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Abstract: Energy is traded using different products; long-term contracts or electricity forward
contracts can assure the future transaction price. However, due to the difficulties in storing electrical
energy for long periods and in large amounts, risks must be incorporated when defining contract
prices through a Forward Risk Premia (FRP). This study analyzes the transfer of uncertainty from
electricity market variables to the FRP in long-term contracts. We evaluate a type of econometric risk
with the construction of Autoregressive Distributed Lag contagion models for the FRP using electricity
demand, spot price, power generation via different technologies, and the Oceanic Niño Index. As a
case study, we consider the Colombian electricity market. Our results show empirical models where
the FRP has a short-term response with the following variables: hydropower generation, coal power
generation, electricity demand, and Oceanic Niño Index, even though its transaction is reflected one
or two years after the occurrence of the event.

Keywords: electricity market; Forward Risk Premia (FRP); contagion model; ARIMAX

1. Introduction

Forward electricity contracts are the most common financial product to trade energy.
These contracts are agreements to set the price of a certain amount of electrical energy
delivered at a future date. To define both the price and the amount to be traded [1],
buyers and sellers must take into account the peculiarities of the electricity market, such
as the difficulty of creating sufficient inventories to mitigate price fluctuations [2] and the
possibility that some agents can use their market power to obtain economic benefits [3].

Forward electricity agreements include two important moments: 1. when the deal
takes place at the beginning and 2. the maturity moment when the delivery is required. In
the beginning, the agents agree on both forward price and quantities; meanwhile, buyers
and sellers settle accounts [4]. However, the forward price depends on the spot price
expectations due to the difficulties of storing electrical energy; and those expectations
vary due to the market drivers such as climate circumstances, load variability, network
configurations, and oil prices. These uncertainty conditions reflect a Forward Risk Premia
(FRP). Then contango or backwardation conditions are observed in the market.

The FRP has been studied by [5,6] through autoregressive vectors and by [7] using
linear models for price changes. Reference [8] found evidence of the FRP in other types
of energy commodities and [7] did so for the Colombian electricity market. For their part,
ref. [1] examined the perception of risk in the future through the FRP. Moreover, the works
by [9,10] stand out in the literature. In this study, we seek to identify how sources of market
uncertainty lead to the definition of market risk valuation.

Reference [11] shows the different methods for the analysis of energy variables with
market variables using econometric contagion models. In said methodology, price variables
were explained by other market variables in the time series, thus showing the transfer of
market uncertainty from hydropower generation to the energy spot price in Colombia.
For this purpose, the author used Autoregressive Conditional Heteroskedasticity (ARCH)
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and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, which
allowed him to estimate the reference models for each time series. Subsequently, he
employed Auto Regressive Integrated Moving Average with Exogeneous Input (ARIMAX)
models (also known as ADL) to determine the influence of the exogenous variables on the
endogenous variable.

The principal motivation of this study is to present a contagion model to describe
how risks are transferred from different electricity market variables to FRP values, with the
main objective of calculating the risk of long-term forward contracts based on exogenous
market variables and determining its risk relationship with and impact on those contracts
with risk forecasting models. To that end, we propose contagion models for the FRP using
information regarding electricity demand, power generation via various technologies, and
the Oceanic Niño Index (ONI). As a case study, we consider the Colombian electricity
market between 2006 to 2019.

In Section 1, we study the power generation variables and the ONI, examine their
behavior, and conduct stationarity and causality analyses required for developing the
methodology proposed by [11,12]. In Section 2, we identify and develop the contagion
models that rule out variables that are not efficient in the Autoregressive Distributed
Lag (ADL) model. As a result, variables related to hydropower generation, coal power
generation, electricity demand, and ONI provide reliable results in estimating the ARIMA
and pre-whitening models, helping us to establish the initial parameters of the transfer
function models. Section 3 selects the models with the best transfer parameters (b, r, s)
using the effiency criterion. In Section 4, through Mean Absolute Percentage Error (MAPE)
criteria and statistical analysis of residuals, we define the appropriate transfer function
models for each series versus the FRP. Finally, we present the analysis results, draw some
conclusions, and provide recommendations to guide future work on the subject.

2. Materials and Methods
2.1. Forward Risk Premia

According to [4], at the time of maturity T, the agent that purchased the electricity for
the price of the contract at the moment to should pay an underlying value, FtoT , and, in
return, receive the energy valued at the spot price, PBT . This scenario shows as a forward
derivative (1) contract seller (short position) will receive the same net benefit as the buyer
but with an opposite sign. In this case, the seller is the one who benefits from the contract.

ΠT = FtoT − PBT (1)

Therefore, it is more convenient for electricity forward contract sellers to have a spot
price (PBT) below the contract price. If, on the contrary, the spot price is above the contract
price, electricity generators (sellers) will suffer losses, coercing them to be the ones who pay
to stabilize the price in the contract market. Hence, the phenomenon known as Forward
Risk Premia (FRP) can be defined as the difference between the expected spot price and the
contract price (2).

FRPtT = E(PBT)− FtT (2)

A positive value of FRPtT indicates a contract price agreed below the expected market
price and that the selling agent pays for the contract coverage, while a negative value
suggests that the contract price is greater than the market expectation and the purchasing
agent pays for the coverage [1,12].

2.2. Contagion Model and Transfer Function

According to the methodology implemented by [11,13,14], in the estimation of the
ADL model, a relationship between an exogenous time series Xt and an endogenous time
series Yt is established, as shown in Equation (3).

Yt =
ωs(L)
δr(L)

Xt−b + ηt; ηt =
θ(L)
φ(L)

at, (3)
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where ωs and δr are polynomials of the transfer function with components (b, r, s); ηt, an
ARIMA process, which is specified by the lag polynomials θ and φ; and at, a white noise
process. In this study, the FRP is the endogenous variable. For instance, when analyzing a
transfer function model in which the exogenous variable is coal power generation (COAL),
the general transfer function is given by Equation (4).

FRPt =
ωCOALs(L)
δCOALr (L)

COALt−b + ηCOALt; ηCOALt =
θCOAL(L)
φCOAL(L)

aCOALt (4)

To estimate the model, we use the process proposed by [13], shown in Figure 1. This
process consists of five steps:

i. Initial conditions: shows a descriptive statistics review of variables that influence
the FRP, those statistics identify whether they present information of high variance,
this information is in the data description section.

ii. Stationarity identification: ADF, KPSS, and PP to determine stationarity in the
series are necessary for the ADL models; later, the Granger test is applied to identify
whether the series are the spurious or present level of causality level X to Y.

iii. Identification of the impulse–response function: this procedure consists of two
parts, a pre-whitening the X variables as described in Equation (1) and a process of
identification of the impulse–response function (IRF) as shown as an example in
Equation (2).

iv. Estimation of ADL models: in this step, the components (b, r, s) will be fit to find
the best estimable model according to the IRF information, looking for the white
noise process in residuals, and if not, the theory of [11,12] suggest to create an
additional ARIMA or SARIMA model on the residuals to fit the pure white noise.

v. Post-estimation review: MAPE is used to verify the level of fit of each estimated model.
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Figure 1. Process to estimate ADL models.

2.2.1. Initial Conditions

Electricity generation in Colombia is predominantly hydroelectric. Therefore, climatic
phenomena that could generate extreme hydrological events such as El Niño and La Niña
cause nervousness in the generation market because reservoirs are limited and water
supplies have a stochastic behavior, increasing the volatility of the electricity spot price and
the associated risk.

The Spot Price of Electricity in Colombia is defined based on the Maximum Offer
Price (MPO) of the power plants participating in the spot market. However, there is also a
minimum price, which is the sum of the following terms: (i) Real Equivalent Cost of Energy
(CERE): This is the payment of the Reliability Charge, understood as a demand payment to
guarantee the energy service, even in periods of water shortages. (ii) Contributions: Law
99 of 1993 (Environmental Law). (iii) Secondary service or frequency control (AGC): This is
the payment for the plants to control the frequency 60 Hz system. (iv) Tax contribution for
Non-Interconnected Zones—FAZNI.
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According to [15], the efficient functioning of the electricity market implies that all
generating companies must make the best operational decisions with the best available
information; therefore, electricity companies must have a thorough knowledge of the
dynamics of the electricity price and the mechanisms that determine its evolution.

Before modeling, a descriptive statistical analysis is performed that helps to know
better the variables, in this case, the use of the minimum (min) or maximum (max) values,
quartiles (1st Q, 2nd Q (Median), and 3rd Q), standard deviation, and coefficient of variation
(CV), and shows the variables distribution and their market behavior.

To perform the ADL model, the Xt and Yt series must be stationary. This stationarity
condition is verified using Augmented Dickey–Fuller (ADF), Kwiatkowski–Phillips–Schmidt–
Shin (KPSS), and Phillips–Perron (PP) tests, as explained by [16]. These tests can yield two
possible results for each series: stationary or nonstationary. If a is a nonstationary series, it will
be differentiated d times to make it stationary, thus creating variables xt and yt: xt = ∆dXt,
yt = ∆dYt, with Xt and Yt as the series in levels [17]. Subsequently, the Granger causality
test is performed for xt and yt. In the results, there should be no evidence of a relationship
between the variables, as indicated in Assumption 4 of the ADL models reported by [18].
In addition, there must be an optimal lag value in the residual’s series showing the lower
cointegration, considering Akaike’s information criteria and the F test [19–21].

2.2.2. Identification of the Impulse–Response Function (IRF)
Data Prewhitening

Two prewhitened series, αt and βt, are constructed. αt corresponds to the residuals
of an ARIMA process adjusted to series xt and whose lag polynomials are φx for the
autoregressive component θx for the moving average components. βt can be calculated by
filtering series yt using the same lag polynomials (φx and θx), as shown in Equation (5).

αt =
φx

θx
xt; βt =

φx

θx
yt (5)

Identification of the Impulse–Response Function

The impulse–response function (υ̂k) is a linear relationship used in time series models,
in which two stationary series (αt and βt) are through linear filters. To perform the IRF,
the Cross-Correlation Function (CCF) (6) and the standard deviations of the prewhitened
models (αt and βt) are used (7). For hypothesis testing, the value int shows the existence of
the impulse–response effect of the series (alternative hypothesis) or a noncorrelation value
(null hypothesis).

ραβ(k) =
γαβ(k)
σασβ

(6)

υ̂k =
σβ

σα
ραβ(k); int : ±(T − k)−

1
2 , (7)

where ραβ(k) denotes the cross-correlation function of the prewhitened series; σα y σβ, their
variances; and γαβ(k), their covariance.

After calculating the impulse–response series (υ̂k), the obtained series through the-
oretically predefined processes are compared (see Figure A1). These processes, known
as transfer functions, recreate a model based on three components: b, which indicates
the number of lags in the series; r, which distinguishes its autoregressive; and s, which
identifies its moving average process (8).

Ŷt = υ̂k =
ωs(L)
δr(L)

xt−b (8)

2.2.3. Estimated Autoregressive Distributed Lag Models

Once the theoretical IRF function (υ̂k) is determined, it is tested via Ordinary Least
Squares and Maximum Likelihood (OLS-ML) estimation to verify that the parameters meet
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the hypothesis of individual significance and the invertibility conditions for ωsLs and the
stationarity conditions for δrLr.

After the optimal model is estimated, the model residuals (6) are verified again using
the Ljung–Box Test and the Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) analysis to confirm if the series is white noise. If it is not white noise, an
ARIMA model may be estimated for the residuals to complement possible seasonal effects
or nonparameterized components in the transfer model.

2.2.4. Postestimation Review

In this section, we look at the fitting criterion proposal for [22] evaluating the Mean
Absolute Percentage Error (MAPE). As observed in (9), a MAPE below 10% is an excellent
fit, while a MAPE above 30% indicates a poor fit.

MAPE =
1
T
∗ ∑n

t=1
∣∣e2

t
∣∣

|Yt|
; Fitted


≤ 10% very good

> 10%, ≤ 20% good
> 20%, ≤ 30% moderate

> 30% poor

(9)

3. Results and Discussions
3.1. Data Description

This study includes seven exogenous variables and one endogenous variable (FRP)
with information from January 2006 to September 2019 and with 165 observations per
variable; the dataset was built in monthly frequency. This information was obtained from
the XM the electricity market operator in Colombia.

We work with a monotonically transformed series. In this study, the hydropower
generation (HYDRO) series is expressed in GWh after being transformed using the con-
version factors of the hydroelectric power plants in the electric grid. Additionally, the
transfer of information between this variable and the others is possible using water to
generate electricity and not the country’s rainfall. Similarly, coal power generation (COAL)
expressed in GWh and natural gas power generation (GAS) expressed in GWh are essen-
tial to measuring risk because they complement hydropower generation. These types of
resources define the energy spot price (SPOT) measured in COP/kWh. For similar reasons,
total generation from thermal power stations (SUMTHERM) are expressed in GWh, within
which there could be some using liquid fuels. On the other hand„ climate expectation
based on the Oceanic Niño Index (ONI) measured in Celsius generates a price expectation
that closes with the marginal cost of thermal power stations. However, there exists a high
uncertainty regarding the behavior of this variable in future periods, which makes it more
interesting for the forward risk analysis. Finally, electricity demand (DEMAND)—also
measured in GWh—is the variable that defines the risk because generation ultimately
depends on it and, thus, part of the price traded on the electricity market. This variable
relies on macro and microeconomic, climate, and time factors, among others.

To understand the previously described procedure, a prior technical analysis of the
energy generating series (including FRP) is carried out to contrast the type of information
provided; in this case, it is imperative to know the distribution and if the series has
statistically normal.

According to the results in Table 1, SPOT, GAS, DEMAND, ONI, and FRP have a
dispersion level for the existence of uncertainty events that volatilize prices; for SPOT prices,
market conditions change in fact due to the uncertainty regarding climatical phenomena
from 2016 to 2018 [13]; the price of GAS has a dependence on the uncertainty of hydrological
generation prices; the variation in demand is a reflection of the market and the uncertainty
of generators and buyers [23].
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Table 1. Descriptive statistics of the exogenous variables considered in the analysis.

Series in Levels (Xt)

Min 1st Q Median Mean 3rd Q Max Std.Dev CV

SPOT 46.88 83.25 122.33 157.39 181.81 1107.40 139.58 0.89
HYDRO 73.65 112.60 135.33 136.54 166.43 205.44 36.70 0.27
COAL 20.98 35.75 38.87 39.15 42.02 52.14 5.95 0.15
GAS 2.70 5.35 6.65 7.64 9.49 18.22 3.22 0.42

DEMAND 0.46 1.81 3.00 3.21 4.39 9.50 1.78 0.55
SUMTHERM 38.81 45.77 50.33 50.36 55.14 62.57 5.50 0.11

ONI 3.55 7.51 9.35 11.28 14.35 28.49 5.12 0.45
FRP −3.80 11.12 21.31 20.84 20.85 38.08 11.63 0.55

3.2. Initial Analysis of the Variables

Using the tests indicated in process “ii” of Section 2.2, in Table 2, the results show
the statistical acceptance of the non-stationarity hypothesis by performing first-order
differentiation for all. Only the COAL and ONI series in the ADF test and GAS in the KPSS
test have a significance of 10% of the evaluation, and those do not impact the decision of
differentiate the series because these series must present stationarity in first difference to
be able to perform the ADL model.

Table 2. ADF, KPPS, PP seasonality tests results in p-values contrasted at a significance level of 5%.

Test SPOT HYDRO COAL GAS DEMAND SUMTHERM ONI FRP

ADF 0.000 0.000 0.096 0.010 0.010 0.010 0.062 0.039
KPSS 0.000 0.000 0.010 0.098 0.047 0.010 0.010 0.085

PP 0.002 0.002 0.014 0.010 0.049 0.010 0.010 0.078

Once verified the stationarity condition, verify the Granger causality test for statisti-
cal causality between the exogenous series (xt) and the endogenous series (yt). As seen in
Table 3, there is no evidence of Granger causality between the exogenous variables and the
endogenous variable at twelve lags, following the results of the tests proposed by [19–21]. In
the variables evaluated relationships, a contagion effect is visible, except for the SPOT
variable on the endogenous variable, present p-values higher than a 5% significance level,
this meaning the relationship between SPOT and FRP variables is impossible, as pro-
posed by [19–21]. Regarding the (optimal) AIC* values, it shows all series present lags at
12 months and they are optimal values fitting an optimal (ADL) model.

Table 3. Granger causality test for the series differentiated at twelve lags.

FRP vs. Variable
p-Value AIC *

Y~X

SPOT 0.032 687.5
HYDRO 0.437 699.5
COAL 0.472 699.9
GAS 0.680 702.7

DEMAND 0.077 691.0
SUMTHERM 0.313 697.5

ONI 0.863 705.4
*: is the number of optimal lags assessed with AIC.

3.3. Prewhitened Models

Once the stationarity condition and non-Granger causality test are working, the
ARIMA models for each exogenous series are estimated to establish the prewhitened series
(αt and βt). The results are presented in Table 4.
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Table 4. Results of the prewhitened series (αt and βt).

Variable ARIMA Parameter Coeff. Pvaluext σαt σβt

SPOT (1,1,1) ar1
ma1

0.793
−0.979

0.000
0.000 83.29 8.77

HYDRO (1,1,1)
ar1 0.838 0.000

2.86 7.17ma1 −0.968 0.000

GAS (0,1,0) — —- —- —- —-

COAL (1,1,1)
ar1 0.779 0.000

1.08 8.71ma1 −0.975 0.000

DEMAND (2,1,0)
ar1 −0.816 0.000

1.54 14.64ar2 −0.256 0.001

SUMTHERM (0,1,0) — —- —- —- —-

ONI (2,1,1)
ar1 1.787 0.000

0.11 53.07ar2 −0.852 0.000
ma1 −0.963 0.000

According to Table 4, Using the evaluation results of Sections 3.2 and 3.3, the pre-
whitened models, αt and βt from Equation (3), standard deviations (σαt) and

(
σβt

)
work

as input for the impulse response function plots, with ARIMA components not greater than
two information lags for both autoregressions and moving averages evaluated in a p-value
for 5% individual significance. This behavior is usual in commodities with some degree of
storability [24]. Regarding the GAS and SUMTHERM series, they only exist when there is
a risk of shortage of the main variables (e.g., hydropower or coal power generation). In
addition, those variables are not helpful to identify the FRP risk valuation in situ. Both
differentiated series show a white noise effect that does not enable making progress in the
ADL construction methodology ruling out.

3.4. Impulse–Response Function Series (IRF)

The pre-whitened series (αt and βt) and their valued standard deviations (σαt and
σβt ) can produce the IRF plots depicted in Figure 2. In the figure, it is shown that the only
relationship that does not have a statistically significant information correlation is that
between FRP and SPOT (PB), considering that Table 4 shows statistical evidence that this
process intervenes with the assumption of noncorrelation for the Granger causality test,
which hinders the development of the transfer function model. The rest of the relationships
exhibit a cross-correlation, which is the transfer function of each contrasted series.

Having identified the cross functions, now it is possible to search the optimal ADL
model for each series

3.5. Transfer Function Models

By broadening the theoretical parameter identification method proposed by [13] and
taking the optimization of the Granger causality test, we make 12-lag iterations to identify
the components of these ωs and δr that meet the conditions of statistical significance,
invertibility, and stationarity. The estimated optimal models that satisfy the mentioned
conditions are in Table 4.

Therefore, FRP identifies in advance the time of the energy transaction with a few
months of lag. Thus, the HYDRO variable explains the behavior of the FRP after three
months of information lag (δ3) and is affected by stochastic behaviors two months before
trading the risk Premia (ω2). Still, the behaviors of the FRP are traded for terms of one
to two years, prior to market events. Therefore, FRP identifies in advance the time of the
energy transaction with a few months of lag.
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Figure 2. Impulse–response function between the FRP series and the energy variables—testing
procedure. Note: From top to bottom, spot price (SPOT), total hydropower generation (HYDRO),
coal power generation (COAL), electricity demand (DEMAND), and Oceanic Niño Index (ONI).

After identifying the optimal transfer functions for each series, the residuals of each
model (ηt) are analyzed to verify and confirm the white noise condition in them. According
to Table 5, there is a marked seasonal component at twelve periods, (P, D, Q)12, for each
series of residuals, showing an annual market behavior on the prices of the FRP.

Table 5. Results of the transfer function models for the FRP.

Variables (
^
νt) ADL Coeff. p-Value (

^
ηt) SARIMA Coeff. p-Value ARIMA+

^
νt+

^
ηt

MAPE

HYDRO

T1-AR1 1.512 0.000

sar1
sma1

0.854
−0.628

0.000
0.080

(1, 1, 1)(0, 3, 2)(1, 0, 1)12 6.74%

T1-AR2 −1.502 0.000
T1-AR3 0.503 0.000
T1-MA0 0.176 0.005
T1-MA1 −0.206 0.002
T1-MA2 0.228 0.000

COAL
T1-AR1 −0.899 0.000

sar1
sma1

0.833
−0.535

0.000
0.018

(1, 1, 1)(0, 1, 1)(1, 0, 1)12 6.88%T1-MA0 −0.488 0.003
T1-MA1 −0.553 0.001

DEMAND

T1-AR1 −0.657 0.000

sar1
sar2

0.285
0.198

0.000
0.013

(2, 1, 0)(0, 4, 1)(2, 0, 0)12 6.25%

T1-AR2 −0.255 0.000
T1-AR3 −0.731 0.000
T1-AR4 −0.903 0.000
T1-MA0 −0.063 0.021
T1-MA1 −0.072 0.009

ONI
T1-AR1 −0.478 0.000 sar1

sar2
sma1

−0.394
0.507
0.799

0.001
0.000
0.000

(2, 1, 1)(0, 2, 0)(2, 0, 1)12 7.29%T1-AR2 −0.931 0.000
T1-MA0 −1.988 0.064

These prices explain the FRP movement with one seasonal autoregressive (SAR)
and one seasonal moving average component (SMA) at least, except for the DEMAND
variable that is explained by two autoregressive seasonal parameters (SAR). These latter
components are described by the inertia of volatile systematic elements of the market (such
as rain), except for month 12, which has its own marked behavior.
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In the case of the ONI variable, the fitting with the FRP market explains the behavior
concerning the expectations of the climate analysis of one El Niño or La Niña phenomenon
with at least two periods of information lag.

The MAPE values for each model were below 10%, showing an adjusted projection
with soft noise residuals according to the criteria considered [22]. The estimated ADL
models can be rewritten in equation form (Table 6).

Table 6. ADL models in equation form.

Model Equation

HYDRO (1− L)Yt =
0.17+0.20L−0.22L2

1+1.51L−1.50L2−0.50L3 (1− L)Xt +
(1−0.85L12)
(1+0.62L12)

at

COAL (1− L)Yt =
−0,48+0.55L

1+0.89L (1− L)Xt +
(1−0.83L12)
(1+0.53L12)

at

DEMAND (1− L)Yt =
−0.06+0.07L

1+0.65L+0.25L2+0.73L3+0.90L4 (1− L)Xt +
(
1− 0.28L12 − 0.19L24)at

ONI (1− L)Yt =
−1.98

1+0.47L+0.93L2 (1− L)Xt +
1+0.39L12−0.50L24

(1−0.79L12)
at

Figure 3 illustrates the behavior of the FRP and the estimated variable FRPADL ex-
plained by each market variable; the fit shows a slight residual in the downward peaks
marked by El Niño events registered in 2009 and 2016. Only the ONI variable presents a
better fit in these periods of structural change.
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4. Conclusions

This study analyzes the transfer of uncertainty from electricity market variables to the
forward risk Premia in long-term contracts. For this purpose, we evaluate the construction
of ADL contagion models for the FRP using information regarding electricity demand, spot
price, power generation via various technologies, and the Oceanic Niño Index.

In the initial analysis for the construction of the ADL models, no evidence of Granger
causality was found between the FRP and hydropower generation (HYDRO), coal power
generation (COAL), electricity demand (DEMAND), and the ONI (Oceanic Niño Index). For
these variables, the valuation made by the market at each moment in time does not depend
on the instantaneous value of the total thermal generation movements. Furthermore, this
process suggests that markets react intuitively to weather forecasts regarding the ONI
variable, although not directly on this variable. Consequently, these variables allow the
creation of univariate transfer models, except for the SUMTHERM and GAS variables,
which are white noise series with jumps in the market, occur spontaneously, and are
managed through a regime relationship; hence, the ADL model cannot be directly applied
to find a relationship. Moreover, the SPOT variable was found not to have applicability
because it showed Granger causality.

The transfer models can identify the FRP series with the hydrological generation
series, coal generation, the ONI index, and energy demand with a minimum of two lags
toward the time of contract agreement, showing evidence of prior fundamental analysis by
market agents; the ADL models show that an analytical procedure focused on uncertainty
and fundamental analysis would not be necessary.
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Appendix A

ADL Theoretical transfer Function.
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