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Abstract: Diversified top-k weight clique (DTKWC) search problem is an important generalization of
the diversified top-k clique (DTKC) search problem with practical applications. The diversified top-k
weight clique search problem aims to search k maximal cliques that can cover the maximum weight in
a vertex weighted graph. In this work, we propose a novel local search algorithm called TOPKWCLQ
for the DTKWC search problem which mainly includes two strategies. First, a restart strategy is
adopted, which repeated the construction and updating processes of the maximal weight clique set.
Second, a scoring heuristic is designed by giving different priorities for maximal weight cliques in
candidate set. Meanwhile, a constraint model of the DTKWC search problem is constructed such
that the research concerns can be evaluated. Experimental results show that the proposed algorithm
TOPKWCLQ outperforms than the comparison algorithm on large-scale real-world graphs.

Keywords: CPLEX; DTKWC; local search; MILP; scoring strategy

1. Introduction

Given an undirected graph G = (V, E), a clique is a subset of the graph G, where any
two vertices are adjacent. The maximal clique (MC) is a clique with the largest cardinality
in the graph G. The maximum weight clique (MWC) is a generalization of MC with a
positive integer assigned to each vertex as its weight value. The diversified top-k clique
(DTKC) search problem aims to find a set with at most k maximal cliques to occupy as many
vertices as possible, where k is a parameter that requires to be provided. The diversified
top-k weight clique (DTKWC) search problem [1] attempts to search a set with at most k
maximal weight cliques in the graph G with the largest total weight of covered vertices in
these cliques, which can be readily verified as a NP-hard problem [2].

The MC and related problems have lots of applications, especially in real-world
applications such as combinatorial auction [3], community detection [4,5] and video object
segmentation [6]. Recently, considerable attentions have also been paid to solve top-
k problems on large graphs [2,7,8]. This kind of problem can be very well applied to
practical applications, such as the influential community [9], motif discovery in molecular
biology [10]. For example, citation networks are usually represented as a type of social
network with papers and links between citation relationships. In citation networks, denoted
as graph G, papers are considered as vertices, and citation relationships are the edges
between papers. The influence on the paper is viewed as a weight in G. The problem aims
to search the top-k maximal divisive groups with different domains in G, which can be
regarded as finding a DTKWC solution.

To solve MC and WMC problems on large-scale graphs effectively, some related meth-
ods have been proposed. These algorithms are usually divided into two categories: (1)
the first one is the exact algorithms which can guarantee the optimality of the solutions,
such as [11–13]. But exact algorithms may fail to solve the graphs within a reasonable
time when the scale of them are larger. The second one is the local search algorithm,
which is considered to find a suboptimal solution within a reasonable time for medium
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even larger graphs. And a large amount of effort has been devoted to designing differ-
ent local search algorithms. For example, there exist lots of local search algorithms for
solving WMC, e.g., [14,15]. Although there exist many algorithms to solve MC and WMC
problems, currently, there are very few methods for diversified top-k cohesive groups.
Such as Yuan et al. [7,8] (2015, 2016) proposed the concept of DTKC and then provided an
approximate algorithm for it. Wu et al. [2] (2020) provides a local search algorithm to solve
the DTKC search problem in large graphs, and it is state-of-the-art algorithm for DTKC
search problem. Wu and Yin [16] (2021) introduce a problem of finding cohesive groups,
named DTKSP problem, and develop a local search method based on some new heuristic
strategies for this problem. Zhou et al. [1] (2021) encode the DTKWC search problem
into the weighted partial MaxSAT (WPMS) problem, including direct encoding (DE) and
independent set partition based encoding (ISPE), and solving WPMS with state-of-the-art
solvers. However, this method is limited to solve real-world large graphs, because it is
failed to encode large graphs into WPMS.

In this work, we propose a local search algorithm for the DTKWC search problem
in large graphs, which provides a local optimal solution within a reasonable time and
avoids the generation and storage of all maximal weight cliques. It aims at addressing the
aforementioned problem. This algorithm, named TOPKWCLQ (which stands for top-k
weight cliques), is based on two main strategies.

The first strategy is a restart method that can deal with the cycling problem. In the
process of searching for the maximal weight clique, TOPKWCLQ will repeat to create a
new maximal weight clique after initializing the set of maximal weight cliques and update
this set through a scoring function. When the algorithm cannot be updated at fixed steps,
it performs the restart process with the current best candidate solution.

The second strategy is a scoring function, which is designed by giving different
priorities for maximal weight cliques in the candidate solution. During the searching
process, TOPKWCLQ constructs and then maintains a candidate solution which size is at
most k by adding or removing the maximal weight cliques according to the score value of
each one. The score of each maximal weight clique is calculated by the total weight of the
vertices that the clique has exclusively in the candidate solution.

To date, there is no suitable comparable algorithm for the DTKWC search problem on
large scale of real-world graphs. Thus, we compare TOPKWCLQ with a commercial solver,
CPLEX solver, with the constraint formulas proposed in this paper. Extensive performance
experiments are executed to demonstrate that our proposed algorithm can achieve both
high effectiveness and efficiency on real-world large-scale graphs.

The remainder of the paper is organized as follows. In Section 2, we propose the
necessary background knowledge about diversified top-k weight clique search problem
and formalize the DTKC and DTKWC search problem. In Section 3, we describe the
TOPKWCLQ algorithm and the techniques it implements. In Section 4, we report extensive
experimental results to demonstrate DTKWC’s high performance compared to CPLEX
with our model in solving the DTKWC search problem, and finally, the conclusions are
given in Section 5.

2. Diversified Top-k Weight Clique Search Problem

In this section, some notations and basic definitions which are applied to the DTKWC
search problem are introduced. Then the proof of NP-hardness about DTKWC search
problem is given. Next, the constraint formulas which are used in CPLEX solver as the
mathematical model for DTKC and DTKWC search problem are proposed, respectively.

2.1. Definition and Notations

A weighted graph G = (V, E, w) is a graph including |V| vertices and |E| edges, w is a
weight function that assigns to each vertex vi of V a non-negative integer w(vi) representing
its weight. vw(vi)

i represents that vertex vi has weight w(vi).



Mathematics 2021, 9, 2674 3 of 17

Definition 1 (Maximal clique (MC)). Given an unweighted graph G(V, E), a clique c in G is
a set of vertices such that for any u ∈ G, v ∈ c (u 6= v), we have (u, v) ∈ E. A clique c in G called
a maximal clique if there exists no clique c

′
in G such that c ⊂ c

′
.

Definition 2 (Maximal weight clique (MWC)). Given a weighted graph G(V, E, w), a weight
clique c in G is a set of vertices such that for any u ∈ G, v ∈ c (u 6= v), we have (u, v) ∈ E and
the weight of c is ω(c) = ∑vi∈c w(vi). A weight clique c in G called a maximal weight clique if
there exists no clique c

′
in G such that ω(c) < ω(c

′
).

Given a set of maximal cliques C = {c1, c2, . . . }, the coverage of C, denoted by cov(C),
is the set of vertices covered by C, i.e., cov(C) =

⋃
ci∈C ci.

Definition 3 (Diversified top-k clique (DTKC)). Given an unweighted graph G(V, E) and an
integer k, the problem of diversified top-k clique search is to compute a set C, such that each c ∈ C
is a maximal clique, |C| ≤ k, and cov(C) is maximized. C is called diversified top-k cliques.

Given a set of maximal (weighted) cliques C = {c1, c2, . . . }, the private vertices of
a maximal (weighted) clique c in C, denoted by priv(c, C), are a subset of vertices of c
not contained in any other clique in C, i.e., priv(c, C) = c \ cov(C \ c). The weight of C is
the total weight of the set of vertices in G covered by the cliques in C, denoted by W(C),
as below

W(C) = ∑
vi∈(

⋃
cj∈C cj)

w(vi) (1)

For the DTCK search problem, w(vi) = 1, i ∈ [1, |V]]. The overlapping of C, denoted by
overlap(S), is a set of vertices that are covered by maximal cliques in C more than once.

Definition 4 (Diversified top-k weight clique (DTKWC)). Given a weighted graph G(V, E, w)
and an integer k, the problem of diversified top-k weight clique search is to compute a set C, such
that each c ∈ C is a maximal weight clique, |C| ≤ k, and W(C) is maximized. C is called diversified
top-k weight cliques.

2.2. Constraint Formulation for DTKWC Search Problem

The DTKWC search problem is a generalization of the DTKC search problem [2] which
aims to find a maximal clique set with at most k size with maximum total weight and a
lower overlapping among all possible maximal clique sets from a given graph. Hence, we
first give the formulas of the DTKC search problem and then expand them to the formulas
of the DTKWC search problem. The DTKC search problem can be formulated as a mixed
integer linear program (MILP) as follows:

OBJ1 : Maximum W1(G) = ∑
i∈[1,|V|]

Xi (2)

OBJ2 : Minimum W2(G) =
∑k

h=1 ∑i∈[1,|V|] xih −∑i∈[1,|V|] Xi

k− 1
(3)

Subject to:
xih + xjh ≤ 1, ∀(i, j) ∈ Ē, 1 ≤ h ≤ k (4)

Xi ≤ ∑
i∈[1,|V|]

xih, ∀i ∈ [1, |V|], 1 ≤ h ≤ k (5)

xih ∈ {0, 1}, ∀i ∈ [1, |V|], 1 ≤ h ≤ k (6)

Xi ∈ {0, 1}, ∀i ∈ [1, |V|] (7)

where xih is the binary variable associated with the vertex i, such that xih = 1 if vertex vi
is in the h’th maximal clique, xih = 0 otherwise. Xi is also a binary variable associated
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with vertex i. Xi = 1 if there exists a vertex i in a maximal clique, Xi = 0 otherwise.
And constraint (4) is guaranteed that there is an edge between every two vertices in a clique.
Constraint (5) means there is one clique including vertex vi, then Xi = 1. Constraints (6)
and (7) give the range of the variables.

According to the formulas above, we give the MILP of the DTKWC search problem below:

OBJ1 : Maximum W1(G) = ∑
i∈[1,|V|]

(Xiwi) (8)

OBJ2 : Minimum W2(G) =
∑k

h=1 ∑i∈[1,|V|](xihwi)−∑i∈[1,|V|](Xiwi)

k− 1
(9)

Subject to:
xih + xjh ≤ 1, ∀(i, j) ∈ Ē, 1 ≤ h ≤ k (10)

Xi ≤ ∑
i∈V

xih, ∀i ∈ [1, |V|], 1 ≤ h ≤ k (11)

xih ∈ {0, 1}, ∀i ∈ [1, |V|], 1 ≤ h ≤ k (12)

Xi ∈ {0, 1}, ∀i ∈ [1, |V|] (13)

Similarly, xih and Xi represent the binary variables corresponding with the vertex i.
xih = 1, if vertex i appears in the h’th maximal clique, xih = 0 otherwise. Xi = 1, if vertex vi
belongs to any maximal clique of C, Xi = 0 otherwise. wi denotes the weight of the vertex i.
Constraints (10)–(13) have the same intentions as the above constraints (4)–(7), respectively.

In the above formulas, both of these two problems aim to minimize the value of
objective “OBJ1” on basis of maximizing the value of objective “OBJ2”. Thus, we can obtain
the optimal solution of DTKC (DTKWC) search problem.

3. TOPKWCLQ: A Local Search Method for the DTKWC Search Problem

In this section, we will outline the framework of our algorithm. We use a restart
strategy that interleaves between the construction and updating processes of the maximal
weight clique set to enhance the quality of the candidate solution.

The restart procedure of the local search avoids the previous trajectory but turns to
explore more different maximal weight clique sets. We construct these different maximal
weight clique sets by combing the maximal weight cliques constructed from different
starting vertices at each iteration. Thus, in the DTKWC search problem, using this restart
strategy, TOPKWCLQ can improve the quality of the current candidate solution step
by step.

At each restart iteration, we need to construct a new maximal weight clique one by
one and eliminate the original maximal weight clique with the scoring function from the
current candidate solution until no further improvement is found in the limited updating
steps or the limit time is out. Thus, it can save the search time of a single iteration and
restart the algorithm as soon as possible. After the updating procedure, a current candidate
solution, that is, a local optimal solution, can be found and the algorithm will update the
solution by comparing this local optimal solution with the maintained candidate solution
from the previous iterations. Finally, until the time limit runs out, the algorithm returns to
a maximal weight clique set as the best solution.

In the following, we will provide a random restart local search algorithm for the
DTKWC search problem, called TOPKWCLQ.

3.1. Maximal Weight Clique Scoring Function

Before describing the algorithm framework, we first give a core issue in the algorithm
TOPKWCLQ to evaluate the priorities of each maximal weight clique. During the search
process, TOPKWCLQ must maintain a maximal weight clique set of size at most k as a
candidate solution of the DTKWC search problem. Therefore, it is important to balance
the quality and efficiency of the solutions by determining which maximal weight clique
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should be included or eliminated from the current candidate solution. For this reason, we
will define a scoring function based on the total weight of its private vertices presented in
Section 2 for each maximal weight clique during the updating process.

Definition 5 (Score function (score(c))). Given a weighted graph G = (V, E, w), a maximal
weight clique set C and a maximal weight clique ci of G (ci ∈ C). We use score(ci) to define the
benefit of ci after adding a maximal weight clique to the set C. The score of c in C is defined as

score(ci) = ∑
vj∈priv(ci ,C)

w(vj) (14)

The maximal weight clique selection method used in the UpdateSolution procedure is
based on this scoring function. It attempts to determine the eliminated maximal weight
clique with the smallest score value by computing the scoring function for each maximal
weight clique in the candidate solution C after adding a new maximal weight clique into C.

3.2. TOPKWCLQ Algorithm: The Top-Level Algorithm

The proposed TOPKWCLQ algorithm (see the flowchart in Figure 1) combines an
initialization procedure aiming to generate a feasible initial solution and a local search
procedure aiming at improving the initial solution. The top level of TOPKWCLQ is outlined
in Algorithm 1, as described below.

Algorithm 1 TOPKWCLQ(G, k, cuto f f )
1: Input: an weighted graph G(V, E, W), one integer k, cuto f f time
2: Output: a set C∗ containing at most k maximal weight cliques
3: m← m0, C∗ ← ∅; /* m0 is a parameter used in BMS strategy */
4: while (elapsed time < cuto f f ) do
5: RemainingSet← V;
6: /* mmax is another parameter used in BMS strategy */
7: if (m < mmax) then
8: m← 2 ∗m;
9: else

10: m0 ← m0 + 1; m← m0;
11: end if
12: C ← InitKCliques(G, m, RemainingSet);
13: if (cov(C) = V) then
14: return C;
15: end if
16: C ← LocalSearch(G, C, m, RemainingSet);
17: if (W(C∗) < W(C)) then
18: C∗ ← C;
19: end if
20: end while
21: return C∗ ;

First, we introduce the basic framework of our algorithm, which is presented in
Algorithm 1. A current best global solution C∗ will be initialized as an empty set. Then
the TOPKWCLQ starts a loop until the limited time reaches the maximum which equals
cuto f f (lines 4–20). Before this loop, the parameters m0 and mmax of the best from multiple
selection (BMS) strategy which is used in [2] to solve the DTKC search problem were given
first (lines 6–11) and update the value of m in the loop. Then the TOPKWCLQ adopts
a function InitKCliques to construct enough maximal weight cliques as an initialization
solution (line 12). After the initialization procedure, if cov(C) equals to V, TOPKWCLQ
will return C as a candidate solution (lines 13–15); Otherwise, update the current candidate
solution C by using LocalSearch method (line 16). If the total weight of the vertices in
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C∗ is smaller than the total weight of C, that is W(C∗) < W(C), then replace C∗ with C
(lines 17–19). When the elapsed time is bigger than the cutoff time, TOPKWCLQ stops
searching and returns C∗.

Figure 1. The main flowchart of the proposed TOPKWCLQ algorithm.

In this section, the technical details of the TOPKWCLQ algorithm are introduced.
The function to create a maximal weight clique from a random vertex is introduced in
Section 3.3 . In Section 3.4, the initialization procedure is presented. Section 3.5 presents
the local search updating procedure of our algorithm.

3.3. Constructing a Maximal Weight Clique with Diversity

At each stage of our algorithm, we need constantly to find different maximal weight
cliques to add into the candidate solution. Therefore, we design a method called GetClique
which uses the vertices in RemainingSet to construct the maximal weight cliques according
to the properties of the DTKWC search problem. Let Candset denote the vertices which are
adjacent to all vertices already in c. We also design a function b[v] which will be utilized
during the initialization procedure to represent the benefit of a vertex v, the expression is
as follows,

b[v] = ∑
u∈(N(v)∩Candset)

w(u). (15)

The Algorithm 2 shows the pseudo-code of GetCliques. First, c is initialized as an
empty set. Then, GetCliques iteratively and randomly selects a vertex from RemainingSet
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which includes all vertices in V but excludes the vertices in the current candidate solution.
If the set of RemainningSet is empty (line 2), then the algorithm returns c, and c is empty,
which means we cannot create one more maximal weight clique. Otherwise, GetClique
selects a vertex v from RemainingSet randomly and then adds it to the set c. Then, the algo-
rithm adds all neighbours of v into CandSet. If CandSet is not empty, GetClique will find
a maximal weight clique by the BMS strategy (which is proposed by [17] ) used to select
the better next vertex as the added vertex to the current partial clique (lines 7–22). In this
situation, if the cardinality of CandSet is smaller than the parameter m, the algorithm will
pick a vertex v from CandSet with the greatest b̂, breaking ties in favour of the older one;
Otherwise, GetClique selects the vertex with biggest benefit from m vertices that randomly
selects from Candset. After that, we can get a better result by just calculating the score
of at most m vertices. CandSet is updated for selecting the next vertex of the maximal
weight clique.

Algorithm 2 GetClique(G, m, RemainingSet)
1: c← ∅;
2: if (RemainingSet = ∅) then
3: return c;
4: end if
5: v← randomly select a vertex from RemainingSet;
6: c← {v}, CandSet← {u|u ∈ N(v)};
7: while (CandSet 6= ∅) do
8: if (|CandSet| < m) then
9: pick the vertex v from CandSet with the greatest b̂, breaking ties in favour of the

older one;
10: else
11: v← randomly select a vertex from CandSet;
12: for (iter := 1 to m− 1) do
13: v′ ← randomly select a vertex from CandSet;
14: if (b̂[v′] > b̂[v]) then
15: v← v′, b̂[v]← b̂[v′];
16: end if
17: end for
18: end if
19: c← c ∪ {v};
20: remove v from RemainingSet;
21: CandSet← CandSet ∩ N(v);
22: end while
23: return c

3.4. The Initialization Procedure

In this subsection, we will explain the initialization procedure, which is outlined in
Algorithm 3. It is the first stage of our algorithm. At the beginning of this procedure,
a current candidate solution C is set to empty. Due to the DTKWC search problem needs
to find a solution which is a set including at most k maximal weight cliques, this method
attempts to create the maximal weight cliques randomly through GetClique that introduced
in the above subsection. If we get an empty result from GetClique until there is no more
vertex not belongs to C or we have created k maximal weight cliques. In this method,
the starting vertices are generated randomly from a set that includes the vertices never
used as a starting vertex. Repeat this random process, we can get the diversified maximal
weight cliques that do not depend on the corresponding information acquired during the
previous process. Moreover, starting from an unvisited vertex to construct the solution of
the DTKWC search problem will overcome the cycling problem, i.e., revisiting the same
solution within a short time in the local search algorithm.
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Algorithm 3 InitKCliques(G, m, RemainingSet)
1: C ← ∅;
2: while (|C| < k) do
3: if (cov(C) = V) then
4: return C;
5: end if
6: /* create a maximal weight clique with BMS strategies */
7: c← GetClique(G, m, RemainingSet);
8: if (c 6= ∅) then
9: C ← C ∪ {c};

10: end if
11: end while
12: return C

3.5. Local Search Updating

The candidate solution initialized by the initialization procedure is just a good can-
didate solution meeting the requirement of the DTKWC search problem, but there is no
guarantee that it is a great candidate solution. Therefore, in this subsection, we design
a local search method to improve the quality of this solution by exploring as many new
maximal weight cliques as possible (line 4).

The proposed local search method in Algorithm 4 finds the different maximal weight
clique combinations from a candidate solution. It is a good way to iteratively find a better
combination C

′
which includes the vertices with a greater total weight. For this reason,

we add a new maximal weight clique c
′

created by GetClique into the current candidate
solution C. Then we compute k + 1 score functions explained in Section 3.1 for all of
maximal weight cliques in C

′
each time (line 8). After this, we gain k + 1 values of score,

delete the maximal weight clique with the smallest value among these maximal weight
cliques in C

′
. Such that we maintain a k size maximal weight clique solution as the new

candidate solution (line 11).

Algorithm 4 LocalSearch(G, C, m, RemainingSet)
1: step← 0, C′ ← ∅;
2: while (elapsed time < cuto f f ) do
3: step← step + 1;
4: c′ ← GetClique(G, m, RemainingSet);
5: if (c′ = ∅) then
6: break;
7: end if
8: C′ ← C ∪ {c′};
9: Compute score(c) of each maximal weight clique c in C′;

10: cmin ← argc∈C′min{score(c)};
11: Remove cmin from C′, breaking ties in favour of the smaller one;
12: if (cov(C′) > cov(C)) then
13: C ← C′, step← 0;
14: end if
15: /* f s is the third parameter of TOPKWCLQ */
16: if (step ≥ f s) then
17: break;
18: end if
19: end while
20: return C

Although, we obtain the information that sometimes a candidate solution cannot be
improved by the normal local search method in a long time. For this, we add a fixed step,
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denoted by f s, into our local search framework that breaks the loop if the current solution
cannot be improved in f s steps.

3.6. An Example of DTKWC Search Problem

Example 1. Let us illustrate how to explore a solution for the DTKWC search problem by using a
sample weighted graph in Figure 2.

Figure 2a gives an weighted graph G(V, E, w) with ten vertices, where vwi
i denotes

vertex vi with wi = w(vi). Assume the integer parameter k = 2. The best clique weight so
far is ω(Cmax) = 13. During the first phase, InitKCliques creates a maximal weight clique
set Cmax = {c1, c2}, and c1 = {v1

0, v2
1, v1

2, v2
3}, c2 = {v2

3, v3
4, v3

5}. The total weight of Cmax is
12. In the second phase, LocalSearch tries to determine a new maximal weight clique c3 by
GetClique. Suppose c3 = {v3

5, v3
7}. We add c3 into Cmax. Now, Cmax contains 3 maximal

weight cliques. We evaluate the quality of these three maximal weight cliques by the
scoring function we proposed. {v1

0, v2
1, v1

2}, {v3
4}, {v3

7} are the private vertices set of c1, c2,
c3, respectively. score(c1) = 4, score(c2) = 3, score(c3) = 3. After this process, we remove
the worst maximal weight clique c2 or c3 to keep the size of the maximal weight clique
set equal to 2. Observe that the set of {c1, c2} or {c1, c3} are both the solution of DTKWC
search problem in this graph with the parameter k = 2, and {c1, c3} is the best solution
with the lowest overlapping.

(a) (b)

Figure 2. A simple example for DTKWC search problem. (a) A weighted graph with 7 vertices.
(b) Graph with three maximal weight cliques.

4. Experimental Evaluation

In this section, we carry out extensive experiments to evaluate the performance of
TOPKWCLQ on weighted real-world large graphs. Since there is no suitable heuristic or
exact algorithm for the DTKWC search problem on real-world large graphs in literature,
as we know that is a good choice to compare the results of the proposed algorithm to the
results obtained by CPLEX solver which is a commercial solver for many combinatorial
optimization problems with their constraint formulas of mathematical models. Therefore,
the results obtained by CPLEX can be used as reference on the solution quality. We first
describe the weighted benchmark and then present the experimental preliminaries and
introduce the parameter settings.

4.1. The Benchmark

We evaluate the TOPKWCLQ algorithm on the benchmarks of the weighted real-world
graph, which will be shown below.

The weighted real-world large graph benchmark in our experiments was origi-
nally from the Network Data Repository online [18] (http://www.graphrepository.com/
networks.php, accessed on 1 August 2021). There are millions of vertices and tens of
millions of edges on many of the real-world graphs which used in our experiments. This
benchmark has been transformed from unweighted graphs to the weighted graphs used
the weighting function w(vi) = (i mod 200) + 1 (including 102 instances) [19]. More-
over, most of these as the experimental instances used in maximum vertex weight clique
problem [6,20,21], coloring problem [22], maximum k-plexes problem [23] and DTKC

http://www.graphrepository.com/networks.php
http://www.graphrepository.com/networks.php
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search problem [2]. Considering the relationship between the DTKWC search problem
and these problems, these real-world graphs can naturally be used to evaluate the perfor-
mance of our algorithm for the DTKWC search problem. These real-world graphs were
downloaded from the author’s website (http://lcs.ios.ac.cn/~caisw/Resource/weighted-
massive-graphs.zip, accessed on 1 August 2021).

The graphs in our experiments are divided into 11 classes, including biological net-
works, collaboration networks, interaction networks, infrastructure networks, recommenda-
tion networks, retweet networks, scientific computing, social networks, facebook networks,
technological networks, and web graphs.

4.2. Experimental Preliminaries and Parameter Tuning

The proposed algorithm TOPKWCLQ was implemented in C++ and compiled on
CentOS with 2.4 GHz CPU and 32G RAM with “-O3” flag. We run TOPKWCLQ 10 times
independently with the random seed setting from 1 to 10 for each instances. Each one is
run until the run time of the algorithm arrives which is a given time limit that is assigned
as 600 s in this paper. The termination criterion of CPLEX is either the convergence of
lower and upper bounds or a time limit which is assigned as 3600 s. We use the solution
values of CPLEX to evaluate the quality of the solution solved by TOPKWCLQ.

For each real-world large graph used in our experiments, we set the parameter k to
10, 20, 30, 40, and 50 to obtain five DTKWC search problem instances. Hence, there were
102× 5 = 510 DTKWC search problem instances in our experiments.

TOPKWCLQ uses three parameters for which well-working values must be found:
m0 and mmax are the minimum and maximum value of BMS strategy respectively, and f s
is the maximum allowed updating steps of the solution per iteration. Parameters m0 and
mmax are used in the BMS strategy inspired by [17]. The value of these parameters are set
in Table 1 according to a preliminary tuning experiment.

Table 1. Setting of parameters m0, mmax, f s.

Parameters Descriptions Range Values

m0 minimum number of greediness itera-
tions in BMS strategy

2, 4, 8, 16 8

mmax maximum number of greediness itera-
tions in BMS strategy

32, 64, 128, 256 64

f s control restart in update procedure 1000, 2000, 4000, 8000 2000

The next subsection is shown to the evaluation of TOPKWCLQ compared with the
lower bound (“LB”) and the upper bound (“UB”) of CPLEX under all 510 DTKWC search
problem instances.

4.3. Experimental Results

We present the comprehensive experiment results on the benchmark instances de-
scribed in Section 4.1 with 5 values of parameter k in Tables 2–6. Among them, Tables 2–6
for k = 10, 20, 30, 40, 50, respectively.

For each instance, the column “Instance” indicates the basic information for the name.
In TOPKWCLQ, we present the maximum weight value of the DTKWC search problem
instances (wb) and the average weight DTKWC search problem results (wa) obtained over
10 runs. We also report the average run time over 10 runs (Time, in seconds) to reach the
maximum weight for all DTKWC search problem instances by TOPKWCLQ. And ”0” in
the time column indicates TOPKWCLQ was able to obtain the best solution in less than
0.01 s. To study the effectiveness of TOPKWCLQ for DTKWC search problem, we compare
it with the CPLEX solver (version 12.9) with the mathematical model (8)–(13) introduced in
Section 2.2. The best lower bound (LB) and upper bound (UB) found by CPLEX are listed in
the CPLEX columns. If CPLEX was unable to find a bound on an instance, the corresponding

http://lcs.ios.ac.cn/~caisw/Resource/weighted-massive-graphs.zip
http://lcs.ios.ac.cn/~caisw/Resource/weighted-massive-graphs.zip
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entry is marked by “-”. If CPLEX was unable to load the model, the entry is marked by
“N/A”. For the items in a column, the bold value indicates that the algorithm obtained the
same or better objective values compared to the results of the comparison algorithm.

Table 2. Experiment results on real-world large graphs with k = 10.

Instance
CPLEX TOPKWCLQ

Instance
CPLEX TOPKWCLQ

LB UB wb wa Time LB UB wb wa Time

bio-celegans 6867 6867 6852 6808.4 250.97 socfb-B-anon N/A N/A 21,273 20,893.6 198.57
bio-diseasome 8672 8672 8672 8672 0.11 socfb-Berkeley13 N/A N/A 38,740 38,354.7 103.04
bio-dmela N/A N/A 6094 5994.9 137.32 socfb-CMU N/A N/A 32,888 32,488.2 143.52
bio-yeast 4991 5020 4991 4991 4.70 socfb-Duke14 N/A N/A 30,722 30,284.8 199.64
ca-AstroPh N/A N/A 47,912 47,445 152.59 socfb-Indiana N/A N/A 45,026 44,249.2 155.71
ca-citeseer N/A N/A 76,782 76,398 244.19 socfb-MIT N/A N/A 31,207 30,894.1 196.22
ca-coauthors-dblp N/A N/A 304,932 302,045 177.41 socfb-OR N/A N/A 27,601 27,282.7 186.37
ca-CondMat N/A N/A 20,070 19,949.8 187.83 socfb-Penn94 N/A N/A 39,164 38,537 210.69
ca-CSphd 4059 4059 4059 4059 0.30 socfb-Stanford3 N/A N/A 38,668 38,137.4 202.05
ca-dblp-2010 N/A N/A 64,732 64,245.7 168.86 socfb-Texas84 N/A N/A 43,443 42,722.4 153.66
ca-dblp-2012 N/A N/A 64,179 64,024.8 209.09 socfb-uci-uni N/A N/A 7092 6911.8 174.43
ca-Erdos992 N/A N/A 5800 5664.5 215.51 socfb-UCLA N/A N/A 42,919 42,595 133.01
ca-GrQc N/A N/A 25,844 25,844 0.16 socfb-UConn N/A N/A 38,261 38,075.5 214.20
ca-HepPh N/A N/A 79,624 79,496.8 225.91 socfb-UCSB37 N/A N/A 42,830 42,442.4 166.30
ca-hollywood-2009 N/A N/A 91,3861 90,8334.9 223.68 socfb-UF N/A N/A 52,626 52,133.5 231.33
ca-MathSciNet N/A N/A 24,017 23,826 156.59 socfb-UIllinois N/A N/A 46,705 46,144.6 219.00
ca-netscience 7588 7588 7588 7588 0.16 socfb-Wisconsin87 N/A N/A 33,594 33,384.2 183.56
ia-email-EU N/A N/A 8440 8236.2 239.39 soc-flickr N/A N/A 26,965 26,228.7 173.67
ia-email-univ 9570 9718 9566 9536.2 236.42 soc-flixster N/A N/A 25,505 24,409.3 158.30
ia-enron-large N/A N/A 16,124 15,984 194.00 soc-FourSquare N/A N/A 12,254 11,894.3 180.01
ia-enron-only 4331 4338 4331 4331 13.55 soc-gowalla N/A N/A 19,607 19,371.3 174.70
ia-fb-messages 5738 7441 5792 5737.7 211.06 soc-karate 472 472 472 472 0.00
ia-infect-dublin 10,946 11,001 10,946 10,946 9.17 soc-lastfm N/A N/A 13,122 12,833.9 198.74
ia-infect-hyper 4446 5292 4442 4416.3 160.16 soc-livejournal N/A N/A 138,283 135,583.1 145.34
ia-reality N/A N/A 2882 2852.8 212.69 soc-LiveMocha N/A N/A 9869 9608.8 148.29
ia-wiki-Talk N/A N/A 10,976 10,754 172.35 soc-orkut N/A N/A 42,484 41,987.8 145.63
inf-power N/A N/A 6613 6613 37.32 soc-pokec N/A N/A 21,995 21,094.4 130.38
inf-roadNet-CA N/A N/A 6367 6296.1 141.26 soc-slashdot N/A N/A 13,801 13,224.5 169.68
inf-roadNet-PA N/A N/A 6084 6082.5 148.54 soc-twitter-follows N/A N/A 5535 5346.8 174.89
inf-road-usa N/A N/A 6035 6002.5 136.92 soc-wiki-Vote 6376 6768 6341 6253.2 133.06
rec-amazon N/A N/A 8931 8931 1.73 soc-youtube N/A N/A 12,409 12,255 191.54
rt-retweet 1575 1578 1575 1575 0.06 soc-youtube-snap N/A N/A 12,146 11,973.7 140.26
rt-retweet-crawl N/A N/A 8742 8650.5 189.03 tech-as-caida2007 N/A N/A 7240 7111 196.61
rt-twitter-copen 4661 4661 4661 4659.5 128.18 tech-as-skitter N/A N/A 29,470 28,331.9 131.52
sc-ldoor N/A N/A 40,726 40,704.3 179.99 tech-internet-as N/A N/A 7457 7067.2 166.47
sc-msdoor N/A N/A 40,670 40,625.9 135.87 tech-p2p-gnutella N/A N/A 5829 5816.2 190.24
sc-nasasrb N/A N/A 43,776 43,714 173.28 tech-RL-caida N/A N/A 12,215 11,994.8 164.86
sc-pkustk11 N/A N/A 47,548 47,268.1 153.85 tech-routers-rf 3914 207,554 10,002 9871 128.18
sc-pkustk13 N/A N/A 57,282 56,738 185.36 tech-WHOIS N/A N/A 31,459 31,125.1 144.75
sc-pwtk N/A N/A 45,504 45,432 179.58 web-arabic-2005 N/A N/A 92,108 92,108 3.98
sc-shipsec1 N/A N/A 31,790 31,661.2 214.63 web-BerkStan N/A N/A 11,200 11,200 71.12
sc-shipsec5 N/A N/A 43,260 43,157.4 132.02 web-edu N/A N/A 11,250 11,250 0.17
soc-BlogCatalog N/A N/A 20,014 19,109.1 242.59 web-google 13,126 13,126 13,126 13,126 0.01
soc-brightkite N/A N/A 19,548 19,178.3 173.03 web-indochina-2004 N/A N/A 44,052 44,052 44.42
soc-buzznet N/A N/A 17,620 17,041.3 199.35 web-it-2004 N/A N/A 415,850 415,850 0.63
soc-delicious N/A N/A 11,711 11,553.1 136.82 web-polblogs 5926 6428 5918 5828.2 166.71
soc-digg N/A N/A 27,726 27,083.9 226.17 web-sk-2005 N/A N/A 63,930 63,920.4 132.89
soc-dolphins 1226 1226 1226 1226 0.04 web-spam N/A N/A 14,569 14,418.8 150.91
soc-douban N/A N/A 8983 8860.1 207.39 web-uk-2005 N/A N/A 441,613 441,613 0.41
soc-epinions N/A N/A 12,942 12,661.1 139.36 web-webbase-2001 N/A N/A 20,648 20,648 68.16
socfb-A-anon N/A N/A 22,551 21,896.8 176.24 web-wikipedia2009 N/A N/A 29,781 29,063.8 162.08
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Table 3. Experiment results on real-world large graphs with k = 20.

Instance
CPLEX TOPKWCLQ

Instance
CPLEX TOPKWCLQ

LB UB wb wa Time LB UB wb wa Time

bio-celegans 11,489 11,747 11,275 11,198.2 147.50 socfb-B-anon N/A N/A 38,667 38,284.5 221.32
bio-diseasome 14,313 14,345 14,313 14,313 2.06 socfb-Berkeley13 N/A N/A 67,518 66,896.4 158.57
bio-dmela N/A N/A 10,447 10,370.9 209.09 socfb-CMU N/A N/A 55,267 54,811 191.40
bio-yeast 8874 9730 9067 9060 125.32 socfb-Duke14 N/A N/A 54,844 54,091.1 137.00
ca-AstroPh N/A N/A 85,366 85,173.6 185.29 socfb-Indiana N/A N/A 80,040 79,382.1 162.68
ca-citeseer N/A N/A 131,947 131,244.5 148.71 socfb-MIT N/A N/A 55,086 54,421.2 156.99
ca-coauthors-dblp N/A N/A 531,666 529,145 235.05 socfb-OR N/A N/A 48,737 48,162.2 216.69
ca-CondMat N/A N/A 35,029 34,734 249.30 socfb-Penn94 N/A N/A 70,888 70,417.4 178.75
ca-CSphd - - 7943 7942 103.99 socfb-Stanford3 N/A N/A 66,445 65,926.7 213.33
ca-dblp-2010 N/A N/A 107,838 107,254.7 192.43 socfb-Texas84 N/A N/A 75,522 74,283.2 156.21
ca-dblp-2012 N/A N/A 102,895 102,577.8 214.70 socfb-uci-uni N/A N/A 13,586 13,267.4 191.29
ca-Erdos992 N/A N/A 9766 9580.7 146.01 socfb-UCLA N/A N/A 72,363 71,465.5 192.25
ca-GrQc N/A N/A 37,559 37,559 24.67 socfb-UConn N/A N/A 64,266 63,327 202.52
ca-HepPh N/A N/A 113,984 113,639.5 189.33 socfb-UCSB37 N/A N/A 68,722 68,234.3 135.47
ca-hollywood-2009 N/A N/A 1,305,029 1,293,108 185.10 socfb-UF N/A N/A 90,307 89,178.6 233.87
ca-MathSciNet N/A N/A 41,461 41,215.4 137.01 socfb-UIllinois N/A N/A 79,952 79,253.7 243.79
ca-netscience 13,178 13,196 13,189 13,189 2.16 socfb-Wisconsin87 N/A N/A 59,743 59,398.8 215.07
ia-email-EU N/A N/A 13,440 13,232.2 151.90 soc-flickr N/A N/A 44,279 43,612.1 194.81
ia-email-univ 11,024 18,426 15,647 15,525.2 172.17 soc-flixster N/A N/A 41,715 40,413 210.02
ia-enron-large N/A N/A 28,592 28,252.6 123.99 soc-FourSquare N/A N/A 20,866 20,602.4 213.53
ia-enron-only 6922 7237 6923 6917 177.34 soc-gowalla N/A N/A 35,017 34,396 185.05
ia-fb-messages 6204 15,510 10,305 10,207.4 189.05 soc-karate 629 629 629 629 0.00
ia-infect-dublin 15,009 18,694 17,588 17,527.2 215.34 soc-lastfm N/A N/A 23,753 22,918.3 113.19
ia-infect-hyper 5972 6554 6086 6068.2 116.70 soc-livejournal N/A N/A 222,938 220,213.4 147.43
ia-reality N/A N/A 5291 5252.3 161.50 soc-LiveMocha N/A N/A 16,907 16,391.4 106.99
ia-wiki-Talk N/A N/A 18,644 18,315.4 252.87 soc-orkut N/A N/A 79,351 78,363.4 150.28
inf-power N/A N/A 11,743 11,712 204.17 soc-pokec N/A N/A 38,793 38,128.1 239.65
inf-roadNet-CA N/A N/A 12,341 12,292.8 179.86 soc-slashdot N/A N/A 21,071 20,868.8 217.39
inf-roadNet-PA N/A N/A 12,049 12,041.1 157.62 soc-twitter-follows N/A N/A 9722 9588.3 208.03
inf-road-usa N/A N/A 11,940 11,827.3 191.68 soc-wiki-Vote 10,649 12,613 10,670 10,620.8 225.30
rec-amazon N/A N/A 17,414 17,414 10.02 soc-youtube N/A N/A 22,173 21,901.9 199.76
rt-retweet 2732 2758 2754 2754 19.86 soc-youtube-snap N/A N/A 21,687 21,423.5 162.58
rt-retweet-crawl N/A N/A 15,283 14,983.6 163.67 tech-as-caida2007 N/A N/A 11,632 11,485.1 114.11
rt-twitter-copen 8364 8525 8293 8256.7 142.45 tech-as-skitter N/A N/A 47,288 44,902.5 169.13
sc-ldoor N/A N/A 81,165 81,074.7 202.88 tech-internet-as N/A N/A 12,591 11,964.9 157.32
sc-msdoor N/A N/A 80,703 80,651.2 178.45 tech-p2p-gnutella N/A N/A 11,115 11,034.6 168.48
sc-nasasrb N/A N/A 84,638 84,212.2 162.43 tech-RL-caida N/A N/A 21,048 20,652.7 83.62
sc-pkustk11 N/A N/A 90,376 90,205.5 204.08 tech-routers-rf N/A N/A 15,456 15,301.5 173.66
sc-pkustk13 N/A N/A 108,096 107,515.5 141.38 tech-WHOIS N/A N/A 44,189 43,782.9 188.40
sc-pwtk N/A N/A 89,496 89,366 204.28 web-arabic-2005 N/A N/A 178,434 178,434 3.22
sc-shipsec1 N/A N/A 60,831 60,323.5 156.03 web-BerkStan N/A N/A 18,756 18,724 143.16
sc-shipsec5 N/A N/A 82,422 81,832.3 133.56 web-edu N/A N/A 16,531 16,498 170.07
soc-BlogCatalog N/A N/A 30,479 29,811 201.55 web-google 14,174 22,943 21,479 21,479 0.59
soc-brightkite N/A N/A 31,062 30,674.7 207.00 web-indochina-2004 N/A N/A 74,320 74,236.2 218.99
soc-buzznet N/A N/A 28,642 28,133.5 193.13 web-it-2004 N/A N/A 797,123 797,123 1.03
soc-delicious N/A N/A 20,402 20,228.4 92.03 web-polblogs 9808 11,906 9949 9909.4 135.08
soc-digg N/A N/A 42,903 42,169.9 170.04 web-sk-2005 N/A N/A 97,196 97,053 192.90
soc-dolphins 1861 1871 1861 1861 6.05 web-spam N/A N/A 23,982 23,625.7 175.29
soc-douban N/A N/A 15,043 14,670.5 198.98 web-uk-2005 N/A N/A 789,896 789,896 0.43
soc-epinions N/A N/A 22,001 21,671.5 247.93 web-webbase-2001 N/A N/A 33,438 33,290.2 154.66
socfb-A-anon N/A N/A 39,458 39,201.1 210.51 web-wikipedia2009 N/A N/A 48,222 47,165.3 230.13
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Table 4. Experiment results on real-world large graphs with k = 30.

Instance
CPLEX TOPKWCLQ

Instance
CPLEX TOPKWCLQ

LB UB wb wa Time LB UB wb wa Time

bio-celegans 14,528 16,193 14,805 14,740 203.67 socfb-B-anon N/A N/A 55,318 54,993.8 155.81
bio-diseasome 12,610 20,103 18,431 18,425.5 91.62 socfb-Berkeley13 N/A N/A 91,991 90,393.9 162.54
bio-dmela N/A N/A 14,497 14,384 180.80 socfb-CMU N/A N/A 72,885 72,032.9 162.68
bio-yeast - - 12,774 12,750.3 198.29 socfb-Duke14 N/A N/A 75,543 74,516.6 149.19
ca-AstroPh N/A N/A 117,328 116,221.3 241.64 socfb-Indiana N/A N/A 110,454 109,407.1 198.30
ca-citeseer N/A N/A 178,715 177,726.9 209.84 socfb-MIT N/A N/A 74,158 73,595.9 182.28
ca-coauthors-dblp N/A N/A 740,505 733,645.3 135.01 socfb-OR N/A N/A 67,317 66,836.6 179.21
ca-CondMat N/A N/A 48,476 48,219.6 138.60 socfb-Penn94 N/A N/A 98,255 97,120.6 165.00
ca-CSphd N/A N/A 11,739 11,731 150.83 socfb-Stanford3 N/A N/A 90,442 89,784.3 151.78
ca-dblp-2010 N/A N/A 146,421 145,317.6 171.76 socfb-Texas84 N/A N/A 103,092 101,991 212.90
ca-dblp-2012 N/A N/A 133,948 133,150.3 106.77 socfb-uci-uni N/A N/A 19,436 19,111 173.62
ca-Erdos992 N/A N/A 13,381 13,305.1 173.98 socfb-UCLA N/A N/A 97,506 96,350.8 206.58
ca-GrQc N/A N/A 46,262 46,161.4 151.01 socfb-UConn N/A N/A 84,391 83,777.7 183.23
ca-HepPh N/A N/A 140,485 140,068.4 169.58 socfb-UCSB37 N/A N/A 90,198 89,200.8 181.14
ca-hollywood-2009 N/A N/A 1,591,287 1,578,513 203.39 socfb-UF N/A N/A 119,700 117,876.9 124.65
ca-MathSciNet N/A N/A 56,826 56,490.5 202.42 socfb-UIllinois N/A N/A 108,948 108,470.3 135.60
ca-netscience 17,341 17,997 17,781 17,780.1 121.27 socfb-Wisconsin87 N/A N/A 83,837 82,596.5 211.36
ia-email-EU N/A N/A 17,861 17,546.7 182.28 soc-flickr N/A N/A 59,976 59,342.1 125.18
ia-email-univ 8733 26,220 20,749 20,538.9 201.94 soc-flixster N/A N/A 55,676 54,557.7 181.08
ia-enron-large N/A N/A 40,233 39,553.5 189.25 soc-FourSquare N/A N/A 28,775 28,598.1 233.85
ia-enron-only 8030 9226 8570 8542.2 160.40 soc-gowalla N/A N/A 48,365 47,895.4 148.82
ia-fb-messages 7135 23,605 14,396 14,223 152.57 soc-karate 629 629 629 629 0.00
ia-infect-dublin 12,608 26,004 22,783 22,627.5 193.70 soc-lastfm N/A N/A 32,614 32,036.3 157.81
ia-infect-hyper 6554 6554 6554 6554 1.68 soc-livejournal N/A N/A 297,475 289,923.2 167.77
ia-reality N/A N/A 7473 7404.8 205.85 soc-LiveMocha N/A N/A 23,056 22,702.8 187.07
ia-wiki-Talk N/A N/A 25,589 25,136.2 172.33 soc-orkut N/A N/A 114,442 112,839.3 187.46
inf-power N/A N/A 16,414 16,356.8 172.16 soc-pokec N/A N/A 55,396 54,045.9 170.75
inf-roadNet-CA N/A N/A 18,351 18,245.3 232.32 soc-slashdot N/A N/A 28,032 27,717.9 261.61
inf-roadNet-PA N/A N/A 18,005 17,990.4 186.22 soc-twitter-follows N/A N/A 13,690 13,527.6 203.29
inf-road-usa N/A N/A 17,728 17,649.3 156.50 soc-wiki-Vote 9944 18,426 14,496 14,390.8 248.59
rec-amazon N/A N/A 25,468 25,468 112.68 soc-youtube N/A N/A 30,905 30,491.7 185.84
rt-retweet 3609 3609 3609 3609 21.53 soc-youtube-snap N/A N/A 30,746 30,309.2 203.55
rt-retweet-crawl N/A N/A 21,151 20,857.2 230.71 tech-as-caida2007 N/A N/A 16,120 15,863.9 138.62
rt-twitter-copen 11,777 12,474 11,590 11,548.8 161.99 tech-as-skitter N/A N/A 60,308 58,536.9 151.54
sc-ldoor N/A N/A 121,303 121,165.8 214.11 tech-internet-as N/A N/A 16,818 16,538 131.74
sc-msdoor N/A N/A 120,426 120,330.8 250.58 tech-p2p-gnutella N/A N/A 16,023 15,920.1 239.06
sc-nasasrb N/A N/A 123,112 122,866 197.63 tech-RL-caida N/A N/A 28,826 28,485.9 174.90
sc-pkustk11 N/A N/A 132,640 132,153 244.31 tech-routers-rf N/A N/A 20,062 19,967.9 145.42
sc-pkustk13 N/A N/A 157,978 156,744.2 221.26 tech-WHOIS N/A N/A 53,750 53,301.1 159.00
sc-pwtk N/A N/A 132,744 132,648.4 245.68 web-arabic-2005 N/A N/A 263,602 263,602 7.09
sc-shipsec1 N/A N/A 87,853 87,048.3 150.32 web-BerkStan N/A N/A 25,848 25,786.1 122.40
sc-shipsec5 N/A N/A 118,524 117,849.5 174.37 web-edu N/A N/A 20,805 20,751 198.34
soc-BlogCatalog N/A N/A 40,724 39,594.4 184.04 web-google 10,767 28,599 26,866 26,858.8 131.36
soc-brightkite N/A N/A 41,189 40,361.4 212.23 web-indochina-2004 N/A N/A 98,809 98,657.3 176.93
soc-buzznet N/A N/A 38,628 37,701 174.26 web-it-2004 N/A N/A 1,115,823 1,115,823 1.32
soc-delicious N/A N/A 28,263 27,792.6 135.52 web-polblogs 8579 17,312 13,549 13,498.1 171.71
soc-digg N/A N/A 55,879 54,964.3 164.61 web-sk-2005 N/A N/A 126,823 126,524.1 144.92
soc-dolphins 2015 2015 2015 2015 0.00 web-spam N/A N/A 31,803 31,327.7 134.99
soc-douban N/A N/A 20,017 19,862 201.77 web-uk-2005 N/A N/A 1,050,477 105,0477 0.44
soc-epinions N/A N/A 29,866 29,612.2 209.61 web-webbase-2001 N/A N/A 44,256 43,708.3 156.66
socfb-A-anon N/A N/A 57,408 55,907.1 157.96 web-wikipedia2009 N/A N/A 65,286 63,121.4 198.87
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Table 5. Experiment results on real-world large graphs with k = 40.

Instance
CPLEX TOPKWCLQ

Instance
CPLEX TOPKWCLQ

LB UB wb wa Time LB UB wb wa Time

bio-celegans 10,037 22,077 18,057 17,956.7 218.25 socfb-B-anon N/A N/A 71,895 70,879.8 170.92
bio-diseasome 10,450 24,138 21,945 21,933.6 188.25 socfb-Berkeley13 N/A N/A 113,862 111,784.4 173.56
bio-dmela N/A N/A 18,403 18,266.6 197.28 socfb-CMU N/A N/A 87,972 86,992.2 180.33
bio-yeast - - 16,302 16,247.8 182.60 socfb-Duke14 N/A N/A 93,294 92,967.7 224.83
ca-AstroPh N/A N/A 144,660 143,098.9 186.93 socfb-Indiana N/A N/A 135,869 135,265 178.45
ca-citeseer N/A N/A 218,277 217,906.1 194.61 socfb-MIT N/A N/A 90,760 89,700.5 182.88
ca-coauthors-dblp N/A N/A 924,023 921,156.3 170.24 socfb-OR N/A N/A 85,045 84,407.4 133.30
ca-CondMat N/A N/A 61,647 60,964.7 221.77 socfb-Penn94 N/A N/A 121,319 120,455.7 179.44
ca-CSphd N/A N/A 15,398 15,370.2 206.08 socfb-Stanford3 N/A N/A 112,011 111,138.3 140.08
ca-dblp-2010 N/A N/A 180,532 179,364.5 182.20 socfb-Texas84 N/A N/A 128,204 126,768.1 219.27
ca-dblp-2012 N/A N/A 160,660 159,929.8 169.46 socfb-uci-uni N/A N/A 25,650 25,101.6 226.36
ca-Erdos992 N/A N/A 16,877 16,752.9 125.53 socfb-UCLA N/A N/A 119,747 118,738.3 187.82
ca-GrQc N/A N/A 53,645 53,532.1 170.29 socfb-UConn N/A N/A 102,092 101,497.7 207.71
ca-HepPh N/A N/A 161,167 160,718.8 207.33 socfb-UCSB37 N/A N/A 108,210 107,448.6 210.05
ca-hollywood-2009 N/A N/A 1,815,958 1,803,757 213.10 socfb-UF N/A N/A 143,528 142,751.4 126.65
ca-MathSciNet N/A N/A 70,636 70,271.1 143.10 socfb-UIllinois N/A N/A 135,222 134,182.4 201.21
ca-netscience 10,519 22,011 21,076 21,072.8 136.11 socfb-Wisconsin87 N/A N/A 104,664 103,275.1 203.96
ia-email-EU N/A N/A 21,652 21,347.9 217.56 soc-flickr N/A N/A 74,830 74,224.6 160.25
ia-email-univ 10,977 32,641 25,202 25,079.5 174.42 soc-flixster N/A N/A 68,593 67,034.3 182.67
ia-enron-large N/A N/A 50,536 50,100.5 197.78 soc-FourSquare N/A N/A 36,905 36,496.1 180.98
ia-enron-only 8159 10,121 9610 9590.5 123.20 soc-gowalla N/A N/A 61,166 60,477.1 106.86
ia-fb-messages - - 18,078 17,939.4 155.67 soc-karate 629 629 629 629 0.00
ia-infect-dublin 17,535 30,618 26,721 26,652.9 207.08 soc-lastfm N/A N/A 40,830 40,624.8 191.26
ia-infect-hyper 6554 6554 6554 6554 0.00 soc-livejournal N/A N/A 353,252 345,997.4 159.91
ia-reality N/A N/A 9474 9427.1 159.85 soc-LiveMocha N/A N/A 29,376 28,832 190.46
ia-wiki-Talk N/A N/A 31,492 31,299.6 216.93 soc-orkut N/A N/A 146,600 145,529.7 135.93
inf-power N/A N/A 20,842 20,757.7 129.00 soc-pokec N/A N/A 70,454 69,295.1 140.46
inf-roadNet-CA N/A N/A 24,261 24,204.7 150.68 soc-slashdot N/A N/A 34,450 33,981 205.31
inf-roadNet-PA N/A N/A 23,940 23,929.1 134.36 soc-twitter-follows N/A N/A 17,550 17,336.8 220.63
inf-road-usa N/A N/A 23,594 23,458.5 146.11 soc-wiki-Vote 8107 23,864 18,068 17,883.6 175.77
rec-amazon N/A N/A 33,363 33,356.2 161.28 soc-youtube N/A N/A 39,556 38,949 91.83
rt-retweet 4161 4169 4161 4161 10.27 soc-youtube-snap N/A N/A 38,929 38,679.1 195.84
rt-retweet-crawl N/A N/A 27,011 26,594 138.17 tech-as-caida2007 N/A N/A 19,973 19,779.8 135.87
rt-twitter-copen 14,772 16,130 14,657 14,635.9 175.68 tech-as-skitter N/A N/A 72,571 71,620 209.40
sc-ldoor N/A N/A 161,126 160,998.6 178.39 tech-internet-as N/A N/A 21,029 20,875.3 175.95
sc-msdoor N/A N/A 159,967 159,737.1 224.65 tech-p2p-gnutella N/A N/A 20,773 20,588 110.00
sc-nasasrb N/A N/A 160,746 160,572.2 148.46 tech-RL-caida N/A N/A 36,579 36,137.1 133.97
sc-pkustk11 N/A N/A 174,249 173,122.1 163.16 tech-routers-rf N/A N/A 24,391 24,223 156.74
sc-pkustk13 N/A N/A 204,876 204,369.1 137.80 tech-WHOIS N/A N/A 61,598 60,786.6 181.99
sc-pwtk N/A N/A 175,800 175,532 183.57 web-arabic-2005 N/A N/A 348,027 348,027 5.92
sc-shipsec1 N/A N/A 113,485 112,618.6 214.02 web-BerkStan N/A N/A 32,566 32,486.7 199.25
sc-shipsec5 N/A N/A 153,006 151,986 162.57 web-edu N/A N/A 24,780 24,730.8 219.82
soc-BlogCatalog N/A N/A 49,422 48,620.8 193.41 web-google - - 31,201 31,141.2 148.58
soc-brightkite N/A N/A 49,753 49,285.4 204.41 web-indochina-2004 N/A N/A 119,525 119,336.2 220.28
soc-buzznet N/A N/A 47,092 46,465.3 230.39 web-it-2004 N/A N/A 1,314,144 1,314,144 9.23
soc-delicious N/A N/A 35,377 34,841.4 161.33 web-polblogs 9606 21,840 16,844 16,756.7 201.77
soc-digg N/A N/A 67,806 66,826.6 248.28 web-sk-2005 N/A N/A 154,004 153,682.4 175.56
soc-dolphins 2015 2015 2015 2015 0.00 web-spam N/A N/A 38,112 37,909.5 198.68
soc-douban N/A N/A 25,245 24,822.4 118.98 web-uk-2005 N/A N/A 1,277,887 1,277,887 0.45
soc-epinions N/A N/A 37,345 36,766.1 187.05 web-webbase-2001 N/A N/A 52,395 52,146 192.70
socfb-A-anon N/A N/A 71,908 71,376.4 198.96 web-wikipedia2009 N/A N/A 79,081 77,242.5 215.47
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Table 6. Experiment results on real-world large graphs with k = 50.

Instance
CPLEX TOPKWCLQ

Instance
CPLEX TOPKWCLQ

LB UB wb wa Time LB UB wb wa Time

bio-celegans 14,811 25,659 21,032 20,899.3 242.15 socfb-B-anon N/A N/A 87,455 85,964.7 168.6
bio-diseasome 13,041 27,569 25,157 25,132.1 219.96 socfb-Berkeley13 N/A N/A 132,576 131,226.4 245.12
bio-dmela N/A N/A 22,060 21,985 156.03 socfb-CMU N/A N/A 101,002 100,407.2 224.22
bio-yeast N/A N/A 19,700 19,584.3 130.19 socfb-Duke14 N/A N/A 110,636 109,983.7 198.54
ca-AstroPh N/A N/A 167,224 166,691.2 161.95 socfb-Indiana N/A N/A 158,910 157,463.4 175.19
ca-citeseer N/A N/A 258,664 256,459.1 200.09 socfb-MIT N/A N/A 104,412 10,3962 155.76
ca-coauthors-dblp N/A N/A 1,103,639 1,100,063 173.91 socfb-OR N/A N/A 101,953 100,836 164.1
ca-CondMat N/A N/A 73,224 72,874.1 174.02 socfb-Penn94 N/A N/A 143,535 141,653.6 171.98
ca-CSphd N/A N/A 18,913 18,888.6 215.74 socfb-Stanford3 N/A N/A 130,978 130,307.6 160.01
ca-dblp-2010 N/A N/A 211,258 210,658.3 202.01 socfb-Texas84 N/A N/A 150,919 149,626.2 215.77
ca-dblp-2012 N/A N/A 185,410 184,644.4 138.06 socfb-uci-uni N/A N/A 31,019 30,807.1 192.24
ca-Erdos992 N/A N/A 20,331 20,133.4 134.71 socfb-UCLA N/A N/A 141,024 139,929.2 165.78
ca-GrQc N/A N/A 60,410 60,254 174.04 socfb-UConn N/A N/A 119,269 118,552.1 183.93
ca-HepPh N/A N/A 177,770 177,104.2 157.61 socfb-UCSB37 N/A N/A 125,680 124,864.5 169.75
ca-hollywood-2009 N/A N/A 2,017,283 2,004,122 220.66 socfb-UF N/A N/A 166,765 165,868.4 242.62
ca-MathSciNet N/A N/A 84,035 83,379.4 168.59 socfb-UIllinois N/A N/A 159,630 157,918 184.39
ca-netscience 14,917 25,103 23,696 23,684.2 146.82 socfb-Wisconsin87 N/A N/A 122,934 122,265.3 172.9
ia-email-EU N/A N/A 25,603 25,175.5 229.9 soc-flickr N/A N/A 89,807 87,883 175.89
ia-email-univ - - 29,402 29,187.6 231.77 soc-flixster N/A N/A 80,451 79,254.8 212.02
ia-enron-large N/A N/A 60,880 60,270.8 212.19 soc-FourSquare N/A N/A 44,676 44,272 194.57
ia-enron-only 9157 10,428 10,297 10,266 141.51 soc-gowalla N/A N/A 72,608 72,149.7 213.64
ia-fb-messages - - 21,654 21,446 135.39 soc-karate 629 629 629 629 0
ia-infect-dublin 21,426 34,156 30,074 29,964.5 221.4 soc-lastfm N/A N/A 49,431 48,941.3 182.21
ia-infect-hyper 6554 6554 6554 6554 0 soc-livejournal N/A N/A 405,317 399,721.7 142.94
ia-reality N/A N/A 11,518 11,445.6 146.6 soc-LiveMocha N/A N/A 34,890 34,574.5 194.75
ia-wiki-Talk N/A N/A 38,239 37,417.3 192.79 soc-orkut N/A N/A 18,1096 178,069.6 139.86
inf-power N/A N/A 24,968 24,890.9 224.22 soc-pokec N/A N/A 85,010 84,118.3 188.24
inf-roadNet-CA N/A N/A 30,251 30,155.4 111.57 soc-slashdot N/A N/A 40,150 39,867.5 207.98
inf-roadNet-PA N/A N/A 29,887 29,867.4 199.69 soc-twitter-follows N/A N/A 21,301 21,065.8 187.84
inf-road-usa N/A N/A 29,316 29,201.1 142.64 soc-wiki-Vote 10,097 28,039 21,419 21,210.6 187.91
rec-amazon N/A N/A 41,146 41,124.2 148.14 soc-youtube N/A N/A 47,160 46,973 183.03
rt-retweet 4526 4620 4526 4526 0.14 soc-youtube-snap N/A N/A 47,523 46,964.5 234.3
rt-retweet-crawl N/A N/A 32,586 32,128.1 175.81 tech-as-caida2007 N/A N/A 23,881 23,719.3 164.61
rt-twitter-copen 17,314 19,812 17,652 17,571 210.34 tech-as-skitter N/A N/A 84,746 83,760 193.48
sc-ldoor N/A N/A 200,767 200,601.1 197.73 tech-internet-as N/A N/A 25,236 25,078.6 252.39
sc-msdoor N/A N/A 199,076 198,801.3 129.64 tech-p2p-gnutella N/A N/A 25,238 25,143.9 187.28
sc-nasasrb N/A N/A 197,922 197,611.2 186.05 tech-RL-caida N/A N/A 43,728 43,471.3 151.62
sc-pkustk11 N/A N/A 214,700 213,740.4 140.39 tech-routers-rf N/A N/A 28,349 28,125.2 137.27
sc-pkustk13 N/A N/A 252,454 251,525.5 186.96 tech-WHOIS N/A N/A 68,102 67,397.8 165.01
sc-pwtk N/A N/A 218,360 217,983.9 161.86 web-arabic-2005 N/A N/A 430,893 430,893 12.32
sc-shipsec1 N/A N/A 138,034 137,296.4 181.85 web-BerkStan N/A N/A 39,160 38,997.3 183.66
sc-shipsec5 N/A N/A 185,496 184,589.5 171.17 web-edu N/A N/A 28,721 28,667.3 205.28
soc-BlogCatalog N/A N/A 57,097 56,401.7 150.99 web-google - - 34,977 34,930.2 194.03
soc-brightkite N/A N/A 58,014 57,698.3 213.89 web-indochina-2004 N/A N/A 138,107 137,833.2 161.98
soc-buzznet N/A N/A 55,420 54,720 209.46 web-it-2004 N/A N/A 1,502,580 1,502,580 31.06
soc-delicious N/A N/A 42,317 41,594 169.03 web-polblogs 9793 25,434 19,890 19,727.5 208.03
soc-digg N/A N/A 79,149 77,969.7 168.98 web-sk-2005 N/A N/A 180,230 179,935.1 183.74
soc-dolphins 2015 2015 2015 2015 0 web-spam N/A N/A 45,228 44,432.1 172.25
soc-douban N/A N/A 29,993 29,587.2 135.61 web-uk-2005 N/A N/A 1,497,314 1,497,314 0.46
soc-epinions N/A N/A 43,676 43,427.1 179.86 web-webbase-2001 N/A N/A 59,569 59,108.5 153.63
socfb-A-anon N/A N/A 87,217 86,621.5 203.76 web-wikipedia2009 N/A N/A 90,898 90,000.9 190.59

Tables 2–6 show that TOPKWCLQ obtained the same or better objective values com-
pared with the objective values of CPLEX on most instances. On 5 out of 102 graphs, CPLEX
can find better objective values than our algorithm TOPKWCLQ. However, the instances
become more challenging for CPLEX with a larger k, and TOPKWCLQ is becoming more
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effective. For 19 out of 510 real-world instances, we can prove the optimal solutions, where
the values of the lower bound (“LB”) and upper bound (“UB”) are equivalent in CPLEX
column. In terms of computational time, TOPKWCLQ can obtain the optimal values in less
than one second (at most hundreds of seconds) in most cases. For example, on the graph
rt-twitter-copen, CPLEX always finds better objective values than TOPKWCLQ except the
instance with parameter k = 50. For another 84 out of 102 larger graphs, TOPKWCLQ can
also obtain good objective values where CPLEX failed.

Based on the benchmark introduced in Section 4.1, Table 7 summarizes the compu-
tational results of CPLEX and TOPKWCLQ on 102 real-world graphs. From Table 7, we
observe that for almost all instances under the five values of the parameter k, our TOPKW-
CLQ algorithm can obtain better solutions than the lower bound of CPLEX. It indicates the
superiority of the proposed algorithm TOPWCLQ.

Table 7. Summary of comparison between CPLEX and TOPKWCLQ on real-world graphs. #Better
denotes the number of graphs where an algorithm finds better objective values. #N/A denotes the
number of graphs where an algorithm fails to find an objective value.

Benchmark k
CPLEX TOPKWCLQ

#Better #N/A #Better #N/A

real-world graphs (102)

10 5 84 87 0
20 2 85 97 0
30 1 86 97 0
40 1 86 97 0
50 0 87 98 0

5. Conclusions

In this paper, we propose the diversified top-k weight clique search problem and
formalize DTKC and DTKWC search problem. The scoring strategy is proposed to find
diversified maximal weight cliques for our algorithm. A local search algorithm for the
DTKWC search problem based on the scoring strategy and random restart strategy is then
proposed, called TOPKWCLQ. This algorithm interleaves maximal weight clique set con-
struction and updating. Experiments on the real-world benchmark show the effectiveness
and efficiency of our algorithm. Moreover, further work is to investigate the enhanced
configuration checking strategy used in [2] to enhance the performance of the algorithm.
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