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Abstract: The essential structure of derivations is used as a tool for measuring the complexity of
schema consequences in propositional-based logics. Our schema derivations allow the use of schema
lemmas and this is reflected on the schema complexity. In particular, the number of times a schema
lemma is used in a derivation is not relevant. We also address the application of metatheorems and
compare the complexity of a schema derivation after eliminating the metatheorem and before doing
so. As illustrations, we consider a propositional modal logic presented by a Hilbert calculus and an
intuitionist propositional logic presented by a Gentzen calculus. For the former, we discuss the use
of the metatheorem of deduction and its elimination, and for the latter, we analyze the cut and its
elimination. Furthermore, we capitalize on the result for the cut elimination for intuitionistic logic, to
obtain a similar result for Nelson’s logic via a language translation.

Keywords: schematic complexity; propositional-based schema calculus; schema derivation;
schema metatheorems

MSC: 03F20; 03F03; 03B22; 03B45; 03B55

1. Introduction

One of the main concerns of proof theory is related to the complexity of symbolic
proofs, as stated by David Hilbert in [1], namely in finding criteria for simplicity in mathe-
matical proofs.

This topic, started by Gerhard Gentzen (see [2]), has been under intensive research by
many authors, namely concerning the general structure of proofs, normal forms and their
relevant properties (see [3–12]). For an extensive overview of different possible complexity
measure, the reader is invited to consult [12].

In [13], we addressed the problem of measuring the complexity of derivations in
FOL by using as measure the size of the derivations as well as the length of each step (in
the terminology of [12,14], with respect to Frege systems, we discuss sD(η); that is the
minimum number of symbols in a schema derivation for η). In [13], two derivations can
have the same complexity, except for some non-essential details; that is, they share the
same schema derivation. Thus, both should have the same complexity, measured by the
complexity of the schema derivation. The adopted view of complexity of a formula is
related to Kolmogorov’s notion of the complexity of a description [15,16].

Herein, we address the role of schema lemmas and schema metatheorems in the
complexity of schema derivations, as recognized in [12]. We concentrate on schema
derivations in the context of propositional-based logics. These schema derivations give the
foundation for the complexity measure. We allow the use of schema lemmas in schema
derivations. The complexity of a schema derivation is not affected by the number of times
that the same lemma is applied. This approach can be used both for Hilbert calculi and
Gentzen calculi. This is illustrated with a Hilbert calculus for modal logic as well as by a
Gentzen calculus for intuitionistic logic.

After the initial set-up, we focus on the application of metatheorems. Given the
complexity of a schema derivation where a metatheorem was applied, we show how to

Mathematics 2021, 9, 2671. https://doi.org/10.3390/math9212671 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5137-5350
https://orcid.org/0000-0002-1239-8496
https://orcid.org/0000-0002-5510-3512
https://doi.org/10.3390/math9212671
https://doi.org/10.3390/math9212671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212671
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212671?type=check_update&version=2


Mathematics 2021, 9, 2671 2 of 22

use it to obtain a bound on the complexity of a schema derivation where the metatheorem
is not used. We discuss the case of the metatheorem of deduction in a Hilbert calculus and
the case of cut in a Gentzen calculus. Examples are provided for both cases for modal logic
and intuitionistic logic, respectively.

The paper is organized as follows. In Section 2, we define the schema calculus,
in particular, the Hilbert and Gentzen calculi. For the Gentzen calculi, we typify the
connectives according to their arity and semantic behaviors in order to accommodate what
we call regular Gentzen calculi. Moreover, we set up the Hilbert schema calculus for modal
logic and the Gentzen calculus for intuitionistic logic. In Section 3, we define schema proof,
schema derivation, and schema lemma. We also introduce the notion of schema derivation
using schema lemmas. Examples are provided. Section 4 is dedicated to schema derivation
complexity and how the use of lemmas relates to complexity. In Section 5, we define
schema metatheorem and in particular the metatheorem of deduction for a Hilbert calculus
and the cut metatheorem for a Gentzen calculus. We have results on the elimination of such
metatheorems and how the schema complexity is affected by the respective elimination.
We conclude in Section 6 with some remarks on future work.

2. Schema Calculus

We introduce the notion of schema calculus for propositional-based logics (that is,
logics without quantifiers) where we can forget some details and concentrate on the
structure of derivations. In doing so, many derivations have the same schema. Our
schema notions are general enough to accommodate Hilbert and Gentzen schema calculi
as special cases.

Let Ξ be a denumerable set of schema variables (schema variables can be instantiated
in a particular formula producing another formula). A propositional-based signature is
a family

C = {Ck}k∈N

where Ck is the set of operators of arity k for k ∈ N. The set SLC of schema formulas or the
schema language over C is inductively defined as follows:

• Ξ ∪ C0 ⊆ SLC;
• c(η1, . . . , ηk) ∈ SLC, provided that c ∈ Ck and η1, . . . , ηk ∈ SLC.

When there is no ambiguity, we can skip the subscript in SLC. We denote by SLS4 the
schema language over CS4 and by SLJ the schema language over CJ.

Definition 1. A schema calculus over C is a tuple

D = (DL, µ, sAx, sD, sP)

where

• DL is a set of schema deductive assertions (or the schema deductive language);
• µ : SL→ DL is an injective translation map;
• sAx ⊆ DL is a finite set of schema axioms;
• sD ⊆ ℘fin(DL)×DL is a finite set of schema derivation rules;
• sP ⊆ ℘fin(DL)×DL is a finite set of schema proof rules;

such that sD ⊆ sP where ℘fin(DL) is the set of all finite subsets of DL.

We will present a rule ({τ1, . . . , τn}, τ) as follows:

τ1 . . . τn

τ

and an axiom τ as

τ
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The schema deductive language is relevant when dealing with calculi where the
deductive unit is not the formula. This is the case, for instance, with sequent calculi
where the deductive unit is the sequent. When the deductive unit is the formula, then
DL coincides with SL. This is the case in Hilbert calculi. The distinction between schema
derivation rules and schema proof rules is needed in order to cope, for example, with the
use of necessitation in modal logic.

Herein, we focus only on two kinds of schema calculi: Hilbert schema calculi and
Gentzen schema calculi. Namely, we consider as working examples the Hilbert schema
calculus for modal logic S4 and the Gentzen schema calculus for intuitionistic logic J.

A Hilbert schema calculus DH is a schema calculus, such that

• DL is SL;
• µ : SL→ DL is the identity.

Example 1. The signature CS4 for modal logic S4 is defined as follows: CS4
1 = {¬,�}, CS4

2 = {⊃}
and CS4

k = ∅ for k 6= 1, 2. A Hilbert schema calculus DS4
H for modal logic S4 over CS4 is a Hilbert

schema calculus
(DLS4

H , µS4
H , sAxS4

H , sDS4
H , sPS4

H )

such that

• sAxS4
H is composed by the following axiom schemas:

sAx1
ξ1 ⊃ (ξ2 ⊃ ξ1)

sAx2
(ξ1 ⊃ (ξ2 ⊃ ξ3))⊃ ((ξ1 ⊃ ξ2)⊃ (ξ1 ⊃ ξ3))

sAx3
((¬ ξ1)⊃ (¬ ξ2))⊃ (ξ2 ⊃ ξ1)

K
(�(ξ1 ⊃ ξ2))⊃ ((�ξ1)⊃ (�ξ2))

4
(�ξ)⊃��ξ

T
(�ξ)⊃ ξ

• sDS4
H is composed by the following schema derivation rule:

sMP
ξ1 ξ1 ⊃ ξ2

ξ2

• sPS4
H contains sDS4

H as well as the schema proof rule:

sNec
ξ

�ξ

for ξ, ξ1, ξ2, ξ3 ∈ Ξ.

A Gentzen schema calculus DG is a schema calculus such that

• DL is the set of all sequents;
• µG(η) is→ η;
• sAxG includes

ξ → ξ

where a sequent is a pair ({η1, . . . , ηm}, {η′1, . . . , η′n}) of finite multisets of schema formulas
presented as

η1, . . . , ηm → η′1, . . . , η′n.

We use Π, Π1, Π2 for denoting multisets. Moreover, we write ξ, Π instead of {ξ} ∪Π.
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Definition 2. A Gentzen calculus DG over C is regular whenever the rules for each c ∈ Cn and
n ≥ 1 are either of the type

(i) L c
Π1 → Π2, ξ j, for j = 1, . . . , ` ξ j, Π1 → Π2, for j = `+ 1, . . . , n

c(ξ1, . . . , ξn), Π1 → Π2

R c
ξ1, . . . , ξ`, Π1 → Π2, ξ`+1, . . . , ξn

Π1 → Π2, c(ξ1, . . . , ξn)

or

(ii) L c
ξ1, . . . , ξ`, Π1 → Π2, ξ`+1, . . . , ξn

c(ξ1, . . . , ξn), Π1 → Π2

R c
Π1 → Π2, ξ j, for j = 1, . . . , ` ξ j, Π1 → Π2, for j = `+ 1, . . . , n

Π1 → Π2, c(ξ1, . . . , ξn)
or

(iii) L c
ξ1, Π1 → Π2 . . . ξn, Π1 → Π2

c(ξ1, . . . , ξn), Π1 → Π2

R cj
Π1 → Π2, ξ j

Π1 → Π2, c(ξ1, . . . , ξn)
for each j = 1, . . . , n

or

(iv) L cj
ξ j, Π1 → Π2

c(ξ1, . . . , ξn), Π1 → Π2
for each j = 1, . . . , n

R c
Π1 → Π2, ξ1 . . . Π1 → Π2, ξn

Π1 → Π2, c(ξ1, . . . , ξn)
for each j = 1, . . . , n

where 0 ≤ ` ≤ n. In the first type of rules, we assume that if ` = 0 then in R c the premise is
Π1 → Π2, ξ1, . . . , ξn and in rule L c the premises of the left hand side are omitted. Furthermore,
if ` = n then in rule R c the premise is ξ1, . . . , ξn, Π1 → Π2, and in rule L c the premises on the
right hand side are omitted. The same conventions apply to the second type of rules.

Example 2. The signature CJ for intuitionistic logic is defined as follows: CJ
0 = {⊥}, CJ

2 =

{⊃,∧,∨} and CJ
k = ∅ for k 6= 0, 2. The Gentzen schema calculus

DJ
G

for intuitionistic logic J over CJ is a Gentzen schema calculus

(DLJ
G, µ

J
G, sAxJ

G, sDJ
G, sPJ

G)

such that

• sAxJ
G is composed by

Ax
ξ → ξ

L⊥ ⊥ → ξ

• sDJ
G = sPJ

G is composed by the following schema derivation rules:

L⊃ ξ2, Π→ ξ Π→ ξ1

ξ1 ⊃ ξ2, Π→ ξ
R⊃ ξ1, Π→ ξ2

Π→ ξ1 ⊃ ξ2

L∧ ξ1, ξ2, Π→ ξ

ξ1 ∧ ξ2, Π→ ξ
R∧ Π→ ξ1 Π→ ξ2

Π→ ξ1 ∧ ξ2

L∨ ξ1, Π→ ξ ξ2, Π→ ξ

ξ1 ∨ ξ2, Π→ ξ
R∨j

Π→ ξ j

Π→ ξ1 ∨ ξ2
for j = 1, 2

LW
Π→ ξ

ξ1, Π→ ξ
LC

ξ1, ξ1, Π→ ξ

ξ1, Π→ ξ



Mathematics 2021, 9, 2671 5 of 22

Cut
Π→ ξ1 ξ1, Π→ ξ

Π→ ξ

for ξ, ξ1, ξ2 ∈ Ξ and Π is an SLJ multiset. Observe that sDJ
G is a regular Gentzen schema calculus

because rules for ⊃ are of type (i) with n = 2 and ` = 1, rules for ∧ are of type (ii) with n = ` = 2,
and rules for ∨ are of type (iii) with n = 2.

In general, a cut rule is either of the form

Π→ ξ1 ξ1, Π→ ξ

Π→ ξ

or
ξ, Π1 → Π2 Π1 → Π2, ξ

Π1 → Π2
.

A Gentzen schema calculus is cut-free if it does not include the cut rule. Below, we
will discuss a result that states that we can always work with a cut-free Gentzen schema
calculus provided that this calculus is regular.

3. Schema Derivation and Lemmas

Given a schema calculus, we can define what are schema proofs and schema deriva-
tions. As expected, every schema derivation is a schema proof, but not the other way around.

Definition 3. Let D = (DL, µ, sAx, sD, sP) be a schema calculus and ∆ ∪ {τ} ⊆ DL. We say
that τ is schema provable from ∆ in D, written

∆ `p
D τ,

whenever there is a finite sequence ω = ω1 . . . ωn in DL such that:

• ωn is τ;
• for each j = 1, . . . , n

– either ωj ∈ ∆;
– or ωj is an instance of a schema axiom in sAx;
– or ωj is an instance of the conclusion of a schema rule r in sP and the instances of the

premises of r occur in positions contained in {1, . . . , j−1}.
The sequence ω is a schema proof of τ from ∆. We say that τ is schema provable whenever

τ is schema provable from the empty set.

We now extend the notion of schema proof to formulas in the schema language SL.

Definition 4. Let Θ ∪ {η} ⊆ SL. Then, η is schema provable from Θ in D, written

Θ `p
D η

whenever µ(η) is schema provable from µ(Θ) in D, that is, µ(Θ) `p
D µ(η). When Θ is empty

then η is a schema theorem.

Example 3. Recall the Hilbert calculus DS4
H defined in Example 1. Let

Θ = {(¬ ξ1)⊃ (ξ1 ⊃ ξ2)}.

Then,
Θ `p

DS4
H

(�(¬ ξ1))⊃ (�(ξ1 ⊃ ξ2))

since
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1 (¬ ξ1)⊃ (ξ1 ⊃ ξ2) Hyp

2 �((¬ ξ1)⊃ (ξ1 ⊃ ξ2)) sNec:1

3 (�((¬ ξ1)⊃ (ξ1 ⊃ ξ2)))⊃ ((�(¬ ξ1))⊃ (�(ξ1 ⊃ ξ2))) K

4 (�(¬ ξ1))⊃ (�(ξ1 ⊃ ξ2)) MP:2,3

is a schema proof of (�(¬ ξ1))⊃ (�(ξ1 ⊃ ξ2)) from Θ.

Example 4. Recall the Gentzen calculus DJ
G defined in Example 2. We now show that

`p
DJ

G
(ξ1 ⊃⊥)⊃ (ξ1 ⊃ ξ2),

that is, µ((ξ1 ⊃⊥)⊃ (ξ1 ⊃ ξ2)) =→ (ξ1 ⊃⊥)⊃ (ξ1 ⊃ ξ2) is schema provable. In fact

1 ⊥ → ξ2 L⊥

2 ξ1 → ξ1 Ax

3 ξ1,⊥ → ξ2 LW:1

4 ξ1, ξ1 ⊃⊥ → ξ2 L⊃:3,2

5 ξ1 ⊃⊥ → ξ1 ⊃ ξ2 R⊃:4

6 → (ξ1 ⊃⊥)⊃ (ξ1 ⊃ ξ2) R⊃:5

is a schema proof of→ (ξ1 ⊃⊥)⊃ (ξ1 ⊃ ξ2).

Definition 5. Let D = (DL, µ, sAx, sD, sP) be a schema calculus and ∆ ∪ {τ} ⊆ DL. We say
that τ is schema derivable from ∆ in D, written

∆ `D τ,

whenever there is a finite sequence ω = ω1 . . . ωn in DL such that:

• ωn is τ;
• for each j = 1, . . . , n

– either ωj ∈ ∆;
– or ωj is an instance of a schema axiom in sAx;
– or ωj is an instance of the conclusion of a schema rule r in sD and the instances of the

premises of r occur in positions contained in {1, . . . , j−1};
– or ωj is schema provable.

The sequence ω is a schema derivation of τ from ∆.

We now introduce the notion of schema lemma.

Definition 6. Let D = (DL, µ, sAx, sD, sP) be a schema calculus and ∆ ∪ {τ} ⊆ DL. Whenever
τ is schema derivable from ∆ in D, we say that (∆, τ) is a schema lemma.

Let Λ be a set of schema lemmas and ∆ ∪ {τ} ⊆ DL. We write

∆ `D,Λ τ

whenever there is a schema derivation using as schema derivation rules the rules in D and
the schema lemmas in Λ. We can extend the notion of schema lemma to allow the use
of schema lemmas in the schema derivation of other schema lemmas. The set Λ should
be closed under dependencies of schema lemmas. Note that ∆ `D,∅ τ coincides with
∆ `D τ. Observe that the notion of schema provable can also be extended to encompass
schema lemmas.
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As expected, we extend this notion to schema formulas in SL. Let Θ∪ {η} ⊆ SL. Then,
we write

Θ `D,Λ η

whenever there is a schema derivation of µ(Θ) `D,Λ µ(η). In the following examples, we
highlight the use of schema lemmas. When Λ = ∅, we write Θ `D η.

Example 5. Recall the Hilbert calculus DS4
H defined in Example 1. Let Λ = {sHS} where sHS is

the schema lemma
({ξ1 ⊃ ξ2, ξ2 ⊃ ξ3}, ξ1 ⊃ ξ3)

and ω the sequence

1 (¬ ξ1)⊃ ((¬ ξ2)⊃ (¬ ξ1)) sAx1

2 ((¬ ξ2)⊃ (¬ ξ1))⊃ (ξ1 ⊃ ξ2) sAx3

3 (¬ ξ1)⊃ (ξ1⊃ ξ2) sHS 1,2

4 �((¬ ξ1)⊃ (ξ1 ⊃ ξ2)) sNec 3

5 (�((¬ ξ1)⊃ (ξ1 ⊃ ξ2)))⊃ ((�¬ ξ1)⊃ (�(ξ1 ⊃ ξ2))) K

6 (�¬ ξ1)⊃ (�(ξ1 ⊃ ξ2)) sMP4,5

7 (�(ξ1 ⊃ ξ2))⊃ ((�ξ1)⊃ (�ξ2)) K

8 (�¬ ξ1)⊃ ((�ξ1)⊃ (�ξ2)) sHS 6,7

9 �¬ ξ1 Hyp

10 (�ξ1)⊃ (�ξ2) sMP 9,8

Hence,
�¬ ξ1 `DS4

H ,Λ (�ξ1)⊃ (�ξ2)

since in ω the necessitation rule in step (4) was used over a schema theorem.

Observe that the schema lemma sHS was used twice in ω. Let ωsHS be the following
schema derivation:

1 ξ1 ⊃ ξ2 Hyp

2 ξ2 ⊃ ξ3 Hyp

3 (ξ2 ⊃ ξ3)⊃ (ξ1 ⊃ (ξ2 ⊃ ξ3)) sAx1

4 ξ1 ⊃ (ξ2 ⊃ ξ3) sMP 2,3

5 (ξ1 ⊃ (ξ2 ⊃ ξ3))⊃ ((ξ1 ⊃ ξ2)⊃ (ξ1 ⊃ ξ3)) sAx2

6 (ξ1 ⊃ ξ2)⊃ (ξ1 ⊃ ξ3) sMP 4,5

7 ξ1 ⊃ ξ3 sMP 1,6

Example 6. Recall the Gentzen calculus DJ
G defined in Example 2. As usual, we define ¬ ξ as an

abbreviation of ξ ⊃⊥. Consider the following schema derivation lemmas

R¬ = ({ξ, Π→ ⊥}, Π→ ¬ ξ)

with schema derivation ωR¬

1 ξ, Π→ ⊥ Hyp

2 Π→ ξ ⊃⊥ R⊃:1



Mathematics 2021, 9, 2671 8 of 22

and
L¬ = ({Π→ ξ1},¬ ξ1, Π→ ξ)

with schema derivation ωL¬

1 ⊥ → ξ L⊥

2 Π→ ξ1 Hyp

3 ⊥, Π→ ξ LW∗:1

4 ξ1 ⊃⊥, Π→ ξ L⊃:3,2

where LW∗ means that the left weakening may be applied several times. We now show that

`DJ
G,Λ ((¬¬ ξ1)⊃ (¬¬ ξ2))⊃¬¬(ξ1 ⊃ ξ2)

where Λ = {R¬, L¬}. In fact, consider the schema derivation:

1 ξ1 → ξ1 Ax

2 ξ1,¬ ξ1→ ξ2 L¬:1

3 ¬ ξ1 → ξ1 ⊃ ξ2 R⊃:2

4 ¬ ξ1,¬(ξ1⊃ ξ2)→⊥ L¬:3

5 ¬(ξ1⊃ ξ2)→ ¬¬ ξ1 R¬:4

6 ξ2 → ξ2 Ax

7 ξ1, ξ2 → ξ2 LW:6

8 ξ2 → ξ1 ⊃ ξ2 R⊃:7

9 ξ2,¬(ξ1⊃ ξ2)→⊥ L¬:8

10 ¬(ξ1⊃ ξ2)→ ¬ ξ2 R¬:9

11 ¬(ξ1⊃ ξ2),¬¬ ξ2→⊥ L¬:10

12 ¬(ξ1 ⊃ ξ2), (¬¬ ξ1)⊃ (¬¬ ξ2)→ ⊥ L⊃:11,5

13 (¬¬ ξ1)⊃ (¬¬ ξ2)→ ¬¬(ξ1⊃ ξ2) R¬:12

14 → ((¬¬ ξ1)⊃ (¬¬ ξ2))⊃¬¬(ξ1 ⊃ ξ2) R⊃:13

4. Schema Derivation Complexity

For defining schema complexity, we need to introduce an additional information on
schema proofs and derivations. We start by considering the schema derivation complexity
over DL. Then we extend the notion to schema formulas.

Given a set Λ of schema lemmas and ∆ ∪ {τ} ⊆ DL, the notation

∆ `ω
D,Λ τ

states that ω is a schema derivation of ∆ `D,Λ τ using (directly or indirectly) schema
lemmas in Λ. Furthermore, we denote by || · || the total number of symbols in a sequence.

Definition 7. Let λ = ({δ1, . . . , δk}, τ) be a schema lemma in D. Then, the schema complexity
of λ is

DD(λ) = inf{||ω|| : δ1, . . . , δk `ω
D τ} −

(
k

∑
i=1
||δi||

)
− ||τ||. (1)

The schema complexity of τ given a set of schema lemmas Λ and ∆ in D is

DD(τ |Λ, ∆) = inf
Λ′⊆Λ

{||ω||+ ∑
λ∈Λ′

DD(λ) : ∆ `ω
D,Λ′ τ}. (2)
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Furthermore, we define DD(η |Λ, Θ) as DD(µ(η) |Λ, µ(Θ)) given Θ ∪ {η} ⊆ SL.

When Λ and Θ are empty sets then DD(η) is the minimum number of symbols in a
derivation of η in D (this measure corresponds to sD(η) in [12]).

Observe that we count once the derivation of each lemma, even if the lemma is applied
several times, directly or indirectly. Moreover, we only consider, for the complexity, the total
number of symbols of the derivation of each used lemma after removing the hypotheses
and the conclusion of the lemma.

We now compare the complexity of schema derivation using different sets of
schema lemmas.

Proposition 1. Let Θ ∪ {η} ⊆ SL and Λ and Λ′ sets of schema lemmas such that Λ ⊆ Λ′. Then,

DD(η |Λ′, Θ) ≤ DD(η |Λ, Θ). (3)

Proof. It is enough to observe that any schema derivation using schema lemmas in Λ is
also a schema derivation using schema lemmas in Λ′.

In particular, DD(η |Λ, Θ) ≤ DD(η |∅, Θ) for any set Λ of schema lemmas.

Example 7. Consider the schema derivation ω for

�¬ ξ1 `DS4
H ,Λ (�ξ1)⊃ (�ξ2)

introduced in Example 5 where Λ is {sHS}. Furthermore, recall the schema derivation ωsHS for
schema lemma sHS. Observe that

DDS4
H
(sHS) ≤ ||(ωsHS)3 (ωsHS)4 (ωsHS)5 (ωsHS)6||.

Hence,

DDS4
H
((�ξ1)⊃ (�ξ2)) |Λ,�¬ ξ1) ≤ ||ω1 · · ·ω10||+ DDS4

H
(sHS).

So
DDS4

H
((�ξ1)⊃ (�ξ2)) |Λ,�¬ ξ1) ≤ ||ω1 · · ·ω10||+ κ

where κ = DDS4
H
(sHS) ≤ ||(ωsHS)3 (ωsHS)4 (ωsHS)5 (ωsHS)6||. Note that schema lemma sHS

was used twice in the schema derivation, but it only counts once for the schema derivation complexity.

Example 8. Consider the schema derivation ω for

`DJ
G,Λ ((¬¬ ξ1)⊃ (¬¬ ξ2))⊃¬¬(ξ1 ⊃ ξ2)

given in Example 6 with Λ = {R¬, L¬}. Note that

DDJ
G
(R¬) = 0 and DDJ

G
(L¬) ≤ ||(ωL¬)2 (ωL¬)3||.

Thus,

DDJ
G
(((¬¬ ξ1)⊃ (¬¬ ξ2))⊃¬¬(ξ1 ⊃ ξ2))|Λ) ≤ ||ω1 · · ·ω14||+ DDJ

G
(L¬).

Hence,

DDJ
G
(((¬¬ ξ1)⊃ (¬¬ ξ2))⊃¬¬(ξ1 ⊃ ξ2))|Λ) ≤ ||ω1 · · ·ω14||+ κ
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where κ = DDJ
G
(L¬) ≤ ||(ωL¬)2 (ωL¬)3||. In this case, the schema lemma R¬ has no impact on

the schema derivation complexity. Moreover, although the schema lemma L¬ was used four times,
it only counts once on the schema derivation complexity.

5. Schema Metatheorems

A schema metatheorem over D is a pair

({Θ1 `D η1, . . . , Θm `D ηm}, Θ `D η),

written
Θ1 `D η1 . . . Θm `D ηm

Θ `D η

such that each Θi `D ηi, for i = 1, . . . , m, is a meta premise and Θ `D η is the meta
conclusion of the schema metatheorem.

5.1. Metatheorem of Deduction in Hilbert Like Calculi

The metatheorem of deduction is associated with implication. Since we are working
in a general setting we need to make precise what is a Hilbert calculus with implication.

We say that a Hilbert schema calculus DH has implication if ⊃ ∈ C2 and the following
schema metatheorems of modus ponens (MTMP) and deduction (MTD)

MTMP
Θ `DH η ⊃ η′

Θ, η `DH η′
and MTD

Θ, η `DH η′

Θ `DH η ⊃ η′

hold.
The schema MTD can be characterized in DH by some schema lemmas. That is,

a deductive system has the MTD, provided that certain schema lemmas hold. Consider the
following pairs:

(L1) (∅, ξ ⊃ ξ);
(L2) ({ξ1}, ξ2 ⊃ ξ1);
(LDr) ({ξ⊃ η1, . . . , ξ⊃ ηk}, ξ⊃ η) for every schema derivation rule r = ({η1, . . . , ηk}, η)
where ξ is a fresh schema variable.

The following result gives a necessary and sufficient condition for MTD to hold in a
Hilbert schema calculus.

Proposition 2. Let DH be a Hilbert schema calculus with ⊃ ∈ C2 and MTMP. Then MTD holds
in DH iff L1, L2, LDr are schema lemmas for every r ∈ sDH.

Proof.
(→) We must prove the three properties:

(L1) Observe that ξ `DH ξ and so by MTD `DH ξ ⊃ ξ.

(L2) Note that ξ1, ξ2 `DH ξ1 and so by MTD ξ1 `DH ξ2 ⊃ ξ1.

(LDr) Assume that r = ({η1, . . . , ηk}, η) ∈ sDH. Since ξ ⊃ η1, . . . , ξ ⊃ ηk `DH ξ ⊃ ηj for
j = 1, . . . , k then using MTMP, we have

ξ ⊃ η1, . . . , ξ ⊃ ηk, ξ `DH ηj

for j = 1, . . . , k. Hence,
ξ ⊃ η1, . . . , ξ ⊃ ηk, ξ `DH η

and so by MTD ξ ⊃ η1, . . . , ξ ⊃ ηk `DH ξ ⊃ η.

(←) Assume that Θ, η `DH η′. Let ω1 . . . ωm be a schema derivation of η′ from Θ and η.
We prove the result by induction on m.
(Basis) m = 1. There are four possibilities.
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(a) ωm is a schema axiom. Then consider the schema derivation:

1 η′ sAx

2 η ⊃ η′ L2:1

(b) ωm ∈ Θ is an hypothesis. Then consider the schema derivation:

1 η′ Hyp

2 η ⊃ η′ L2:1

(c) ωm is schema provable, that is η′ ∈ ∅`
p
DH . Then consider the schema derivation:

1 η′ sThm

2 η ⊃ η′ L2:1

where sThm means that η′ is a schema theorem (hence, has a schema proof).

(d) ωm is η. Then consider the schema derivation

1 η ⊃ η L1

(Step) ωm = η′ is an instance of the conclusion of a schema derivation rule r and the
instances of the premises are ωj1 , . . . ωjn assuming that r has n premises. Hence, Θ, η `DH
ωji and so, by the induction hypothesis, Θ `DH η ⊃ ωji , for every i = 1, . . . , n. Then
consider the following schema derivation:

1 η ⊃ωj1 IH

...

n η ⊃ωjn IH

n + 1 η ⊃ η′ LDr:1, . . . , n

shows that Θ `DH η ⊃ η′.

In order to avoid the overloading of the notation we omit the reference to schema
lemmas L1, L2, LDr for r ∈ sDH in the meta conclusion of the MTD. Before extending the
previous result to schema derivations using schema lemmas, we establish a useful result
for the schema proof rules.

Proposition 3. Let DH be a Hilbert schema calculus with ⊃ ∈ C2 and MTMP. Assume that L1,
L2, LDr for every r ∈ sDH are schema lemmas. Then, for every instance of a schema proof rule
r = ({η1, . . . , ηk}, η)

(LPr) ({ξ ⊃ η1, . . . , ξ ⊃ ηk}, ξ ⊃ η)
is a schema lemma, provided that η1, . . . , ηk are schema theorems and ξ is a fresh schema variable.

Proof. Assume that r = ({η1, . . . , ηk}, η) is an instance of a schema proof rule and that
η1, . . . , ηk are schema theorems. Then η is also a schema theorem. So, using L2, it follows
that ξ ⊃ η is a schema theorem.

Let λ = ({η1, . . . , ηk}, η) be a pair and define λ = ({ξ ⊃ η1, . . . ξ ⊃ ηk}, ξ ⊃ η) where ξ
is a fresh schema variable. The following result is an immediate consequence of Proposition 2.

Proposition 4. Let DH be a Hilbert schema calculus with implication. Then

λ is a schema lemma if and only if λ is a schema lemma.
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Let Λ be a set of schema lemmas. We define

Λ = {λ : λ ∈ Λ}.

The following result is useful for detailing how to get a schema derivation for η ⊃ η′

from Θ out of a schema derivation for η′ from Θ and η in the presence of schema lemmas.

Proposition 5. Let DH be a Hilbert schema calculus with ⊃ ∈ C2 and MTMP, and Λ be a set of
schema lemmas. Then if L1, L2, LDr for every r ∈ sDH are schema lemmas then

MTMPΛ Θ `DH,Λ η ⊃ η′

Θ, η `DH,Λ η′
MTDΛ Θ, η `DH,Λ η′

Θ `DH,Λ η ⊃ η′

hold.

Proof. We only prove that MTDΛ holds. Let ω′ = ω′1 . . . ω′k be a schema derivation for
Θ, η `DH,Λ η′. Consider the sequence ω obtained from ω′ as follows: for each j = 1, . . . , k,

• ω′j is either an axiom or an element in Θ. Then replace ω′j by

j′ ω′j sAx or Hyp

j η ⊃ω′j L2:j′

• ω′j is η. Then replace ω′j by η ⊃ η justified by L1;
• ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of a schema derivation rule r.

Then replace ω′j by η ⊃ω′j with justification LDr : j1, . . . , jn;
• ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of a schema lemma λ ∈ Λ.

Then replace ω′j by η ⊃ω′j with justification λ : j1, . . . , jn;
• ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of a schema proof rule r. Then

replace ω′j by η ⊃ω′j with justification LPr : j1, . . . , jn.

We now show by induction on k that ω is a schema derivation for Θ `DH,Λ η ⊃ η′.

(Base) k = 1. Then η′ is either an axiom or an element of Θ or is η. Thus, by construction of
ω, ω is a schema derivation for Θ `DH,Λ η ⊃ η′.

(Step) (1) ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of a derivation rule r. Then,
by the induction hypothesis, Θ `DH,Λ η ⊃ω′ji for i = 1, . . . , n. Hence, by construction of ω,
ω is a schema derivation for Θ `DH,Λ η ⊃ η′.

(2) ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of the schema lemma λ ∈ Λ.
Then, by the induction hypothesis, Θ `DH,Λ η⊃ω′ji for i = 1, . . . , n. Hence, by construction

of ω, ω is a schema derivation for Θ `DH,Λ η ⊃ η′ observing that λ ∈ Λ.

(3) ω′j is the conclusion of an instance ({ω′j1 , . . . , ω′jn}, ω′j) of a schema proof rule r. Then,
by the induction hypothesis, Θ `DH,Λ η ⊃ω′ji for i = 1, . . . , n. Hence, by construction of ω,
ω is a schema derivation for Θ `DH,Λ η ⊃ η′ observing that if ω′ji is a theorem then η ⊃ω′ji
must also be a theorem for i = 1, . . . , n and, in these conditions, LPr is a schema lemma by
Proposition 3.

Example 9. Note that DS4
H has implication. We now prove that DS4

H has the MTD. According to
Proposition 2, it is enough to show that L1, L2, and LDsMP are schema lemmas. We only show
LDsMP. For that, it is enough to observe that the sequence ωLDsMP
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1 ξ ⊃ ξ1 Hyp

2 ξ ⊃ (ξ1 ⊃ ξ2) Hyp

3 (ξ ⊃ (ξ1 ⊃ ξ2))⊃ ((ξ ⊃ ξ1)⊃ (ξ ⊃ ξ2)) sAx2

4 (ξ ⊃ ξ1)⊃ (ξ ⊃ ξ2) sMP:2,3

5 ξ ⊃ ξ2 sMP:1,4

is a schema derivation for ξ ⊃ ξ1, ξ ⊃ (ξ1 ⊃ ξ2) `DS4
H

ξ ⊃ ξ2.

Example 10. Recall Example 5 where Λ = {sHS}. In this case

sHS = ({ξ ⊃ (ξ1 ⊃ ξ2), ξ ⊃ (ξ2 ⊃ ξ3)}, ξ ⊃ (ξ1 ⊃ ξ3)).

Recall also that DS4
H has implication, as shown in Example 9. Then the sequence ωMTD defined

is as follows

1′ (¬ ξ1)⊃ ((¬ ξ2)⊃ (¬ ξ1)) sAx1

1 (�¬ ξ1)⊃ ((¬ ξ1)⊃ ((¬ ξ2)⊃ (¬ ξ1))) L2:1′

2′ ((¬ ξ2)⊃ (¬ ξ1))⊃ (ξ1 ⊃ ξ2) sAx3

2 (�¬ ξ1)⊃ (((¬ ξ2)⊃ (¬ ξ1))⊃ (ξ1 ⊃ ξ2)) L2:2′

3 (�¬ ξ1)⊃ ((¬ ξ1)⊃ (ξ1 ⊃ ξ2)) sHS:1,2

4 (�¬ ξ1)⊃ (�((¬ ξ1)⊃ (ξ1 ⊃ ξ2))) LPsNec:3

5′ (�((¬ ξ1)⊃ (ξ1 ⊃ ξ2)))⊃ ((�¬ ξ1)⊃ (�(ξ1 ⊃ ξ2))) K

5 (�¬ ξ1)⊃ ((�((¬ ξ1)⊃ (ξ1 ⊃ ξ2)))⊃ ((�¬ ξ1)⊃ (�(ξ1 ⊃ ξ2)))) L2:5′

6 (�¬ ξ1)⊃ ((�(¬ ξ1))⊃ (�(ξ1 ⊃ ξ2))) LDsMP:4,5

7′ (�(ξ1 ⊃ ξ2))⊃ ((�ξ1)⊃ (�ξ2)) K

7 (�¬ ξ1)⊃ ((�(ξ1 ⊃ ξ2))⊃ ((�ξ1)⊃ (�ξ2))) L2:7′

8 (�¬ ξ1)⊃ ((�¬ ξ1)⊃ ((�ξ1)⊃ (�ξ2))) sHS:6,7

9 (�¬ ξ1)⊃ (�¬ ξ1) L1

10 (�¬ ξ1)⊃ ((�ξ1)⊃ (�ξ2)) LDsMP 9,8

is a schema derivation for

`DS4
H ,Λ (�¬ ξ1)⊃ ((�ξ1)⊃ (�ξ2)).

Observe that this schema derivation was obtained from the schema derivation in Example 5
using the proofs of Proposition 5 and Proposition 3.

Proposition 6. Let D be a Hilbert schema calculus with implication, Λ a set of schema lemmas
and ω a schema derivation for Θ, η `DH,Λ η′. Then there is a constant κ, such that

DDH(η ⊃ η′ |Λ, Θ) ≤ 2||ω||+ |ω| (1 + ||η||) + κ. (4)

Proof. The first two terms of the bound of the schema complexity are a direct consequence
of the proof of Proposition 5. The following expression

DDH(L1) + DDH(L2) + ∑
r∈sDH

DDH(LDr) + ∑
λ∈Λ

DDH(λ) (5)
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is a bound for constant κ.

Example 11. Recall Example 7. Then

DDHS4
((�¬ ξ1)⊃ ((�ξ1)⊃ (�ξ2)) | sHS) ≤ 2||ω||+ |ω| (1 + ||(�¬ ξ1)||) + κ.

where κ is
DDHS4

(L1) + DDHS4
(L2) + DDHS4

(LDsMP) + DDHS4
(sHS).

5.2. Cut in Gentzen Like Calculi

Let DG be a regular Gentzen schema calculus with the following cut rule

ξ, Π1 → Π2 Π1 → Π2, ξ

Π1 → Π2
.

A possible instantiation of the Cut rule is

η, Γ→ ∆ Γ→ ∆, η

Γ→ ∆

where η is said to be the cut formula. The depth of a schema formula η is defined as follows:

• depth(ξ) = 0;
• depth(c(η1, . . . , ηn)) = 1 + max{depth(η1), . . . , depth(ηn)}.

The depth of a cut instantiation is the depth of its cut formula. For more details on cut
elimination, the reader should consult [17].

We use the following notations: S `DG,Cutd s′ means that there is a schema derivation
of s′ from S in DG and cut in which all the cuts have a depth of at most d and S `DG,Cut1

d
s′

means that there is a schema derivation of s′ from S in DG and cut in which the final step is
a cut of depth d, and all the other cuts have a depth of at most d− 1. In order to investigate
the impact of the elimination of cuts of depth d, we need to work with more fine grained
complexity measures. We denote by

DDG,Cutd(Γ→ ∆)

the complexity of the smallest schema derivation for Γ→ ∆ using cuts with at most depth
d. Moreover, we denote by

DDG,Cut1
d
(Γ→ ∆)

the complexity of the smallest schema derivation for Γ→ ∆ ending with an application of
a cut rule of depth d and all the other cuts have depth at most d− 1.

Finally, we use S `DG\Cut s′ for denoting a cut-free schema derivation. Observe that
for cut elimination we will use schema lemmas that depend on the main connective of the
cut formula. Hence, we associate schema lemmas with each connective depending on its
type (recall Definition 2). Let c be a connective of type (i), ` = 1 and n = 2. Then we define
λc as the schema lemma

ξ1, Π1 → Π2, ξ2 ξ2, Π1 → Π2 Π1 → Π2, ξ1

Π1 → Π2

with schema derivation ωλc
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1 ξ2, Π1 → Π2 Hyp

2 ξ2, ξ1, Π1 → Π2 LW:1

3 ξ1, Π1 → Π2, ξ2 Hyp

4 Π1 → Π2, ξ1 Hyp

5 ξ1, Π1 → Π2 Cut:2,3

6 Π1 → Π2 Cut:4,5

in DG. We denote by
DDG(λC) = ∑

c∈C
DDG(λc) (6)

the complexity of the schema lemmas for C.
In the next results we assume without loss of generality that in a schema derivation

the cut formulas are immediately expanded after the application of the cut. The general
case would follow by an additional induction on the level of the cut.

Proposition 7. Let DG be a regular Gentzen schema calculus (recall Definition 2) and c a connec-
tive of type (i), ` = 1 and n = 2. Then, the following metatheorem holds

`DG,Cut1
d

Γ→ ∆

`DG,λc ,Cutd−1
Γ→ ∆

assuming that the last step of the schema derivation for Γ→ ∆ on the numerator is justified by Cut
with premises c(η1, η2), Γ→ ∆ and Γ→ ∆, c(η1, η2). Moreover,

DDG,Cutd−1
(Γ→ ∆) ≤ DDG,Cut1

d
(Γ→ ∆) + DDG(λC). (7)

Proof. Let ω be a schema derivation
...

k η1, Γ→ ∆, η2

k + 1 η2, Γ→ ∆

k + 2 Γ→ ∆, η1

k + 3 c(η1, η2), Γ→ ∆ Lc:k + 1,k + 2

k + 4 Γ→ ∆, c(η1, η2) Rc:k

k + 5 Γ→ ∆ Cut:k + 3,k + 4

From ω we have schema derivations for η1, Γ→ ∆, η2, for η2, Γ→ ∆ and for Γ→ ∆, η1.
Hence, there is a schema derivation of Γ→ ∆ using the schema lemma:

...

k η1, Γ→ ∆, η2

k + 1 η2, Γ→ ∆

k + 2 Γ→ ∆, η1

k + 3 Γ→ ∆ λc:k, k + 1, k + 2
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Observe that in this schema derivation, all the cuts have depth less than d. Moreover,

DDG,Cutd−1
(Γ→ ∆)

≤ DDG,Cut1
d
(Γ→ ∆)− ||c(η1, η2), Γ→ ∆|| − ||Γ→ ∆, c(η1, η2))||+ DDG(λc)

≤ DDG,Cut1
d
(Γ→ ∆) + DDG(λc).

(8)

The inequality holds since DDG(λc) ≤ DDG(λC).

Observe that we can establish a similar result for every connective of type (i) (with
` 6= 1), (ii), (iii), and (iv) in a regular Gentzen calculus with signature C. We also provide
an illustration for a connective c of type (iii) and arity 2 (the rules for disjunction in
intuitionistic logic are of this kind). Let DG be a regular Gentzen schema calculus with the
following cut rule

ξ1, Π→ ξ Π→ ξ1

Π→ ξ

and where every schema rule has premises and conclusion sequents with a unique schema
formula on the right hand side. A possible instantiation of the cut rule is

η, Γ→ δ Γ→ η

Γ→ δ
.

Let λci be the schema lemma
ξi, Π→ ξ Π→ ξi

Π→ ξ

with schema derivation ωλci

1 Π→ ξi Hyp

2 ξi, Π→ ξ Hyp

3 Π→ ξ Cut:1,2

for i = 1, 2 in DG.

Proposition 8. Let DG be a regular Gentzen schema calculus where every schema rule has as
premises and conclusion sequents with a unique schema formula on the right hand side, and c a
connective of type (iii) and arity 2. Then, the following metatheorem holds

`DG,Cut1
d

Γ→ δ

`DG,λc1 ,λc2 ,Cutd−1
Γ→ δ

assuming that the last step of the schema derivation for Γ→ δ on the numerator is justified by Cut
with premises c(η1, η2), Γ→ δ and Γ→ c(η1, η2). Moreover,

DDG,Cutd−1
(Γ→ δ) ≤ DDG,Cut1

d
(Γ→ δ) + DDG(λC). (9)

Proof. Let ω be a schema derivation
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...

k Γ→ ηi

k + 1 η2, Γ→ δ

k + 2 η1, Γ→ δ

k + 3 c(η1, η2), Γ→ δ Lc:k+1, k+2

k + 4 Γ→ c(η1, η2) Rci:k

k + 5 Γ→ δ Cut:k+3, k+4

From ω we have schema derivations for Γ → ηi and ηi, Γ → δ for i = 1, 2. Hence,
there is a schema derivation of Γ → δ using the schema lemma λci . Observe that in this
schema derivation, all the cuts have depth less than d. Furthermore,

DDG,Cutd−1
(Γ→ δ)

≤ DDG,Cutd−1
(Γ→ ηi) + DDG,Cutd−1

(ηi, Γ→ δ) + ||Γ→ δ||+ DDG(λci )

≤ DDG,Cut1
d
(Γ→ δ) + DDG(λc1) + DDG(λc2).

The inequality holds since DDG(λc1) + DDG(λc2) ≤ DDG(λC).

We now investigate the impact on the complexity of reducing the depths of the cut in
schema derivations.

Proposition 9. Let DG be a regular Gentzen schema calculus. Then, the following metatheo-
rem holds

`DG,Cutd Γ→ ∆
`DG,Cutd−1

Γ→ ∆
.

Moreover,
DDG,Cutd−1

(Γ→ ∆) ≤ DDG,Cutd(Γ→ ∆) + DDG(λC). (10)

Proof. Assume that

`DG,Cutd Γ→ ∆.

Let ω′ of size m′ be a smallest schema derivation of Γ→ ∆ in DG using cuts of at most
depth d. The proof follows by induction on the number n of cuts of depth d in ω′.

(Base) n = 0. Then ω′ is also a schema derivation for Γ→ ∆ with cuts less than or equal to
d− 1. Then `DG,Cutd−1

Γ→ ∆ and DDG,Cutd−1
(Γ→ ∆) = DDG,Cutd(Γ→ ∆).

(Step) n > 0. Assume that ω′m′ = Γ→ ∆ is justified by a cut of depth d with cut formula η
in positions ω′m′−1 and ω′m′−2. Let Γ1 → ∆1, . . . , Γn−1 → ∆n−1 be the other sequents in ω′

justified by cuts of depth d. Then

`DG,Cutd Γi → ∆i

for every i = 1, . . . , n− 1. Then, by the induction hypothesis,

`DG,Cutd−1
Γi → ∆i.

Consider the schema derivation ω′′ obtained from ω′ by replacing the schema deriva-
tion of Γi → ∆i in ω′ by a schema derivation of Γi → ∆i where the cut of depth d is
substituted by cuts of depth less than d for i = 1, . . . , n − 1, as given by the induction
hypothesis. Then,

(†) ||ω′′|| ≤ ||ω′||.
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Observe that ω′′ is a schema derivation of Γ→ ∆ with a unique cut of depth d. That is,

`DG,Cut1
d

Γ→ ∆.

Then, looking at the proof of Proposition 7, we can say that there is a schema derivation
ω of Γ→ ∆ where all the cut rules are of depth less than d. Furthermore,

(‡) ||ω|| ≤ ||ω′′||.

Finally,

DDG,Cutd−1
(Γ→ ∆) ≤ ||ω||+ DDG(λC) (∗)

≤ ||ω′′||+ DDG(λC) (†)

≤ ||ω′||+ DDG(λC) (‡)

= DDG,Cutd(Γ→ ∆) + DDG(λC)

where (∗) comes from the definition of DDG,Cutd−1
.

Now we can state the cut elimination theorem.

Proposition 10. Let DG be a regular Gentzen schema calculus. Then, the following metatheorem
holds, for every d ∈ N,

`DG,Cutd Γ→ ∆
`DG\Cut Γ→ ∆

.

Moreover,
DDG\Cut(Γ→ ∆) ≤ DDG,Cutd(Γ→ ∆) + DDG(λC). (11)

Proof. The proof follows by induction on d.

(Base) d = 0. Immediate by definition.

(Step) Assume that d ≥ 1. Hence, by the induction hypothesis,

DDG\Cut(Γ→ ∆) ≤ DDG,Cutd−1
(Γ→ ∆) + DDG(λC). (12)

The thesis follows by Proposition 9.

Example 12. Recall Example 2 and Example 8. Then, by Proposition 10,

DDJ
G\Cut

(Γ→ η) ≤ DDJ
G,Cutd

(Γ→ η) + DDJ
G,Cut

(λCJ)

where DDJ
G,Cut

(λCJ) is the complexity of the schema lemmas for ∧, ∨ and ⊃.

5.3. Paraconsistent Nelson’s Logic

Recall Nelson’s paraconsistent logic N4 ([18,19]). We discuss how the result of the
complexity of the cut elimination can be used to find an upper bound on cut elimination in
N4 (using the results in [20], namely the theoremhood reduction from N4 to J+).

The signature CN4 for Nelson’s paraconsistent logic is as follows: CN4
1 = {∼}, CN4

2 =
{⊃,∧,∨} and CN4

k = ∅ for k 6= 0, 2. Let LN4 be the set of formulas inductively generated
from the set of schema variables Ξ. Recall Example 2. The Gentzen schema calculus

DN4
G
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for N4 over CN4 is a Gentzen schema calculus

(DLN4
G , µN4

G , sAxN4
G , sDN4

G , sPN4
G )

such that

• sAxN4
G is composed by

ξ → ξ
and ∼ ξ →∼ ξ

• sDN4
G = sPN4

G includes the rules in sDJ
G, plus the rules

L ∼∼ ξ1, Π→ ξ

∼∼ ξ1, Π→ ξ
R ∼∼ Π→ ξ

Π→∼∼ ξ

L∼ ⊃ ξ1,∼ ξ2, Π→ ξ

∼ (ξ1 ⊃ ξ2), Π→ ξ
R∼ ⊃ Π→ ξ1 Π→∼ ξ2

Π→∼ (ξ1 ⊃ ξ2)

L∼ ∧ ∼ ξ1, Π→ ξ ∼ ξ2, Π→ ξ

∼ (ξ1 ∧ ξ2), Π→ ξ
R∼ ∧j

Π→∼ ξ j

Π→∼ (ξ1 ∧ ξ2)
for j = 1, 2

L∼ ∨ ∼ ξ1,∼ ξ2, Π→ ξ

∼ (ξ1 ∨ ξ2), Π→ ξ
R∼ ∨ Π→∼ ξ1 Π→∼ ξ2

Π→∼ (ξ1 ∨ ξ2)

for ξ, ξ1, ξ2 ∈ Ξ and Π is a multiset. Observe that sDN4
G is not a regular Gentzen schema

calculus. For instance even looking at ∼ ∧ as a new connective, it is not of any type in
the definition of regular calculus. For the sake of simplicity, we assume that the depth of a
schema formula with negation is defined as follows:

• depth(∼∼ η) = depth(η);
• depth(∼ (η1 ◦ η2)) = 1 + max{depth(η1), depth(η2)}.

The reason for this is that the rules for negation only consider cases where the negation
appears paired with another connective. Thus, we can regard these pairs as new connec-
tives. We can obtain a result similar to Proposition 10 by using a reduction technique.

Proposition 11. Let DN4
G be a Gentzen schema calculus. Then, the following metatheorem holds,

for every d ∈ N,
`DN4

G ,Cutd
Γ→ η

`DN4
G \Cut Γ→ η

.

Moreover,

DDN4
G \Cut(Γ→ ∆) ≤ DDN4

G ,Cutd
(Γ→ ∆) + DDN4

G
(λC). (13)

Proof. Let LJ be the set of formulas over Ξ ∪ {ξ∼ : ξ ∈ Ξ}. Consider the following
translation

τ : LN4 → LJ

defined as follows

• τ(ξ) = ξ;
• τ(∼ ξ) = ξ∼;
• τ(η1 ◦ η2) = τ(η1) ◦ τ(η2) for ◦ ∈ {⊃,∧,∨};
• τ(∼∼ η) = η;
• τ(∼ (η1 ∧ η2)) = τ(∼ η1) ∨ τ(∼ η2);
• τ(∼ (η1 ∨ η2)) = τ(∼ η1) ∧ τ(∼ η2);
• τ(∼ (η1 ⊃ η2)) = τ(η1)⊃ τ(∼ η2)

We start by showing that

(†) `DN4
G

Γ→ η iff `DJ
G

τ(Γ)→ τ(η).
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(→) The proof follows by induction on the length of a derivation ω = ω1 . . . ωk for
`DN4

G
Γ→ η.

(Basis) Immediate.
(Step) We only consider the specific rules for N4.
Assume that ωk was obtained by rule L∼ ∧ from ωi and ωj with i, j < k. Let

ωk =∼ (η1 ∧ η2), Γ→ η.

Then ωi =∼ η1, Γ → η and ωj =∼ η2, Π → η. Hence, ω1 . . . ωi and ω1 . . . ωj are
schema derivations for ωi and ωj, respectively. Thus, by the induction hypothesis,

`DJ
G

τ(∼ η1), τ(Γ)→ τ(η) and `DJ
G

τ(∼ η2), τ(Γ)→ τ(η).

Moreover, using L∨, we have

`DJ
G

τ(∼ η1) ∨ τ(∼ η2), τ(Γ)→ τ(η).

Therefore, the result follows because τ(∼ (η1 ∧ η2)) = τ(∼ η1) ∨ τ(∼ η2).

Assume that ωk was obtained by rule R∼∧1 from ωi with i < k. Let

ωk = Γ→∼ (η1 ∧ η2).

Hence, ωi = Γ→∼ η1. Thus, by the induction hypothesis,

`DJ
G

τ(Γ)→ τ(∼ η1).

Moreover, using R∨1, we have

`DJ
G

τ(Γ)→ τ(∼ η1) ∨ τ(∼ η2).

Therefore, the result follows because τ(∼ (η1 ∧ η2)) = τ(∼ η1) ∨ τ(∼ η2). The case
where R∼ ∧2 was applied is similar. Furthermore, the other specific rules are also similar.

(←) The proof follows by induction on the length of a derivation ω = ω1 . . . ωk for
`DJ

G
τ(Γ)→ τ(η).

(Basis) immediate.
(Step) we only consider ∨.

Assume that ωk was obtained by rule L∨ from ωi and ωj with i, j < k. There are two
possibilities. Either ωk = τ(η1) ∨ τ(η2), τ(Γ)→ τ(η) or ωk = τ(∼ η1) ∨ τ(∼ η2), τ(Γ)→
τ(η). The first case is straightforward using L∨ on N4. For the second case, we have

ωi = τ(∼ η1), τ(Γ)→ τ(η) and ωj = τ(∼ η2), τ(Γ)→ τ(η)

where i, j < k. Thus, by the induction hypothesis,

`DN4
G
∼ η1, Γ→ η and `DN4

G
∼ η2, Γ→ η.

Moreover, applying L∼ ∧ we get

`DN4
G
∼ (η1 ∧ η2), Γ→ η.

The result follows since τ(∼ (η1 ∧ η2)) = τ(∼ η1) ∨ τ(∼ η2). The other rules
are similar.
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So,

`DN4
G ,Cutd

Γ→ η =⇒`DJ
G,Cutd

τ(Γ)→ τ(η) =⇒`DJ
G\Cut τ(Γ)→ τ(η) =⇒`DN4

G \Cut Γ→ η

where the first and the third steps are justified by (†) and the second step is justified by
Proposition 10. Furthermore, by looking into the translation of the schema derivations
in both directions, we observe that no complexity is added either to the length of the
derivations or the depth of the formulas in the cuts. Thus,

DDN4
G \Cut(Γ→ η) ≤ DDN4

G ,Cutd
(Γ→ ∆) + DDN4

G
(λC) (14)

since the structure of the derivation is essentially the same as the derivation in J and, thus,
we can replicate the proof of Proposition 9.

6. Outlook

In the context of schema calculi for propositional-based logics, the notion of schema
complexity of a schema formula was introduced. A key observation was to recognize
that distinct formulas can share the same schema derivation. Another relevant obser-
vation is that different applications, of the same lemma in the same proof, should be
counted only once. These observations motivated the definition of schema complexity of a
schema formula.

We also investigated the use of schema metatheorems in the complexity of a schema
derivation. We looked into the complexity of using the metatheorem of deduction in the
context of Hilbert calculi, with the implication and complexity of using the metatheorem of
cut elimination in the context of (regular) Gentzen calculi. Examples were provided for
modal logic S4 and intuitionistic logic J. We also gave a bound on the cut elimination for
Nelson’s logic N4 by providing a translation from N4 to J+ (that is, positive intuitionistic
logic). The results in this work only apply to logics that, when presented by Hilbert calculi,
should have implication, and when presented by sequent calculi, should have rules of the
types identified in this paper. Furthermore, we did not discussed logic presented by other
kinds of calculi, e.g., tableaux.

With respect to future work, it seems worthwhile to generalize Deckhow’s Theorem
(see [21]), i.e., given schema calculi D1 and D2 for the same logic, under which conditions,
there is a map f : ω 7→ f (ω) such that

ω is a schema derivation for η ∈ D1 iff f (ω) is a schema derivation for η ∈ D2

for every formula η, and relate the respective schema complexities (see also [22]).
It is also interesting to relate the schema complexities of a formula in logics L1 and

L2 when there is a translation from L1 to L2 (for instance, the standard translation from
modal to first-order logic, see [23]). Moreover, it seems challenging to investigate schema
complexity when combining logics [24,25]. Furthermore, it seems worthwhile to explore
the relationship between schema derivation complexity and decidability as well as to
explore other measures of complexity as in [12]. For the moment, we can say that if the
theoremhood problem for a given logic is decidable, then the schema complexity for a
given schema formula is a natural number, provided that the algorithm that testifies the
decidability, when executed for the formula, returns value 1, and is infinite otherwise.
Finally, we intend to analyze how these results can be extended to first-order-based logics,
and see how these results can be applied in real life examples.
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