both areas. Whereas numerous reviews on
the applications of (D)RL in finance and economics [9,10] exist, to the authors’ knowledge,
no review studies have been published on the topic of optimal market making. Therefore,
our goal is to provide a comprehensive and up-to-date overview of the current state-of-the-
art applications of (D)RL directly focused on optimal MM. Our analysis indicates that (D)RL
approaches provide superior performance in terms of the risk-adjusted return over more
standard MM strategies, mostly derived from analytical models based on simple heuristics.
Furthermore, we provide a convenient categorization of such approaches, analyze multiple
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facets of RL frameworks proposed therein, and finally, shed some light on what we identify
as viable future research directions.

This paper is organized as follows: Section 2 gives an overview of the MDP, a mathe-
matical framework for modeling sequential decision-making problems. Furthermore, it
delves into various classes of RL algorithms, particularly covering dynamic programming,
temporal difference, policy gradient, and actor–critic methods. Section 3 provides a cat-
egorized overview of the current state-of-the-art applications of RL in optimal MM and
expounds on their characteristics, advantages, and disadvantages, while Section 4 provides
a thorough statistical analysis of the literature, covering multiple aspects, including the
state and action space representation, the reward function formulation, and the use of func-
tion approximation. Lastly, Section 5 wraps up the paper by considering some potentially
promising future research directions.

2. Overview of Reinforcement Learning
2.1. Markov Decision Process

A Markov decision process (MDP) is a stochastic control process, usually considered in
discrete time, as shown in Figure 1. Formally [11], an MDP is a tuple (S ,A,P ,R, γ) with:

• S— a set of states;
• A—a set of actions;
• P : S × A × S 7→ [0, 1]—a transition probability function (often expressed as a

three-dimensional matrix);
• R : S ×A 7→ R—a reward function;
• γ ∈ [0, 1]—a discount factor, capturing a possible preference for earlier rewards.

 

Action 
At 

State 
St 

Reward 
Rt+1 

Environment 

Agent 

Figure 1. A diagram of the MDP model.

At each discrete time t, the decision-maker, referred to as the agent, observes the
current state of the environment St and uses this information to select the action At,
which then affects the next state of the environment St+1 and the reward Rt+1. This pro-
cess is then iterated, and a (possibly infinite) sequence of states, actions, and rewards
(S0, A0, R1, . . . , St, At, Rt+1, . . .) is obtained. The environment is typically defined as every-
thing outside the agent’s direct control. Note that the action At generally does not uniquely
determine St+1: the transition matrix can be stochastic. Remarkably, the next state St+1
depends only on St and At and is therefore conditionally independent of past states and
actions, given the current state–action. Therefore, the state transitions of an MDP meet the
Markov property [12], thus warranting its name.

The agent’s selection of actions, i.e., its strategy is modeled as a function called a policy.
A policy can be either stochastic or deterministic. A stochastic policy π : A× S → [0, 1]
gives the probability of choosing action At = a given state St = s. A deterministic policy
π : S → A directly maps states into actions.
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The goal of the agent is to maximize the expected discounted cumulative rewards
(also called the return), formally given by the following expression:

Gt = Rt+1 + γRt+2 + ... =
∞

∑
k=0

γkRt+k+1. (1)

In order to ensure convergence, the discount factor γ is usually set to be < 1. To put it
another way, the agent’s goal is to find a policy that maximizes the expected return:

max
π

Eπ [Gt]. (2)

It should be noted that, instead of discounted cumulative rewards, the average reward
(reward per unit time) is sometimes used. A policy that maximizes the expected return is
called an optimal policy and is denoted by π∗. An optimal policy always exists, but is not
necessarily unique. Formally:

π∗(s) = arg max
π

Eπ [Gt]. (3)

The concept of a value function of a policy is pivotal in RL. For a given policy π and a
state s, the state value function is defined as:

vπ(s) = Eπ [Gt | St = s]. (4)

It gives the expected return if starting in some state s and then following policy π.
Similarly, for a given policy π, the action value function is defined as:

qπ(s, a) = Eπ [Gt | St = s, At = a]. (5)

Analogously, it provides the expected return if starting from some state s, taking
action a, and then, following policy π. Finally, the advantage function is defined as:

aπ(s, a) = qπ(s, a)− vπ(s). (6)

The advantage function indicates how good or bad an action is, relative to other
available actions, given a certain state. It is now possible to define a partial ordering over
policies. Policy π is said to be at least as good as policy π′ if and only if for all states s:

vπ(s) ≥ vπ′(s). (7)

All optimal policies achieve the same (optimal) state value function:

v∗(s) = max
π

vπ(s), (8)

as well as the same (optimal) action value function:

q∗(s, a) = max
π

qπ(s, a), (9)

for all s and a. Note that the following holds true:

π∗(s) = argmax
a

q∗(s, a) (10)

It is now clear that the value function is used as an auxiliary tool for finding an
optimal policy.
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2.2. Reinforcement Learning

Reinforcement learning comprises a class of algorithms for efficiently solving problems
framed as MDPs. For MDPs with high-dimensional (or even continuous) action or state
spaces, the use of exact tabular methods that estimate the action value function for each
state–action pair is impractical since the classical exploration of the complete state–action
space is unfeasibly costly. Hence, approximate methods are needed. For this reason, RL is
combined with function approximators based on neural networks (NNs), instance-based
methods, or decision trees, resulting in the field of DRL as introduced earlier. However, it
should be noted that the use of such approximative methods results in the loss of guarantees
of convergence to corresponding state–action value functions that otherwise hold. Multiple
RL taxonomies from various perspectives exist, including model-free and model-based
methods, policy-based, value-based, and actor–critic methods, tabular and approximative
methods, and finally, deep and nondeep methods.

It is also important to mention the exploration–exploitation tradeoff dilemma, which
is one of the fundamental problems in RL. Considering that the exhaustive search of all
policies is prohibitive, the RL agent has to constantly balance between testing new actions
(exploration) and selecting actions known to produce large rewards (exploitation).

2.2.1. Dynamic Programming

Although formally not considered an RL technique, dynamical programming (DP) [13]
algorithms are of great theoretical importance for any RL approach and are hence included
here. DP methods are used for directly solving MDPs with known underlying dynamics
(transition probability functions and reward functions). First note that the state value
function can be written recursively via the Bellman equation:

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] (11)

The Bellman equation for the optimal value function is referred to as the Bellman
optimality equation and is given by:

v∗(s) = E[Rt+1 + γv∗(St+1)] | St = s, At = a] (12)

Generally, DP methods simply turn Bellman equations into update operators, hence
recursively reducing a complex problem into a set of tractable subproblems. Value itera-
tion [11] is one of the best-studied DP algorithms. Along with policy iteration, it belongs to
a family of generalized policy iteration (GPI) approaches. Starting with arbitrary policy
values, it performs recursive backward updates of the values based on the Bellman opti-
mality equation until convergence takes place. Fortunately, convergence takes place under
the very same conditions that are needed to ensure the existence of v∗.

However, DP methods are of extremely limited (if any) utility in practice, not only
because the perfect knowledge of the model is rare, but also because of their prohibitive
computational cost when dealing with large state spaces. Regardless of this, DP is of utmost
theoretical importance as most RL methods amount to approximately solving the Bellman
optimality equation in absence of the knowledge of the underlying process dynamics,
by relying solely on data obtained via sampling.

2.2.2. Value-Based Methods

Value-based methods indirectly search for the optimal policy π∗ by approximating the
optimal state–action value function q∗(s, a) and particularly include temporal-difference
(TD) methods. TD methods learn by bootstrapping from the current estimate of the value
function. However, unlike DP methods, TD methods are based on sampling from the envi-
ronment. Perhaps the most important TD control algorithm is Q-learning [14]. Arguably
its most common variant, the one-step Q-learning, is defined by the following update:

q(St, At)← q(St, At) + α[Rt+1 + γ max
a

q(St+1, a)− q(St, At)] (13)
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where α denotes the learning rate (step size). At each update, the weighted average of the
old and new values is used. Given enough iterations, this will converge to the optimal
Q-values. While a greedy policy is used to update Q-values, the behavior policy is not
necessarily greedy. Hence, Q-learning is considered an off-policy TD control algorithm.

For MDPs with very large or continuous state spaces, function approximation is used,
and learning amounts to minimizing a sequence of loss functions given by:

Lj(θj) = E[r + γ max
a′

q(s′, a′; θj−1)− q(s, a; θj)]
2 (14)

where θ denotes the set of parameters of the function approximator. When DNNs are used
to approximate the q function, the terms deep Q-network (DQN) is used [15]. In such
DQN approaches, even small updates to q can significantly change the policy and the
data distribution due to correlation in subsequent observations, yielding instability in the
learning process. To alleviate this, a biologically inspired technique called the experience
replay is used. Instead of using the most recent action, experience replay relies on randomly
sampling prior actions from the replay buffer, resulting in decorrelation and better conver-
gence behavior. On top of that, reward clipping is also used to enhance the performance of
the DQN approach. Generally, value-based methods are computationally intractable when
the action space is continuous, which is often addressed by discretization. Nevertheless,
such methods still strongly suffer from Bellman’s curse of dimensionality [16].

2.2.3. Policy-Based Methods

Policy-based methods directly parametrize the policy πθ with a parameter θ. Formally:

πθ(s, a) = P [ a | s, θ]

The parametrized policy is then learned directly instead of indirectly by greedify-
ing the action-value function. This is commonly done by using various policy-gradient-
based algorithms.

Let us denote a differentiable objective function of a parametrized policy πθ by J(θ).
Policy gradient (PG) methods [17] search for a maximum of J(θ) by employing gradient
ascent. (Alternatively, gradient-free approaches such as hill climbing or genetic algo-
rithms, might be used). The average reward per time step is often used for the objective
function J(θ):

Jav(θ) = ∑
s

dπθ (s)∑
a

πθ(s, a)Ra
s (15)

where dπθ (s) is the stationary distribution of the Markov chain (on-policy state distribution)
under πθ andRa

s = E[Rt+1 | St = s, At = a]. After using the likelihood ratio trick, which
states that:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
= πθ(s, a)∇θ log πθ(s, a) (16)

it follows that (for one-step MDPs):

∇θ J(θ) = ∑
s∈S

d(s) ∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Ra
s (17)

or equivalently:
∇θ J(θ) = Eπθ

[∇θ log πθ(s, a)r] (18)

where r = Ra
s . Conveniently, due to the policy gradient theorem, it is possible to generalize

this result to multi-step MDPs by simply replacing r with qπ(s, a). The policy gradient
is hence:

∇θ J(θ) = Eπθ
[∇θ log πθ(s, a)qπθ

(s, a)] (19)

for a differentiable policy πθ(s, a) and a policy objective function J(θ). Finally, the gradient
ascent update equation is given by:
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θ ← θ + α∇θ log πθ(s, a)qπθ
(s, a) (20)

If vt is used as an unbiased sample of qπθ
, the resulting algorithm is called REIN-

FORCE [18] or Monte Carlo policy gradient (MCPG). Unfortunately, REINFORCE is char-
acterized by high variance (noisy gradients) and consequently results in unstable learning.
To tackle this, a baseline function B(s) that does not depend on action a (for example,
vπθ

(s)) can be subtracted from the policy gradient, in order to reduce variance without
changing expectation. Additionally, “vanilla” PG algorithms (such as REINFORCE) do not
lend themselves well to the credit assignment problem, which refers to the fact that, since re-
wards in RL are often temporally delayed, it is difficult to decipher precisely which actions
from a possibly long sequence of selected actions contributed to the observed reward.

2.2.4. Actor–Critic Methods

Actor–critic (AC) methods combine the advantages of both actor-only (policy-based)
and critic-only (value-based) methods. They learn both a parametrized policy πθ and an
estimate of the value function qw(s, a) and consist of two components: the critic, which
updates the value function parameters w, and the actor, which updates the policy parameter
θ in the direction recommended by the critic. The critic is hence used to provide the actor
with low-variance knowledge of the actor’s performance. The motivation behind AC
methods is clear: reduction of the high variance that plagues policy-based methods by
the introduction of baselines (e.g., the advantage function). The AC methods follow an
approximate policy gradient given by the following expression:

θ ← θ + α∇θ log πθ(s, a)qw(s, a) (21)

Various stochastic and deterministic possibilities for the choice of the critic and the
actor exist, including proximal policy and trust region policy methods. Typically, TD
learning is used to update the critic parameters. Although powerful, AC methods tend
to be prone to instability due to the constant interaction between the actor and the critic.
Estimation errors made by one affect the other, which causes a feedback loop, resulting
in destabilization of the learning process. This problem becomes especially thorny when
function approximation by nonlinear approximators, such as DNNs, is used.

Proximal policy optimization (PPO) algorithms [19] introduce surrogate objectives to
ensure monotonic policy improvement and increase stability. In PPO, the original objective
function of the REINFORCE algorithm is replaced by a surrogate objective function, which
can either be clipped or based on an adaptive Kullback–Leibler penalty [20]. The main
advantages of PPO include computational inexpensiveness and simplicity in comparison
to more general trust region policy optimization (TRPO) [21] algorithms.

The deterministic policy gradient (DPG) [22] directly learns a deterministic policy
given a state s. The deterministic policy gradient is given by:

∇θ J(θ) = Es∼ρµ [∇aqµ(s, a)∇θµθ(s)|a=µθ(s)] (22)

where µθ is a deterministic action function, qµ the corresponding action-value function,
and ρµ the state distribution. Due to this simple form, it is possible to estimate the gradient
more efficiently than is the case with the stochastic policy gradient.

Perhaps the most commonly used actor–critic method in portfolio optimization is
the deep deterministic policy gradient (DDPG) [23]. The DDPG is a state-of-the-art actor–
critic algorithm that uses a stochastic policy for behavior and a deterministic policy for
evaluation. It deals with the bias–variance trade-off by introducing bias (which stems from
the DQN) in order to reduce variance (which stems from the basic deterministic policy
gradient (DPG)). Therefore, it is an off-policy algorithm that combines DQN with DPG.
Somewhat similar to DQN, it uses a number of techniques in order to stabilize learning,
including a replay buffer, slowly updated target networks, and batch normalization layers.
To instigate exploration, the stochastic policy is obtained by adding noise to the actor policy:
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µ(s) = µθ(s) + ε (23)

where ε denotes temporally correlated Ornstein–Uhlenbeck noise or, alternatively, un-
correlated zero-mean Gaussian noise, in which case ε ∼ N (0, σ). In order to prevent
sudden changes in the target network values, DDPG uses conservative policy iteration
to update parameters “softly”. One of the main advantages of DDPG is its efficiency in
high-dimensional spaces since it requires integration over the state space and not the action
space. Furthermore, being an off-policy algorithm, DDPG treats exploration and learning
independently. However, its exploration is still somewhat limited due to the very nature of
the algorithm.

Generally, compared to value-based methods, policy-based methods have better
convergence properties and can easily tackle high-dimensional (or continuous) action
spaces. However, the policy evaluation part tends to be inefficient and plagued by high
variance, in part due to the use of stochastic policies. Furthermore, they are particularly
sensitive to the choice of hyperparameter values.

3. Literature Review
3.1. Introduction

In order to collect pertinent publications, an exhaustive search was conducted on
Elsevier Scopus, Google Scholar, and Thomson Reuters Web-of-Science, using the keywords
“market making” and “reinforcement learning” combined with the Boolean operator AND.
After removing duplicates and eliminating irrelevant references, the search yielded a total
of 23 relevant references, including grey literature (a doctoral thesis [24] and multiple
currently unpublished papers, mainly available on http://www.arxiv.com, accessed on
2 September 2021). Generally, Master’s theses [25–27] were considered, but not included.
Reference [28] was included due to its theoretical significance, despite it not offering a fully
fledged RL approach. (However, it is nevertheless omitted from Section 3). Figure 2 shows
the recent surge in the number of publications per year.

Year
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at
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9

2015 2016 2017 2018 2019 2020

Figure 2. Number of considered publications obtained via Elsevier Scopus, Google Scholar,
and Thomson Reuters Web-of-Sciences searches (plus the grey literature) on the applications of
(D)RL in optimal MM by year in the 2015–2020 period.

The references cover the period from 2001 to 2021, with the overwhelming majority
(20/23 or 87%) from 2018 onwards. They include 50 authors from 9 countries, including
the U.K. (18/50 or 36%), the USA (14/50 or 28%), and France (6/50 or 12%), as depicted in
Figure 3. As shown in Figure 4, old, seminal papers from the MIT AI Lab by Chan et al. [29]
and Kim et al. [30] are still among the most frequently cited, with 74 and 23 citations

http://www.arxiv.com
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to date. Among more modern papers, the most widely recognized seem to be [31–33],
with 34, 20, and 11 citations, respectively. Furthermore, the paper by Spooner et al. [32]
from 2018 already proved to be quite significant in the field, having influenced subsequent
research [34–36].

UK

USA

France

Argentina

Russia

Singapore

Croatia

Denmark

China

0 5 10 15 20

Figure 3. Number of authors by country.

Chan and Shelton, 
2001

Spooner et al., 2018

Kim et al., 2002

Guéant and Manziuk, 
2019

Ganesh et al., 2019

Spooner and Savani, 
2020

0 20 40 60 80

Figure 4. Number of citations by paper.

3.2. Categorization

RL applications in optimal MM can be divided following any of the general tax-
onomies outlined in Section 2.2. Furthermore, they can be categorized according to which
of the main strands of research the underlying MM model belongs. This results in three
classes of approaches: (1) inventory-based, focusing on the inventory risk and rooted in
the seminal paper by Ho and Stoll [37], (2) information-based, concerned primarily with
the adverse selection risk and inspired by yet another seminal paper (Glostein and Mil-
grom [38]), and (3) model-uncertainty-based, emphasizing the model risk and centered
on the paper by Cartea [39]. (The third class is particularly small. Yet, we still mention
it for the sake of completeness). However, for reasons of convenience, in this paper, we
adhere to a combined categorization into four categories: (1) information-based approaches,
(2) approaches stemming from analytical models, (3) nondeep approaches, and (4) deep
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approaches. It should be emphasized that this categorization is not mutually exclusive, but
is collectively exhaustive.

3.3. Information-Based Approaches

In these approaches, information asymmetry plays a pivotal role, with the market
maker being at an informational disadvantage compared to a fraction of traders. Chan
and Shelton [29] provided arguably the first model-free RL-based approach to optimal
MM, in which the agent sets bid/ask prices in response to its own inventory level and
measures of order imbalance and market quality. It is predicated upon the Glosten–Milgrom
information-based model and, as such, considers three types of market participants: a
monopolistic market maker, informed traders, and uninformed traders. By setting bid/ask
prices, the market maker implicitly tracks the stochastic process representing the true value
of the underlying stock that is not available to it. Kim and Shelton [30] later improved upon
this work by combining the order flow, modeled as an input–output hidden Markov model,
with the dynamics of the order book to build a more complex, albeit noninformation-
based model. Finally, they ran an RL algorithm based on likelihood ratios on the resulting
partially observable environment. Despite the relative simplicity of the proposed models,
these early attempts paved the way for further applications of DRL in MM more than 15 y
later, both in inventory- and information-based MM.

Mani and Phelps [40] generalized [29] by introducing a risk-sensitive RL approach,
based on Mihatsch–Neuneier one-step temporal difference learning algorithms [41]. The au-
thors concluded that the use of a Boltzmann softmax action-selection rule is key to suc-
cessful risk-averse MM as it results in large profits while maintaining low inventory levels.
Finally, in a somewhat similar vein, Ganesh et al. [31] took yet another information-based
approach and studied the behavior of an RL MM agent trained by a multiagent simulator
of a dealer market with M market makers and N investors. The results indicated that the
trained agent was capable of learning about its competitor’s pricing strategy and exploiting
market price drifts by skewing prices and building inventory. Additionally, they utilized
various reward function formulations in order to create a risk-averse RL MM agent.

3.4. Approaches Stemming from Analytical Models

This group comprises approaches employing or modifying the analytical MM models,
primarily the original AS model [1]. Selser et al. [42] applied RL algorithms to the AS
model and concluded that the DQN agent manages to outperform the analytical AS approx-
imations in terms of the Sharpe ratio and constant absolute risk aversion (CARA) utility
estimate. Similarly, Zhang and Chen [36] proposed a novel RL algorithm, the Hamiltonian-
guided value function approximation algorithm, to solve the generalized variant of the AS
model that includes the rebate. The authors thoroughly studied the effect of the rebate on
the MM agent’s quoted spread and market quality and concluded that the RL approach
offers results that are not only both accurate and robust, but also in line with the analytical
AS approximations. However, both [36,42] failed to take into account the existence of the
Guéant–Lehalle–Fernandez-Tapia (GLFT) approximations derived in [33], which would
provide a stronger benchmark.

Lastly, Spooner and Savani [43] formulated the AS model as a discrete-time zero-
sum game between an MM agent and an adversary, representing all the other market
participants, in a paper with a strong game-theoretical flavor. They applied adversarial
reinforcement learning (ARL) techniques to produce MM agents with improved perfor-
mance and robustness to model uncertainty. Interestingly, the authors also showed that,
in certain special cases, the obtained MM strategies correspond to Nash equilibria of the
corresponding game with a single stage.

3.5. Nondeep Approaches

Approaches that use tabular RL (most commonly Q-learning) and nondeep ap-
proaches, as opposed to complex DRL approaches, are listed here. In what they claim to be
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“the first practical application of RL to optimal MM”, Lim and Gorse [44] proposed a simple
tabular Q-learning-based approach utilizing the constant absolute risk aversion (CARA)
utility. The authors studied the influence of the CARA utility and finally demonstrated that
the RL approach outperforms the analytical AS approximations, as well as the zero tick
offset benchmark with respect to the cumulative profit and inventory metrics. Furthermore,
in one of the most influential papers of this type, Spooner et al. [32] developed an MM
agent using temporal-difference RL. In this paper, the authors experimented with different
state representations and reward function formulations and coalesced the best performing
components into a single agent exhibiting superior risk-adjusted performance. Intrigu-
ingly, the best-performing solution used a linear combination of tile codings as a value
function approximator and an asymmetrically dampened profit and loss (PnL) function as
a reward function.

Haider et al. [34] followed up on this approach by incorporating market spread into the
reward function to obtain a stabler and more consistent performance, as well as by [35] by
introducing Gaussian-distribution-based nonlinear function approximators. On a related
note, Zhong et al. [45] used Q-learning coupled with state aggregation in order to derive an
MM strategy implemented via a simple lookup table. Further nondeep approaches include
additional features such as latency effects [24], state space representation consisting of
technical indicators [46], and echo state networks (ESNs) [47].

3.6. DRL Approaches

This group contains approaches that use NNs with at least two hidden layers, either for
the actor or the critic network or both. Sadighian [48,49] provided (and later enhanced) an
end-to-end MM framework based on a state space comprising raw LOB data and additional
trade and order flow imbalance features. Multiple goal-, risk-, and PnL-based reward
functions were considered, and two state-of-the-art policy gradient-based algorithms,
namely proximal policy optimization (PPO) and advantage actor–critic (A2C), were used
to train the MM agent. The author finally demonstrated the effectiveness of the approach
for MM on cryptocurrencies. Patel [50] proposed a two-agent DRL framework in which
the macro-agent decides whether to buy, sell, or hold an asset based on minute tick data,
whereas the micro-agent uses LOB data to optimally place limit orders. The approach was
shown to lead to a stable trading strategy with low volatility and linear growth in profit.

Kumar [51] designed an MM agent based on a modified deep recurrent Q network
(DRQN), trained it on a highly realistic simulator of the LOB, and showed that the agent
successfully beats the benchmark from [32]. Gašperov and Kostanjčar [52] presented
a novel DRL framework for MM with signals, inspired by both ideas from ARL and
neuroevolution, with a focus on the interpretability of the learned controls. The resulting
DRL agent showed superior performance over multiple benchmark strategies, including
the approximations from [33].

Lastly, we mention two quite unique yet promising approaches also falling under this
umbrella. Gueant and Manziuk [53] addressed multi-asset MM in over-the-counter (OTC)
markets and proposed a model-based actor–critic-like algorithm for approximating optimal
bid/ask quotes over a large set of bonds in an AS-like multi-asset model. The authors
succeeded in demonstrating that the approach overcomes the “curse of dimensionality”,
i.e., is scalable to portfolios consisting of a few dozens of bonds. Somewhat similarly,
Baldacci et al. [54] considered an MM trader simultaneously trading in the dark and lit
pools of an exchange. This somewhat different problem is naturally formulated as a high-
dimensional partial differential equation (PDE), and the authors turned to DRL for the
design of algorithms that enable efficient approximation of the optimal controls of the
MM agent.
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4. Discussion
4.1. Advantages

There are numerous benefits to using (D)RL approaches for the problem of optimal
MM, including in particular:

1. Sequentiality: First and foremost, RL methods can easily address the sequentiality
(delayed evaluative feedback, sometimes referred to as intertemporality) inherent
to the problem of optimal MM. RL methods enable us to take into account not only
immediate, but also long-term consequences of actions. Note that this is not the
case with other supervised-learning-based approaches where feedback is instant.
For illustration, consider, for example, a market maker holding a positive inventory
of the traded asset. In the short-run, it might be best to ignore this fact and simply
focus on capturing the spread. However, in reality, it might be better to get rid of
the inventory (perhaps even instantly, with a market order) and thereby sacrifice
short-term profits to avert long-term potential losses. Such long-term considerations
are directly built into the notion of RL return;

2. Single-step framework: Converting predictive signals (such as trend and volatility
forecasts) into actual trading positions is far from a trivial task, not only in optimal
MM, but also generally in the field of portfolio optimization. It is normally a two-step
process that involves first making predictions based on financial data and then using
the predictions to somehow construct trading positions. Given that RL policies map
states (signals) into actions (quotes), the use of RL allows for merging of the two steps
into one, hence simplifying the process;

3. Model-freeness: In model-free RL methods, learning is performed directly from data,
without any explicit modeling of the underlying MDP’s transition or reward function
or any kind of prior knowledge. In such methods, the agent neither has access to nor
is trying to learn the model of the environment. Consequently, it exclusively relies
on sampling from the environment and does not generate predictions of the next
state or reward. This is particularly desirable in the context of optimal MM, since
(1) the true model of the environment is unavailable to the market maker and (2) the
existing (analytical) models of the market maker’s environment tend to be predicated
on naive, unrealistic assumptions and hence not fully warranted;

4. Use of the reward function: Various market frictions, such as transaction fees, slip-
pages, or costs due to the bid–ask spread, as well as risk penalty terms (e.g., running
or terminal inventory penalties, inventory PnL variance penalties) can easily and
elegantly be incorporated into the RL reward function, thereby obviating the need for
their additional consideration;

5. Use of DNNs: DRL methods use DNNs, universal function approximators [55],
to represent RL policies and value functions. (A neural network is considered “deep”
if it has at least two hidden layers). DNNs are characterized by the ability to handle
both nonlinear patterns and tackle low signal-to-noise ratios, both of which are
associated with financial data. Moreover, they are capable of yielding highly complex
nonlinear optimal (or near-optimal) policies and suitable for representation learning,
which is particularly convenient when learning from the raw data. Finally, DRL
methods are generally capable of tackling large (or even continuous) state and, in
some cases, action spaces.

A comparative overview of the characteristics of various (D)RL approaches in the
field is given by Table 1.
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Table 1. Overview of the characteristics of different (D)RL approaches in the field.

Ref. DRL Data State Space Action Space
(dim.) Rewards Function

Approximator Algorithm Benchmarks Multi-Agent
RL Fees Strand Model-

Free Evaluation Metrics

Chan and
Shelton [29] N

Simulated
(agent-based

model)

Inventory, order
imbalance, market
quality measures

Bid/ask price
changes (<∞)

PnL with an inventory
and quality penalty - Monte Carlo,

SARSA, actor–critic - N N Inf Y
Inventory, PnL,
spread, price

deviation

Kim et al. [30] N
Simulated
(fitted on

historical data)

Difference between the
agent’s bid/ask price
and the best bid/ask

price, spread, bid (ask)
size, inventory, total
volume of sell (buy)
orders of price less

(greater) than or equal
to the agent’s ask price

Bid/ask price
and size

changes (81)
PnL FFNN Algorithm from [56] - N N - Y PnL

Spooner et al. [32] N Historical Agent and market
state variables

Bid/ask
quote pairs

and a market
order (9)

Custom PnL
with a running

inventory penalty

Linear combination
of tile codings

Q-learning, SARSA,
and R-learning

variants

Fixed offset and the
online learning

approach from [57]
N N Inv Y Normalized PnL,

MAP, mean reward

Lim and
Gorse [44] N

Simulated
(LOB model

from [58])
Inventory, time Bid/ask quote

pairs (9)

Custom PnL with a
running inventory

penalty and a
CARA-based terminal

utility

- Q-learning

Fixed (zero-tick)
offset, AS

approximations,
random strategy

N Partly Inv Y PnL, inventory

Patel [50] Y Historical

1. Agent: historical
prices, market indicator

features, and current
assets list. 2. Agent:

time, quantity
remaining and

market variables

1. Agent: buy,
sell or hold (3).

2. Agent:
quote (101)

1. Agent: custom
PnL-based (clipped).

2. Agent: custom
PnL based

1. Agent: DQN.
2. Agent: DDQN.

1. Agent: DQN. 2.
Agent: DDQN.

Momentum investing,
buy and hold

investing
Y N - Y PnL

Mani et al. [40] N
Simulated

(agent-based
model)

Volume imbalance,
the MM agent’s
quoted spread

Changes in
quotes (9)

PnL with a running
inventory and
spread penalty

- Risk (in)sensitive
(double) SARSA

Different RL
algorithms N N Inf Y

Inventory, PnL,
spread, price

deviation

Wang [24] N
Simulated
(fitted on

historical data)

Bid/ask spread, order
volume at the best

bid/ask price,
inventory, relative
price, and queue

positions

Canceling or
posting orders,
doing nothing,
using market

orders (16)

PnL - GPI based

Heuristic polices
taking limit order

imbalance at the best
price into account

N Y Inv Y PnL

Haider et al. [34] N Historical

Inventory, bid/ask
level, book imbalance,

strength volatility
index, market

sentiment

Bid/ask quote
pairs (6)

Custom PnL with a
running inventory (and

market spread and
volatility) penalty

Tile coding SARSA

Benchmark from
Spooner et al. [32],

variant with
market vol.

N N Inv Y PnL

Gueant and
Manziuk [53] Y

Simulated
(fitted on

historical data)
Inventories Bid/ask

quotes (∞)
PnL with a running
inventory penalty FFNN Actor–critic-like - N N Inv N Mean reward

Ganesh
et al. [31] Y

Simulated
(fitted on

historical data)

Trades previously
executed, inventory,

midprice, and spread
curves, market share

Spreads to
stream, fraction

of the
inventory to
buy/sell (∞)

PnL with an inventory
PnL variance penalty FFNN PPO with

clipped objective

Random, persistent,
and adaptive

MM agent
N Y Inv Y

PnL, total
reward, inventory,

hedge cost
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Table 1. Cont.

Ref. DRL Data State Space Action Space
(dim.) Rewards Function

Approximator Algorithm Benchmarks Multi-Agent
RL Fees Strand Model-

Free Evaluation Metrics

Sadighian [48] Y Historical

LOB, TFI, and OFI
snapshots, handcrafted

risk/position
indicators, latest action

Bid/ask quote
pairs, a market
order, no action

(17)

Custom PnL-based
(positional PnL and
trade completion)

FFNN A2C, PPO - N Y - Y PnL, inventory

Baldacci et al. [54] Y Simulated Principal incentives,
inventory

Volumes on the
bid/ask side

(∞)
CARA-based FFNN Actor–critic-like - N Y Inv Y -

Lokhacheva et al.
[46] N Historical

Exponential moving
average, relative
strength index, ?

Buy/sell, ? (2) PnL - Q-learning - N N - Y Mean reward

Sadighian [49] Y Historical

LOB, TFI and OFI
snapshots, handcrafted

risk/position
indicators, latest action

Bid/ask quote
pairs, a market

order, no
action (17)

Custom PnL-based,
risk-based, and

goal-based
FFNN A2C, PPO - N Y - Y PnL, inventory

Kumar [51] Y
Simulated

(agent-based
model)

Agent and market state
variables

Buy, sell, hold,
cancel (4) PnL DRQN (with LSTM)

DRQN with double
Q-learning and

prioritized
experience replay

DQN, benchmark
from

Spooner et al. [32]
N Y Inf Y Normalized PnL,

MAP, mean reward

Zhang and
Chen [36] Y Simulated (AS

model) Inventory, time Bid/ask
quotes (∞) CARA terminal utility FFNN

Hamiltonian-guided
value function
approximation

algorithm (HVA)

AS approximations N Y Inv N PnL, rebate analysis

Spooner and
Savani [43] N Simulated (AS

model) Inventory, time
Bid/ask quotes
relative to the
midprice (∞)

PnL with a running
and terminal inventory

penalty

Radial basis function
networks [11],
linear function

approximators using
3rd-order

polynomial bases

NAC-S(λ)
RL agents trained

against random and
fixed adversaries

Y N Mod Y
PnL, Sharpe ratio,

terminal inventory,
mean spread

Zhong et al. [45] N Historical

Inventory sign,
cumulative PnL, sell-
and buy-heaviness,

midprice change
magnitude and

direction

Adding or
canceling

orders or doing
nothing (2–4)

PnL - Q-learning
Random strategy,

firm’s strategy, fixed
(zero-tick) offset

N N Inv Y PnL, Sharpe ratio

Hart et al. [47] N Simulated Inventory
Movement of

bid/ask quotes
(∞)

PnL with a running
inventory penalty ESN

RL algorithm
supported by an

ESN
- N Y Inv Y -

Selser et al. [42] Y Simulated (AS
model) Price, inventory, time Bid/ask quote

pairs, ? (21)
PnL with a PnL

variance penalty DQN DQN, Q-learning
Symmetric strategy,
AS approximations,

Q-learning agent
N N - Y PnL, Sharpe ratio,

mean reward, utility

Gašperov and
Kostanjčar [52] Y Historical

Inventory, trend and
realized price range

forecasts

Bid/ask quotes
relative to the
best bid/ask

(∞)

Custom PnL with a
running inventory

penalty
FFNN Neuroevolution

Fixed offset with inv.
constraints, GLFT
approximations

Y N Inv Y
Ep. return, PnL,

MAP, MDD, rolling
PnL-to-MAP

Haider et al. [35] N Historical

Volatility, relative
strength index, book
imbalance, inventory,

bid/ask level

Bid/ask quote
pairs, a market

order (8)

Custom PnL with a
running inventory

penalty

Gaussian-based
nonlinear function

approximator
(GBNLFA)

GBNLFA (TD-based) DQN and tile codings N N Inv Y Quoted spread, PnL,
cumulative reward
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4.2. Deep vs. Nondeep

Out of 22 considered papers, 10 (45%) presented DRL approaches. The vast majority of
DRL approaches use relatively shallow architectures with only two hidden layers, with all
studies seemingly using architectures with five or more hidden layers. Such simpler, rela-
tively shallow NN designs are more common in RL (as opposed to supervised learning),
with the classical DQN architecture, for example, comprising only three convolutional lay-
ers followed by two fully connected layers [59]. This is in accordance with the observation
that the lion’s share of studies in the field relies on handcrafted feature engineering instead
of offering end-to-end automated solutions directly using raw (LOB) data, which would be
expected to require comparatively deeper NN designs.

4.3. Multi-Asset vs. Single-Asset

Among all considered references, only [53] covered the practically important topic
of multi-asset optimal MM [60,61], by considering cases with 2, 8, and even 20 assets. It
was emphasized in [53] that classical finite-difference methods are inviable for cases with
>6 assets, and hence, a DRL-based approach is preferred. Still, note that the size of the
MM agent’s action space in a multi-asset environment increases exponentially with the
number of considered assets if the actions are discrete. For this reason, policy-based or AC
methods seem to be a superior choice over value-based alternatives, as they can tackle very
large or even continuous action spaces. We expect future work to address this problem in
more detail, possibly combining the framework from [53] with more sophisticated state
space modeling.

4.4. Data

It could be argued that, due to the sample inefficiency of RL methods, the use of
complex, high-fidelity market data simulators capable of producing an arbitrary number
of samples (episodes) is advisable. Such simulators can either be interactive-agent-based
(IABS), in which case an interplay of multiple market participants gives rise to the market
dynamics or single-agent where the dynamics are modeled (by stochastic processes) as
exogenous. (For an example of an IABS simulator, see the ABIDES [62] environment).
There were 13/22 (59%) of the considered papers that employed simulators, primarily
based on analytical MM models. Among them, 3/22 (14%) were based on agent-based
models and 3/22 (14%) on the AS model. Only 4/13 (31%) papers employed simulators
calibrated with historical data.

However, the question of whether simulator-based approaches can replicate stylized
empirical facts present in a real market arises [63]. Furthermore, serious calibration issues
tend to appear, especially in the absence of large datasets. As an alternative to simulations,
straightforward single-agent market replay [64] of historical data was utilized in 9/22 (41%)
papers. In such approaches, a single realized random path produced by a certain process
is directly used to train the RL agent. Unfortunately, this can easily result in overfitting,
i.e., the inability of the RL agent to generalize out-of-time. Some authors [52] proposed ARL-
based techniques to ameliorate this problem and ensure better generalization properties.
Additionally, it should be emphasized that publicly available datasets suitable for market
making applications are quite rare, especially considering that both quotes and trades data
are needed. (For a publicly available benchmark LOB dataset covering a few thousand
stocks, see Reference [65]).

In our view, interactive agent-based simulation (IABS) approaches seem to be un-
derutilized, especially given the fact that they can take into account the reaction of other
market participants to the RL agent. Furthermore, more attention should be paid to the
issue of online learning, which has very seldom been tackled [28].
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4.5. State Space Design

Inventory-based state space features are, unsurprisingly, most widely represented,
appearing in 20/22 (91%) of the considered references. Further commonly encountered
features are bid/ask spread (8/22 or 36%), queue imbalance (6/22 or 27%), volatility,
(6/22 or 27%), and RSI (6/22 or 27%) based. They are followed by volume imbalance
and active quoting distances, which both appeared in 5/22 (23%) papers, as well as time.
This feature was included predominantly in papers based on the analytical AS model,
which includes the terminal time T denoting the end of the trading day or session. Few
papers [48,49] offered end-to-end solutions in which raw inputs such as LOB data are
directly mapped to actions, i.e., MM agent’s quotes. Additionally, we note that [48–50]
included lag features (i.e., lookback windows). Figure 5 summarizes the most commonly
appearing state space features.

Inventory-based 
(20)

Bid-ask-spread-
based (8)

Queue imbalance 
(6)

Volatility-based (6)

RSI (6) Time-based (5)
Volume 

imbalance (5)

Active 
quoting-
based (5)

Current 
price-based 

(4)

Mid-price 
move-based 

(4)

PnL-based (3)

Historical 
LOB data (3)

Past prices 
(2)

Signed 
volume (2)

Previous 
action (2)

Order 
competion 

ratio (2)

Reward (2)

Order flow 
imbalances 

(2)

Historical 
notional 

imbalanc…

Cumulative 
notional 
value (2)

Figure 5. Overview of the most commonly used state space variables.

It should be emphasized that an adequate state space representation, both rich enough
to contain all the meaningful information and sparse enough to enable quick learning, is
crucial to facilitating learning and improving the efficiency of RL algorithms. As explained
above, most current works use arbitrarily selected state space representations consisting
of inventory-based and bid/ask spread-based features and numerous other arbitrary
handcrafted features, such as technical indicators. On a related note, the current research
on the state space representations (which might be based, for example, on deep autoencoder
networks or slow-feature analysis) in the context of financial applications, including the
problem of optimal MM, is quite scarce. Among rare examples of this type in portfolio
optimization is the work of Dempster and Romahi [66], in which the authors used genetic
algorithms to identify the best-performing combination from the set of eight technical
indicators, which was then used as a state space representation for the RL algorithm. We
remark that more focus should be given to such and similar approaches in optimal MM in
order to render the choice of the state space representation less arbitrary than is the case
with current works.

4.6. Action Space

Discrete action spaces are used in a great majority of papers (15/22 or 68%). Among pa-
pers employing discrete action spaces, 11/15 (73%) exhibited very small action spaces
with less than 20 available actions. Continuous action spaces are commonly (3/7 or 43%)
used in conjunction with the AC algorithms. Actions are predominantly represented as
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offsets from the midprice (or the best bid and best ask) or predetermined bid/ask pairs.
In a smaller number of papers [24,32,48,49], additional actions representing market orders,
which are used to clear or reduce the inventory, are allowed. This is in line with analytical
MM models [67] in which the market maker interacts with the LOB by posting both market
and limit orders.

4.7. Rewards

All considered papers employed PnL-based rewards, either with (11/22 or 50%) or
without (11/22 or 50%) some form of inventory penalization, mostly running (9/11 or
82%). Market spread, volatility, quality, and (inventory) PnL variance-based penalties were
also used. There were 3/22 (14%) papers relying on the CARA utility, mostly as a terminal
reward. The differential Sharpe ratio was used as a reward function only in [49], which
considered and analyzed a broad spectrum of reward functions. Generally, dense rewards
seem to be preferred, which is hardly surprising given the fact that they ameliorate the
learning process, especially compared to much more challenging sparse rewards.

A relatively large number of papers completely disregarded risk aversion and some-
what naively assumed risk-neutral market makers, and in some papers, the risk was
managed purely by means of the fixed inventory constraints. Whereas the majority of
considered approaches did consider some form of risk management, this was typically
done only for a single value of the risk aversion parameter. Missing from the literature
were MM frameworks yielding the mapping between the market maker’s risk preferences
and optimal quotes. For an example of such an approach in the area of optimal execution,
see [68].

4.8. Function Approximation

Function approximation was used in 16/22 (73%) papers, whereas 6/22 (27%) em-
ployed only tabular approaches. The vast majority of function approximators (12/16 or
75%) were represented by NNs. Other used approximators included (a linear combina-
tion of) tile codings, radial basis function networks, linear function approximators using
third-order polynomial bases, and Gaussian-based nonlinear approximators. Within pa-
pers using NNs, FFNNs were most widely represented (7/12 or 58%), followed by more
sophisticated architectures, namely DQNs (2/12 or 17%), DDQNs, DRQNs, and ESNs
(each 1/12 or 8%). Observe that FFNNs were mostly used in conjunction with AC and PG
algorithms, whereas value-based approaches rely primarily on DQN and its derivatives.
This predominance of FFNNs is partly due to the use of mainly handcrafted features in
lieu of the raw data, which would require more sophisticated designs (such as LSTMs and
CNNs) capable of extracting temporal, spatial, and other features.

4.9. Algorithm

The most commonly used tabular RL methods are Q-learning (5/22 or 23%) and
various SARSA variants (4/22 or 18%), whereas DRL methods extensively employ DQN
variants (4/22 or 18%), PPO (3/22 or 14%), and general actor–critic (3/22 or 14%) ap-
proaches. We note the tendency to use general-purpose, out-of-the-box RL algorithms
instead of special-purpose algorithms tailored specifically to the domain. (See [69] for a
specialized algorithm in the area of optimal execution). We found only a single paper [40]
employing techniques from risk-sensitive RL.

4.10. Benchmarks and Performance Metrics

The selection of proper performance metrics and benchmarks is paramount in vali-
dating RL approaches to optimal MM. Fixed-offset strategies (4/22 or 18%) and AS/GLFT
approximations (4/22 or 18%) represent the most frequent benchmarks for comparison
against the proposed RL methods. They are followed by random strategies and the bench-
mark from [32] (both 2/22 or 9%). PnL- (18/22 or 82%) and inventory- (10/22 or 45%) based
performance metrics are most commonly reported. Other frequently reported performance
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metrics include the mean absolute position (3/22 or 14%) and the Sharpe ratio (3/22 or
14%). Promisingly, all 22 references reported positive results. However, due to the vast
diversity of used datasets, experimental setups, and implementation details, side-to-side
performancewise comparison of the existing approaches remains a daunting task. All of
this is further exacerbated by the crisis of reproducibility [70] in DRL. Hence, it is far from
surprising that there is no consensus on what types of classes are most fruitful, let alone on
which individual methods are superior to others.

4.11. Model-Free vs. Model-Based

It is evident that the research field is dominated by model-free approaches (20/22 or
91%), leveraging the power of model-free RL capable of learning tabula rasa. Although this
is partly due to the reasons outlined in Section 4.1, we note that model-free RL is generally
more popular than model-based RL across different domains.

4.12. Remaining Aspects

Most papers (14/22 or 64%) belong to the inventory-based MM strand, which is also
the case with analytical approaches. Although agent-based MM models were considered in
several papers [29,40,51], they do not constitute multi-agent reinforcement learning (MARL)
on their own. MARL approaches seem to be rare and either include adversaries [43] or MM
frameworks comprised of several subagents [50]. Finally, we emphasize that the majority
of current works (13/22 or 59%) completely neglect trading fees and other market frictions,
diminishing the practical importance of such approaches to a certain degree.

5. Conclusions

Reinforcement learning methods provide a natural way of tackling the problem of
optimal MM. In this paper, we provided a thorough review of the current state-of-the-art in
the field and considered various aspects of the existing frameworks. Although there seems
to be an almost clear consensus among researchers on the superiority of the (D)RL methods
over more standard MM strategies, the field is still in a nascent stage of development, and
many challenges are to be addressed before it becomes a de facto standard for optimal
MM. Moreover, even when employing state-of-the-art frameworks and DRL algorithms,
the majority of approaches still somewhat rely on simplified market microstructure models
and use unrealistic assumptions such as the absence of trading costs and other market
frictions. Furthermore, although promising, the current results do not match those achieved
in some other domains, primarily games such as Atari and AlphaGo [3,15]. In what follows,
we list some of the key considerations that we believe should be taken into account in
developing novel (D)RL-based solutions:

1. To properly incorporate risk management into MM frameworks, one should turn
to risk-sensitive, safe, and distributional RL, branches that are currently severely
underutilized in the field. Distributional RL [71] (a) provides a natural framework
that enables easier incorporation of the domain knowledge, (b) is easily combined
with risk-sensitive considerations, and (c) improves performance in leptokurtic envi-
ronments, such as financial markets;

2. Regardless of the choice of the algorithm, effective state representations are pivotal
in alleviating the problem of sample inefficiency. This is a burning issue in RL.
According to Böhmer [72], a good state space representation should be (a) Markovian,
(b) capable of representing the (true) value of the current policy well enough for
policy improvement, (c) capable of generalizing the learned value-function to unseen
states with similar futures, and (d) low-dimensional. More systematic approaches to
state space construction, based on state representation learning (SRL) algorithms [73]
such as autoencoders should be given further attention. Such algorithms extract
meaningful low-dimensional representations from high-dimensional data and thereby
provide efficient state representations;
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3. Despite the prevailing focus on model-free models, model-based RL should not be
disregarded, due to its numerous benefits, including better sample efficiency and
stability, safe exploration, and explainability [74];

4. Virtually all current approaches assume stationarity, i.e., that the dynamics of the
underlying environment do not change over time. Therefore, the issue of the nonsta-
tionarity of financial markets still goes unaddressed. A possible way to tackle this
issue could be through the development of adaptive RL agents capable of adapting to
dynamic and noisy environments by continuously learning new and gradually forget-
ting old dynamics, perhaps via evolutionary computation methods. The technique of
nowcasting [75] or “predicting the present”, applied to, for example, order or trade
flow imbalance, provides a promising option as well and should be considered, espe-
cially during state space design, to account for different market regimes. Finally, on a
somewhat related note, it would be interesting to consider online learning approaches
in the spirit of [57] based on (D)RL;

5. As acknowledged by [76], the outstanding advancements and potential benefits of
data-driven complex machine learning approaches in finance emerged within the
so-called second wave of artificial intelligence (AI). However, in order to foster their
further applications in various domains, especially in finance, there is an emerging
need for both transparent approaches behind the behavior of deep learning-based AI
solutions and understandable interpretations for specific algorithmic behavior and
outcomes. Even though deep learning models have managed to significantly outper-
form traditional methods and achieve performance that equals or even supersedes
humans in some respects, ongoing research in finance should enhance its focus on
explainable artificial intelligence in order for humans to fully trust and accept new
advancements of AI solutions in practice. Consequently, special attention should
be given to the development of contextual explanatory models to push even further
the transparency and explainability of black-box algorithms. In this way, the perfor-
mance and accountability of sophisticated AI-based algorithms and methods could
be continuously improved and controlled. In particular, in the context of MM and
DRL, more focus should be put on the explainability of the obtained RL policies (i.e.,
MM controls), an area that has so far been poorly explored, despite the explainability
requirements [68] of financial regulators.

In any case, and regardless of the choice of algorithm, market makers will need to
keep making sequential decisions based on imperfect information. In spite of the numerous
challenges lying ahead, we see great potential for the future development of novel DRL-
based approaches to optimal MM.

Author Contributions: Conceptualization, B.G., S.B., P.P.Š. and Z.K.; methodology, B.G. and Z.K.;
formal analysis, B.G., P.P.Š. and Z.K.; writing—original draft preparation, B.G.; writing—review and
editing, B.G., S.B., P.P.Š. and Z.K.; visualization, B.G.; supervision, Z.K.; project administration, Z.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Croatian Science Foundation under Project
5241 and in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009
(DATACROSS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 2689 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

A2C Advantage actor–critic
AC Actor–critic
ARL Adversarial reinforcement learning
AS Avellaneda–Stoikov
CARA Constant absolute risk aversion
CNN Convolutional neural network
DDPG Deep deterministic policy gradient
DDQN Deep deterministic Q-network
DNN Deep neural network
DP Dynamic programming
DQN Deep Q-network
DRL Deep reinforcement learning
DRQN Deep recurrent Q-network
ESN Echo state network
FFNN Feed-forward neural network
GBNLFA Gaussian-based nonlinear function approximator
GLFT Guéant, Lehalle, and Fernandez-Tapia
GPI Generalized policy iteration
HJB Hamilton–Jacobi–Bellman
IABS Interactive-agent-based simulator
LOB Limit order book
LSTM Long short-term memory
MAP Mean absolute position
MARL Multi-agent reinforcement learning
MCPG Monte Carlo policy gradient
MDD Maximum drawdown
MDP Markov decision process
MM Market making
NN Neural network
OFI Order flow imbalance
OTC Over-the-counter
PG Policy gradient
PnL Profit and loss
PPO Proximal policy optimization
RL Reinforcement learning
RSI Relative strength index
SRL state representation learning
TD Temporal difference
TFI Trade flow imbalance
TRPO Trust region policy optimization
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