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Abstract: In this work, we present a boundary value problem of hybrid functional differential
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will be studied.
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1. Introduction

Models of hybrid functional differential and integral equations have many applications
(see [1-14]).

Boundary value problems with nonlocal boundary conditions have been studied by
some authors (see [15-18]).

Here, we assess the boundary value problem of hybrid nonlinear functional differential
inclusion with nonlocal condition.

4 ([ x(t) —x(0) N
dt (g(t/x((Pl(t)))) < F(t’ (¢2(t)))/ te (0,1) 1)

with the nonlocal boundary condition

m
Z akx(Tk) = Xo, A > 0 T € [0, 1]. (2)
k=1

The existence of solutions x € C[0,1] will be proved. The maximal and minimal
solutions will be studied. A sufficient condition for uniqueness of the solution will be given.
The continuous dependence of the unique solution on x, and on Y} ; a; will be proved.

Additionally, we deduce the same results for the boundary value problem of hybrid
nonlinear functional differential inclusion (1) with a nonlocal integral condition

1
/ x(s)dh(s) = xg ®3)
J0
and infinite point boundary conditions
Z akx(Tk) =xg, ay >0 T € [0, 1]. 4)
k=1
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(In)

The following assumptions will be needed for our goals:

6]
(ii)
(iii)
(iv)
)

The function ¢; : [ — I,I = [0,1] is continuous and ¢;(t) < t,i =1,2.

Theset F : I x R — 2R is nonempty, closed, and convex for all (¢, x) € [0,1] x R.
F(t,x) is measurable in t € [0,1] for every x € R.

F(t,x) is upper semicontinuous in x for every t € [0, 1].

There exists a bounded measurable function a; : [0,1] — R and a positive
constant K, such that

[E(t, )l sup{|f|: f € F(£,x)}

laz ()| + Ka([x])-

IN

Remark 1. From assumptions (ii)—(iv), we can deduce that the set of selection Sg of F is
nonempty (see [1,2,5]), that there exists f € F(t,x) such that

(vi)

f I xR — Ris measurable in t for every x € R and continuous in x for t € [0,1],
there exists a bounded measurable function ay : [0,1] — R and a positive constant
Ky > 0 such that

(8 x)] < laz ()] + Ka(|x]),
and that the function f satisfies the differential equation

d ( x(t) — x(0)

4 ) = £t x(0a0), e 01), ©)

8t x(¢(t))
Therefore, any solution of the nonlocal problem of the hybrid functional differential
Equation (5) with any of the nonlocal boundary conditions (2)—(4) is a solution of the
nonlocal problem of the hybrid nonlinear functional differential inclusion with any one of
the nonlocal conditions (1)—(4).

g : I x R — Rismeasurable in t for any x € R and Lipschitzin x for t € [0,1], and
there exists a positive constant K; > 0 such that

lg(t,x) —g(t,y)| < Ki|lx—y|, Vi€ I, and x,y € R.

From assumption (I1), we have

lg(t,y)| = 1g(t,0)] < g(t,y) — g(t,0)] < Kqlyl.

Then,

Kilx[ +1g(t,0)]

gt )| <
< Kylx[+ [an(8)

where |a1(t)| = sup|g(t,0)|, K= max{Kj, K} and

tel

8(t,x) = g(,0)] < Kilx| +[g(t,0)| < Kylx| + a1 (t).

(IT) There exists a positive solution r of the algebraic equation.

Alxo| +2(Kr+a)?> —r =0

where A = (X7 ;)L
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Definition 1. x of the problem in Equations (2) and (5) is x € C[0,1] such that (M)
satisfies (5).

Now, we have the following lemma.

Lemma 1. If the solution of the problems in Equations (2) and (5) exists, then it can be expressed
by the integral equation

W) = o L e xn(w) [ A x(pa(s))es

Zk 1%

+ gt x(¢n(t) /fsxcpz 5)))ds ©)

Proof. Let the boundary value problem in Equations (2) and (5) be satisfied; then, we
can obtain

(1) = x(0) + 86,391 (1)) [ f(5,3(g2(9)s @)
Putting t = T and multiplying both sides of (7) by a;, we obtain
B (1) = By (0) + T kg (1 x(@1 (1) [ (s, x(02()ds
then
o = Ty ax(0) + T yaig (1 x((01 (1)) [ 5, x(2())ds

and
1

0) = g0~ S x((91(w)) [ £ w2050 ®

Substituting (8) in (7), we obtain (6). O

2. Existence of Solutions

Theorem 1. Assume that assumptions (I)—(11I) are valid. Then, the integral Equation (6) has at
least one solution x € C[0,1].

Proof. Define the set Q; by
Q,={xe€C[0,1]: ||x| <r,r>0}.
Define the operator F by

1
):Z1 1 %

Fr(t) = g 50~ L ag(x(n(w) [ £ x(gn(s)ds

+g(t,x(91 (1) /fsxqbz 5)))ds
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Let x € Qy; then

1
Zk 1 9%k

+(t x(1 (1) /fsx4>z 5)))ds|

< |l

DYy

S K9 ()] + 1 (7)) fo* [Kalx(9a(s)) | + laa(s) s

Zk 1%

HE 9 (1) +an ()] [ Ralx(@ao)] + a5 s
< St (Kl +allKx] +a] s+ K]+ ) K] ) [ s

|xo]
< ——— 4+ 2|Kr+al|lKr+a

< Alxo| +2(Kr +a)? =

Fx(O] = | xo—zakgrkx¢1 W) [ £ x(@a()ds]

Thus, the class of functions { Fx} is uniformly bounded on Q, and F : Q, — Q. Let
x € Qrand t1,t; € [0,1] such that |t — t1]| < J; then,

7x(t) = Fx(t)] = g0 — 1 kg () [ F(sx(92(s))e]

Zm1a
+glta,x(@1(12) [ 5, (92(9))ds

= L) [ s v(gals))as

Zk 1%

(e
+gltx(gr(1)) /0 £(s,x(g2(5)))ds)|

< lglez,x(@n(120)) [ F s x(@a(9)s — (o1, 1 () [ Fls,x(02(5)))as
< lgltz,x(@n(120)) [ s @205 = gle2, ¥ (1) [ £(5,x(2(5)))ds
gl x(@r(0))) [ 5,920 — glor,x(@n () [ Fx(g2()is
< I8t x((12))) = gl x(r ()| [ £ x(0(s)) s
Hglea, 401 (1)) — gt 3 (@1 )] [ 75,1920l

< Kalx(ga(12)) = la()] [ (29| + Kalx(ga(s)) i

Hglha, X9 (10))) — g0, 391 ()] [ (10205)] + Kale(ga(6)))ds

< Klx(a(t) = x(gn ()| | (a+ Klx(ga(s)) s

Hglea, X9 (1)) = g0, 391 ()] [ (0 Kix(a(5)) s,

Thus, the class of functions { Fx} is equicontinuous on Q, and {Fy} is a compact
operator by the Arzela—Ascoli Theorem [19].
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Now, we prove that F is a continuous operator. Let x,, C Q, be a convergent sequence
such that x,, — x; then,

Fau(t) = g0~ L g xa(r () [ £ gn(5)ee)

Zk 1k
(1) /fsanbz()))

Using Lebesgue-dominated convergence Theorem [19] and assumptions (iv)—(III),

we have
Jim (1) = fim (ot (0 - zakg (@1 (10)) [ s, %(92(5)))de]
5t 2 (t /fsxn (92(5)))ds)
= s - Z g (e Jim, 0 (91(70))) [ £(s, lim xa(a(s)))ds]
+g(t, Tim (¢ (¢ / £(5, Tim xu(2(5)))ds
Zk11ak X0 — Zﬂkg T, X (P1(Tk)) / f(s, x(¢2(s)))ds]
+2(,x(@1(1))) /0 £(5,x(¢2(s)))ds
= Fx(t).

Then, F : Qr — Q; is continuous, and by Schauder fixed point Theorem [19], there
exists at least one solution x € C[0, 1] of (6).
Now,

x(t)—x(0) [t '
SLxgi(n)) ~ Jo [EFP2())ds

d, x(t)—x(0) , d [t

g x(ga(0))) ~ dr Jo S ¥(92(e))ds
Gy =)

putting t = 7 and multiplying by ¥;" , 4y in (6), we obtain

m

Y ag(ry) = Y ol xo—zakgrk, x(@1 () [ s, x(ga(s))ds]
k=1 k=14 k=

g x(gr(1) [ Fls,x(ga(0)ds).

Then,

m
Y aex(te) = xo,a, > 0,7 € [0,1].
k=1

This proves the equivalence between the problem in Equations (2) and (5) and the integral
Equation (6). Then, there exists at least one solution x € C[0,1] of the hybrid nonlinear
functional differential Equation (5) with the nonlocal condition (2). Consequently, there
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exists at least one solution x € C[0, 1] of the nonlocal problem of the hybrid nonlinear
functional differential inclusion (1) with the nonlocal condition (2). O

3. Maximal and Minimal Solutions

Here, we study the maximal and minimal solutions for the problem in Equations (2)
and (5). Let u(t) be a solution of (6); then, u(f) is said to be a maximal solution of (6) if it
satisfies the inequality

x(t) <u(t), tel0,1].

A minimal solution v(t) can be defined in a similar way by reversing the above
inequality i.e.,
x(t) > o(t), te€][0,1].

Lemma 2. Let the assumptions of Theorem 1 be satisfied. Assume that x and y are two continuous
functions on [0, 1] satisfying.

1
Zk 1k

et x(¢n () /fsx¢2 $))ds t € [0,1].
1 ikm 1) [ 5 y(2(5)))es

Zk 1”k

g(t,y(Pr(t /f )))ds t €[0,1]

x(t) < =——

xo—zﬂkg T, X (1 (k) / f(s,x(¢a(s)))ds]
y(t) >

where one of them is strict.
Let the functions f and g be monotonically nondecreasing in x; then,

x(t) <y(t), t>0. )
Proof. Let the conclusion (9) be untrue; then, there exists t| with
x(t) <y(t1), 1 >0 andx(t) <y(t), 0<t<Ht.

If f and g are monotonic functions in x, we have

x(t) < [x0 — Zﬂkg T, x(1(i)) / f(s,x(¢a(s)))ds]

1
Zk—1 k
bt x(gr () [ Flsx(e2()is 1 € 0,1,

L xO_Zakg T Y (91(T%)) / f(s,y(¢a(s)))ds]

Zk 1%

+g(t1,y(¢1(t1)))/0 fs,y(¢2(s)))ds t1 € [0,1] <y(t).

This contradicts the fact that x(#;) = y(#;). This completes the proof. [

For the continuous maximal and minimal solutions for (6), we have the following theorem.

Theorem 2. Let the assumptions of Theorem 1 hold. Moreover, if f and g are monotonically non-
decreasing functions in x for each t € [0,1], then Equation (6) has maximal and minimal solutions.
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Proof. First, we must demonstrate the existence of the maximal solution of (6). Lete > 0
be given. Now, consider the integral equation

xe(t)

o= Y- aglm xer () [ Fls, xelga(s))as]

Zk 1”k k=1
+ﬂt%@ﬂm)£f@%WMﬂD%tGWJ

where
ft,xe(2(t))) = f(s,xe(¢2(t))) + ¢,
g(s, xe(¢r1(t))) = f(s, xe(¢r(t))) +e.

Let €1, € be such that 0 < €, < €7; then,

1
Zk 19

83 (@1(0) [ Flsxe,(9(s))ds 1 € 0,1]

Xey(1) = XWZ%%%%n/fHMMD]

o= Y (T e (91 (1) + e2) [ (5 5 (92(5))) + )

m
Zk:l Ay k=1

it xe(1() +€2) [ (75,7 (92(5))) + 2)ds € 0,1],

xez(t) =

Additionally,

o= Y gt % (9(50) [ 57, (62064

t
xe]() Zk lak =

4836 (01 (0) [ 5 7 (02(6))ds € 0.1],
o= Y a8 (91 (50) + 1) [ (5 ke (92(5)) + )i

m
Yi—1 % =1

g3, (1) + 1) [ Fls,me (92(6))) + e0)is t€ [0,1],

Xeg (t) =

Then,

L 1 mg (o xea 1 (00) [ (5% (920

Xe, > S L
8t 3 (1) [ (3 (02()is £ € 0,1],
Applying Lemma 2, we obtain
Xe, < Xey, £ €0,1].

As shown before, the family of function x¢(t) is equi-continuous and uniformly
bounded; then, by the Arzela Theorem, there exists a decreasing sequence €, such that
€0 — 0asn — oo, and u(t) = limy 00X, (t) exists uniformly in [0, 1], and denote this limit
by u(t). From the continuity of the functions, fe(t, x¢(¢2(t))), we get

fe(t, xe(pa(t))) — f(t, x(¢a(t))) as n — oo,
Qe(t, xe(Pa(t))) — g(t, x(¢a(t))) as n — oo
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and

1
u(t) = Jim xe, (1) = g

4y u(on () [ (FGsulgao))ds £ € 0,1],

0~ 3 acatrw n () [ (5 ()

Now, we prove that u(t) is the maximal solution of (6). To do this, let x(t) be any
solution of (6); then,

1
Zk 1k

x(t) = m—z%w,@m ) [ £ x(@a(o)ds]

+g(t,x(¢r (1) /fHWzDWfEMH

and

1
Zk 1k

we(t) = gl s xen () [ s xe(9a(5))
gt xe (g (t / F(s,xe(¢a((s))ds t € [0,1].

B 1

B 2?21 ak

[0 — Z (i xe(gn (7)) +) | " (F(s, xe(@2(s)) + €)ds]

+g(t, xe(P1(t)) + € / f(s,xe(¢a(s)) +€)ds t € [0,1].

Then,

Xe(t) > =r—

0= - axatr el (7)) [ 1G5 xelgo ()

Zk 1%
gt xe(n () /fs&@)WHGMH

Applying Lemma 2, we obtain

x(t) < xe(t), t€[0,1].

From the uniqueness of the maximal solution, it clear that x.(t) tends to u(t) uni-
formly in [0,1] as € — 0 in a similar way as above and we can prove the existence of the
minimal solution. [

4. Uniqueness of the Solution

Here, we study a sufficient condition for the uniqueness of the solution x € C[0, 1] of
the problem in Equations (2) and (5).

Consider the following assumptions:
(I*) (i) The function ¢; : I — I is continuous, and ¢;(t) <t, i=1,2.

(i) The set F(t, x) is nonempty, compact, and convex for all (¢,x) € [0,1] x R

(iii) F(t x) is measurable in t € [0,1] for every x € R and satisfies the Lipschitz

condition with a positive constant K, such that

H(F(t,x),F(t,y)| < Ka(|x —yl)

where H(A, B) is the Hausdorff metric between the two subsets A,B € I x E
(see [16]).
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Remark 2. From this assumptions, we can deduce that there exists a function f € F(t,x)
such that

(iv) f:Ix R — Rismeasurablein t € [0,1] for every x € R and satisfies the Lipschitz
condition with a positive constant Ky such that (see [19-21])

If(t,x) = f(t,y)| < Ka(|x —yl).

(IT*)g : I x R — R is continuous and satisfies the Lipschitz condition with positive
constant K; such that

g(t,x) — g(t,y)| < Kqlx —yl.
From the assumption (I*), we have

(&) = [£(£0)] < |f(£ x) = f(£,0)] < Ka(|x]).

Then,

(£ %) Ki(lx[) +[£(¢,0)]

<
< Kao(|x|)+ | a2(t),

where |ay(t)| = sup |f(t,0)].
tel

From assumption (II*), we have
8t y)| —18(t,0)] < [g(t,y) —&(t0)] < Kiy|.
Then,

gt )] < Kalx[+|g(,0)]
< Kylx[+ [ ag(t),

where |a1(t)| = sup |g(t,0)|, K= max{Ky, K}
tel

Theorem 3. Let the assumptions (I*)—(IT*) be satisfied. If (1 — 4K?*r — 4aK) < 1, then the
solution of the problem in Equations (2) and (5) is unique.

Proof. Let x1 and x be two solutions of the problem in Equations (2) and (5); then,
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[x1(t) —xa2(t))| = |Z ! o [x0 — Zﬂkg T, X1 (1 (k) / f(s,x1(¢2(s)))ds]
k=1

3t 11 (9n (1) /fwmu»

(o~ L) [ Fls xa(pa(s))e]

+(t, x2(91 (1) /fwmzmn
LT (@1 (1)) Jit £ 5,51 (92(5)))ds = g(10), %201 (1)) fy* £ (5, %2(92(5))ds|

o Y1 Ak
4guwu@u»/3sx1@@»ws—amx2% 0 [ s

< | 0 ak (8 (T x1 (@1(T))) fo* £, x1(2(s)))ds — g(i), x2(¢1 (1)) fo* £ (s, x1(¢p2(s)) )ds|
- Yrlq Ok
o 1o a8 (e xa(¢n () ) Jo¥ £(s,x1(2(s)))ds — (T, x2 (1 () Jo* £ (s, x2(pa(s)))ds|
- Yrlq Ok

Hgm@n(0) [ flox1(92()ds ~ (4, 2200(0)) [ fls31(92()is|

Hg 201 (0) [ flsx1(92()ds — 8042201 (0)) [ fs,32(92()is|

< iz @K{lx1 — x| (Kl[x || + a)
Zk 19k
i aK||x1 — x| (K][x2[| 4 )
Z}T:l 3
+Kllxg = x2|(K|x1[] +a) + K|[x1 — 22| (K][x2| 4 a)
< 2K||x1 — x2||(Kr + a) + 2K]|x1 — x2]| (Kr + a)
< (4K?*r + 4aK) || x; — x2].

_I_

Then,
|x1 — x2]|(1 — 4K?r — 4aK) <0,
Since (1 — 4K?r — 4aK) < 1, x1(t) = x,(t) and the solution of (5) and (2) is unique. [

5. Continuous Dependence of the Solution

Definition 2. The unique solution of the problem in Equations (2) and (5) depends continuously
on initial data xo, if e > 0, 36 > 0, such that

lxo—x5] <0 = |x—x"|| <e
where x* is the unique solution of the integral equation

1 [
221:1 g 0

t
gl (9u(1) [ Fls " (92(s))ds,

x*(t) =

- Pl @) [ s (9alo))as
k=1

Theorem 4. Let the assumptions (I*)—(11*) be satisfied; then, the unique solution of (5) and (2)
depends continuously on xg
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Proof. Let x and x* be the solutions of the problem in Equations (2) and (5); then,

()= ' ()] = |l = 3 o (s () [ 5 (4a(e))as

gt 31 (0) [ £ x(@a()is
1

g~ D @) [ 6 (o))
—g(t,x*(¢1(t))) /()tf(sfx*(4’2(s))))ds)|
|x0 — x5

DYy

< | Y0 ar (8 (T x (1 () Jo* £ (s, (pax(s)))ds — (i), x* (¢1 () Jo* f 2(s)))ds|

- Zk_lak

t t

+8(t1x(¢1(t))/0 f(S/x(sz(S)))dS—8(Tk1x*(¢1(f)))/0 f(s,x"(¢a(s)))ds|

<FA

Jr|ka:111k( 8(t, x(p1(w))) fo* fs,x(¢2(s)))ds — (), x* (P1(w)) Jo* f (s, x(pa(s)))ds]
Zk 1 9k

+|erc":1ﬂk(g(fer (P1())) Jo* £(s,x(¢a(5)))ds — & (e, x* (1(%))) Jo* f 2(s)))ds|
Zk 1 9%k

Hglh (1) [ £(5, 592005 — (6,3 (1 (1) /(ff(s,x<q>z<s>>>ds|

t
Hg (e (1 (0)) [ FG5, 1020505 — g6, (0n() [ F3* (92005
<JA
| TE K — (Kl + a)
Zk 1%k
Ty Kl = x| (K]l + )
Ykl Ak
K = x| (K]x] + @) + Kllx = 57| (K]}x°]| + )
<JA
+2K||x — x*||(Kr + a) + 2K||x — x*||(Kr + a)
+2K||x — x*[|(Kr + a) 4 2K||x — x*||(Kr + a)
< OA + (4K?r + 4aK) || x — x*|.

Then,
|x — x*|| < JA(1—4K*r —4aK) ! <e.
O

Definition 3. The unique solution of the problem in Equations (2) and (5) depends continuously
on the initial data ai if e > 0, 36 > 0 such that

m
Y la—ag[ <6 =[x—x"|<e
k=1
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where x* is the unique solution of the integral equation

_1
Ykl af

gt @ (0) [ 53 (9as))ds.

v (t) = 0= Y aig(mx @u(w)) [ s x (ga(s)))a]
k=1

Theorem 5. Let the assumptions (I*) — (I1*) be satisfied; then, the unique solution of (5) and (2)

depends continuously on } } ; ay. Then,

Proof.
. 1
() =% ()] = g - xO—Zakg 7, x(¢1 (7)) / £(s,%(9a(s)))ds]
gt x(@1(0)) [ Fx(ga())ds - s o

—éaig(t,x*wfk))) [ 6.2 @a(6))ds] = 505 (9 (0)) [ fs,x* (9a(s))))ds

x| Ykt ax — Yg—q 4]
T Xgak— Zk 14"

+|8(Tk x(¢1(w))) Jo* fs,x(¢2(s)))ds — g(w), x*(¢1(w))) Jo* f S)))ds‘
Ykl Ak ity ”k
+1g(t, x(¢1 (1)) /Otf(s,x((pz(s)))ds — 8(T, X" (¢1(1))) /Otf(sfx*(¢2(5)))d5|
|x0l6

T Yk kg af
+2ZL1akiz”:laiélg(’fk,x(%(fk)))—g(Tk) (Pr(m))] Jo* 1f (s, x(¢2(s)))|ds
Yk Ak g Ay
Zk 13 YR a7 |8 (e, (91 (T))] Jo* 1f (s, x(9a(5))) = f (s, x*(¢a(s)))|ds

Yk Ak g a5

Hg X1 () 86 @] [ 7G5, x(2(5)))lds

+1g(t, x* (¢ (¢ I/ [f(s, x(¢2(s))) — f(s,x*(¢2(s)))|ds
< |xo|0AA*

+K|lx — x| (K[| x| +a)

+K|lx — x*|[ (K[[x*[| +a)

+K|lx = x| (K|[x]| + a) + Kl|x — x*[[(K[[x*|| + a)

< |x0|6AA* + (4K?*r + 4aK) || x — x*||.

Then,
|x — x*| < |xg|6AA* (1 — 4K?r — 4aK) ! <.
O

6. Riemann-Stieltjes Integral Condition

Let x € C[0,1] be the solution of the nonlocal boundary value problem in

Equations (2) and (5).
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Let ay = (h(ty) — h(tx_1)), where h is an increasing function, 7. € (f_1 — t), and
0=ty <t <tp... <ty =1, then, the nonlocal condition (2) is

m
Y (h(te) — h(ti—1))x(Ti) = x0
k=1
and the limit implies
m

1
ﬂ&gwww—Mannhwzéx@wm@:%,

Theorem 6. Let the assumptions (I)—(II1) be satisfied; then, the nonlocal boundary value problem
of (5) and (3) has at least one solution given by

*0) = ey 0 ) 86 x@0) [0, x(g2(0))do0ans)]

gt x(@n() [ Fl5,(9a(5))ds.

Proof. Leth: [0,1] — [0,1], and let ay = h(tx) — h(tx_1) be an increasing function. Then,
the solution of (5) and (3) is given by

= (1) = h(0)) 7 Y () — (1))t x(9n (1)) [ Fls, x(a(5)))ds

k=1
+ﬂw@mm47@m@@»w
As m — oo, we obtain

lim x(f) = (h(1) — h(0)) xo

m—o0
m

~(1(1) = h(O) " Jim 32 (1) — k(1)) x(pa(5)) [ Fls,x(4n(5)))ds

+8(t, x(1(t) /fsx¢2 5)))ds
iﬂﬁmmmfﬂ”ﬁl /f9x@>wwmn
+8(t, x(¢1(t) /fsx¢2 s)))ds

O

7. Infinite-Point Boundary Condition

Theorem 7. Let the assumptions (I)—(I11) be satisfied; then, the nonlocal boundary value problem
of (5) and (4) has at least one solution given by

1
Zk 1 9k

x(t) = m—Z@gnx%m ) [ £ x(@a()ds]

gt x(gn(1) /fsx@)w



Mathematics 2021, 9, 2667 14 of 16

Proof. Let the assumptions of Theorem 1 be satisfied. Let } j ; a; be convergent; then,
take the limit of (5). We have

lim x(f) = lim [xo — lim Zakg T, X (1 (i) / f(s,x(¢2(s)))ds]

Mm—00 Mm—00 Zk:l ax Mm—00

gt x(@r(1) [ Fls,x(9as))ds

Now,

|axg (T, x (1 ()| < Klag|x(¢1(w))l,
< Klag][|x|| < Klag]r.

Then, by a comparison test, the series } 5 axg (T, x(¢1(T%))) is convergent and

1
Ek 1k

(@i (1) /fsx<l>z 5)))ds

()= g0~ L ag(x(n(w) [ £ x(gn(6)as

Furthermore, from (10), we have

o]

0
1
lex = Ak =oo—— |X0 —
R B >

+3(x(91(w)) [ 5, ¥(9a(s)))s = 30,

Y- ag (i x(n(w) [ £(5,x(g2(s)))at]

k=1

O

Example 1. Consider the boundary value problem, with nonlocal

d( x)=xO) \_Lip_ ) (10)
dt(4<C?i&>+x<>>) i

with the nonlocal boundary condition

i 1—ix('rk)zxo ar >0 7 €[0,1] (11)
mlk k1 ’ ’

putting

and

then,




Mathematics 2021, 9, 2667

150f 16

It is clear that assumptions (I)~(II) of Theorem 1 are satisfied with a1 (t) = }| L a1l € LYo, 1) 4f
t =0, then ay(0) = L;ift = 1, then a1 (1) = 0.12375 and ay(t) = 1|t?| € LY[0,1);if t = O, then
a3(0) = 0;and if t = 1, then ay(1) = 0.

Then, a = sup{0, %} = 411' K= sup{%, %} = }I, xo =1,and Y ;' | ap = 1; then, Alxo| +
2(Kr+a)? —r =0 = Alxg| +2K?*r? + 4kar + 24> —r = 0.

By applying Theorem 1, the nonlocal problem in Equations (10) and (11), has a continuous solution.

Example 2. Consider the boundary value problem with nonlocal

;t(1+2t = ) 11 (22 )+ Lx(t), (12)

+et+\[ 1+t 3

with the nonlocal boundary condition (11).

Set
1 20 1
flty) = §ln(m)+§%
142 1 ]2
g(t,x) = TR R

We can easily deduce the following:

F6x) ~fepl < gyl

gt x) =g(s,y)| < \EIXU)—

Easily, we can verify the existence of a unique solution of the problem in Equations (11) and (12).

and

8. Conclusions

In this work, we proved the existence of at least one solution x € C[0,1] and its
maximum and minimum of the nonlocal problem for the boundary value problem of
hybrid functional differential inclusion (1)

d [ x(t) —x(0)
dt((”(%(ﬂ))) € F(t,x(¢a(t), t€(0,1)

with the nonlocal boundary condition (2)
m
Z akx(Tk) =x0, x>0 7 € [0,1].
k=1

The uniqueness of the solution x € C[0,1] of the nonlocal problem for the boundary
value problem of hybrid functional differential Equation (5)

4 xt)=x0) \ _
dt( (t, x(¢1(t)))) = f(tx(¢2(1)), te(01)

and its continuous dependence on x, and initial data aj is proven.
The results have been generalized for problems with the nonlocal conditions (3) and (4).
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