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Abstract: In this paper we study a monomial module M generated by an s-sequence and the main
algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy
module of a finitely generated module M, over any commutative Noetherian ring with unit, has a
specific initial module with respect to an admissible order, provided M is generated by an s-sequence.
Significant examples complement the results.
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1. Introduction

In this paper we consider finitely generated modules, over a Noetherian commutative
ring with identity R, generated by an s-sequence, whose rank is greater or equal to one,
that is the modules are not necessarily ideals.

In this direction, the modules that imitate the ideals are the direct sum modules
⊕Iiei, submodules of a free R-module with basis {ei}, i = 1, . . . , n, and Ii ideals of R.
Since the main idea in the use of Gröbner bases is to reduce all problems to questions
of monomial ideals, we study the monomial submodules ⊕Iiei, where all Ii are mono-
mial ideals. Monomial modules were defined in [1] and were studied by many authors
(see [2–7]). The aim of this paper is to investigate the symmetric algebra of a monomial
module M = ⊕Iiei, a submodule of Rn, R = K[x1, . . . , xm], K a field, and I1, . . . , In mono-
mial ideals of R, via the theory of s-sequences [8–10]. the In Section 2, we review basic
concepts of the theory of s-sequences and results about the main algebraic and homological
invariants of the symmetric algebra of a finitely generated graded R-module M, generated
by an s-sequence, provided R is a standard graded K-algebra and the generators of M
are homogeneous sequence, or R is a polynomial ring in the field K. Then we introduce
monomial modules and we recall several results and examples. After introducing a term
order on the free module M = Iiei, Ii ⊂ K[x1, . . . , xm], which is induced by the order
x1 < x2 < . . . < xm < e1 < . . . < en, we formulate sufficient conditions to be a monomial
module M generated by an s-sequence. As an application, we consider the special class
of squarefree monomial S-modules M = ⊕I(i)ei, where each I(i) is the (ti − 1)-th square-
free Veronese ideal of the polynomial ring S(i) = K[x(i)1 , . . . , x(i)ti

], S = K[x(1), x(2), . . . , x(n)],

xi = {x(i)1 , x(i)2 , . . . , x(i)ti
}, 1 ≤ i ≤ n. In Section 3, inspired by [8], we introduce an admissible

term order on the free module Rn, with basis {ei}, i = 1, . . . , n, such that e1 < e2 < . . . < en,
R a Noetherian ring with unit. We prove a remarkable result for the feature of the initial
module, with respect to <, of the first syzygy module of a finitely generated R-module
M generated by an s-sequence. Finally, we give an application to the first syzygy mod-
ule of the class of mixed product ideals in two sets of variables [11,12], generated by an
s-sequence [13–15].
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Although the theory of s-sequences is defined in any field K, char(K) = p ≥ 0, p a
prime natural number, we fix the field K = Q if we use software CoCoA ([16]) to compute
the Gröbner basis of the relation ideal of the symmetric algebra of a finitely generated
K[x1, . . . , xm]-module and the related algebraic invariants.

2. s-Sequences and Monomial Modules

The notion of s-sequences was given first in [8]. Let R be a Noetherian ring and let
M be a finitely generated R-module with generators f1, f2, · · · , fn. We denote by (aij),
i = 1, . . . , t, j = 1, . . . , n, the presentation matrix of M and by SymR(M) = ⊕i≥0Symi(M)
the symmetric algebra of M, Symi(M) the i-th symmetric power of SymR(M). Note that
SymR(M) = R[y1, . . . , yn]/J, where J = (g1, . . . , gt), and gi = ∑n

j=1 aijyj, i = 1, . . . , t. We
consider a graded ring S = R[y1, . . . , yn] by assigning to each variable yi the degree 1 and to
the elements of R the degree 0. Then J is a graded ideal of S and the natural epimorphism
S→ SymR(M) is a homomorphism of graded R-algebras. Now, we introduce a monomial
order < on the monomials in y1, . . . , yn which is induced by the order on the variables
y1 < y2 < . . . < yn. We call such an order an admissible order. For any polynomial
f ∈ R[y1, . . . , yn], f = ∑α aαyα, we put in( f ) = aαyα where yα is the largest monomial in
f with aα 6= 0, and we set in(J) = (in( f ) : f ∈ J). For i = 1, . . . , n, we set Mi = ∑i

j=1 R f j,
and let Ii be the colon ideal Mi−1 :< fi >. For convenience we put I0 = (0).

The colon ideals Ii are called annihilator ideals of the sequence f1, . . . , fn. It easy to
see that (I1y1, I2y2, . . . , Inyn) ⊆ in(J) and the two ideals coincide in degree 1.

Definition 1. The generators f1, . . . , fn of M are called an s-sequence (with respect to an admis-
sible order <) if in(J) = (I1y1, I2y2, . . . , Inyn).

If in addition I1 ⊂ I2 ⊂ · · · ⊂ In, then f1, . . . , fn is called a strong s-sequence.

In the case M is generated by an s-sequence, the theory of s-sequences leads to
computations of invariants of SymR(M) quite efficiently, in particular the Krull dimen-
sion dim(SymR(M)), the multiplicity e(SymR(M)), the Castelnuovo Mumford regular-
ity reg(SymR(M)) and the depth(SymR(M)), with respect to the graded maximal ideal,
in terms of the invariants of quotients of R by the annihilators ideals of M (for more details
on the invariants, see [17]).

Proposition 1 ([8] (Proposition 2.4, Proposition 2.6)). Let M be a graded R-module, R a
standard graded algebra, generated by a homogeneous s-sequence f1, . . . , fn, where f1, . . . , fn have
the same degree, with annihilator graded ideals I1, . . . , In. Then

d := dim(SymR(M)) = max
0 ≤ r ≤ n,

1 ≤ i1 < . . . < ir ≤ n

{dim(R/(Ii1 + . . . + Iir )) + r};

e(SymR(M)) = ∑
0 ≤ r ≤ n,

1 ≤ i1 < . . . < ir ≤ n,
dim(R/(Ii1

+ . . . + Iir )) = d− r

e(R/(Ii1 + . . . + Iir )).

When f1, . . . , fn is a strong s-sequence, then

d = max
0≤r≤n

{dim(R/Ir) + r};

e(SymR(M)) = ∑
0 ≤ r ≤ n,

dim(R/Ir ) = d− r

e(R/Ir).

If R = K[x1, . . . , xm] and f1, f2, . . . , fn is a strong s-sequence:

reg(SymR(M)) ≤ max{reg(Ii) : i = 1, . . . , n};

depth(SymR(M)) ≥ min{depth(R/Ii) + i : i = 0, 1, . . . , n}.
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We recall fundamental results on monomial sequences.
Consider R = K[x1, x2, . . . , xm], where K is a field, and let I = ( f1, . . . , fn) be, where

f1, . . . , fn are monomials. Set fij =
fi

gcd( fi , f j)
, i 6= j. Then J is generated by gij := fijyj −

f jiyi, 1 ≤ i < j ≤ n, and the annihilator ideals of the sequence f1, . . . , fn are the ideals
Ii = ( f1i, f2i, . . . , f(i−1)i). As a consequence, a monomial sequence is an s-sequence if and
only if the set {gij, 1 ≤ i < j ≤ n}, is a Gröbner basis for J for any term order on the
monomials of R[y1, . . . , yn] which extends an admissible term order on the monomials in
the yi. Let us now fix such a term order.

Proposition 2 ([8] (Proposition 1.7)). Let I = ( f1, . . . , fn) ⊂ K[x1, x2, . . . , xm] be a monomial
ideal. Suppose that for all i, j, k, l ∈ {1, . . . , n}, with i < j, k < l, i 6= k and j 6= l, we have
gcd( fij, fkl) = 1. Then f1, . . . , fn is an s-sequence.

Now let R = K[x1, x2, . . . , xm] be and let F be the finite free R-module F = Re1 ⊕
. . .⊕ Ren with basis e1, . . . , en. We refer to [1] (Ch.15, 15.2) for definitions and results on
monomial modules.

Definition 2. An element m ∈ F is a monomial if m has the form uei, for some i, where u is a
monomial of R. A submodule U ⊂ F is a monomial module if it is generated by monomials of F.

One can observe that if U be a submodule of the free R-module F = ⊕n
i=1Rei, then U

is a monomial module if and only if for each i there exists a monomial ideal Ii such that
U = I1e1 ⊕ I2e2 ⊕ . . .⊕ Inen. In particular, U is finitely generated.

Theorem 1. Let M = ⊕n
i=1 Iiei be a monomial R-module, Mi = Iiei, Ii = (mi1, . . . , miri ), a

monomial ideal of R = K[x1, . . . , xn] then

(i) Syz1(Mi)∼=Syz1(Ii),
(ii) Syz1(M)∼=Syz1(I1)⊕ Syz1(I2)⊕ . . .⊕ Syz1(In),

Proof. (i) Write Mi = 〈mi1ei, . . . , miri ei〉 and let

0→ Syz1(Mi)→ Rri → Mi → 0 (1)

be a presentation of Mi. Consider the R-linear homomorphism Rri → Mi such that
gj → mijei, Rri = Rg1 ⊕ . . .⊕ Rgri , and a syzygy of Mi, a ∈ Rri , a = (λi1, . . . , λiri ). Then

ri

∑
j=1

λijmij = 0,

and a is a syzygy of Ii.
(ii) It follows by (i).

Let M be a monomial R-module defined as in Theorem 1. We will prove a criterion
for a monomial module to be generated by an s-sequence. Set

mij,lk =
mij

gcd(mij, mlk)
, mij ∈ Ii, mlk ∈ Il ,

1 ≤ i, j ≤ n, 1 ≤ j ≤ ri, 1 ≤ k ≤ rl .

Theorem 2. Let M = ⊕n
i=1 Iiei be a monomial module, Ii = (mi1, . . . , miri ), i = 1, . . . , n.

Suppose gcd(mij,ik, mtu,tv) = 1, j < k, u < v , with i = t and j 6= u, k 6= v or with i 6= t
and 1 ≤ j, k ≤ ri, 1 ≤ u, v ≤ rt. Then M is generated by the s-sequence m11e1, . . . , m1r1 e1, . . .,
mn1en, . . . , mnrn en.
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Proof. For each i = 1, . . . , n, Syz1(Mi) is generated by the binomials:

mij,ikgik −mik,ijgij

since i is fixed, 1 ≤ j, k ≤ ri, being gik, gij the free basis of Rri . Thanks to the hypothesis,
we have gcd(mij,ik, miu,iv) = 1, j < k, u < v, j 6= u, k 6= v, ∀ i = 1, . . . , n, and we conclude,
by Proposition 2, that Mi is generated by an s-sequence.

Now, suppose i < t. If Tik and Ttv are the variables that correspond to gik and gtv,
then Tik 6= Ttv. We have gcd(mij,ikTik, mtu,tvTtv) = gcd(mij,ik, mtu,tv) = 1by hypothesis.
In conclusion, the S-pair S(bijk, btuv) reduces to zero, where bijk = mij,ikTik −mik,ijTij and
btuv = mtu,tvTtv −mtv,tuTtu. Then the assertion follows.

Example 1. Let M = I1e1 ⊕ I2e2, I1 = (x2, y2, z) and I2 = (z2, zy) be ideals of K[x, y, z]. We
have m11,12 = m11,13 = x2, m12,13 = y2, m21,22 = z. Since gcd(m11,12, m12,13) =
gcd(m11,12, m21,22) = gcd(m11,13, m21,22) = 1, then M is generated by the s-sequence
x2e1, y2e1, ze1, z2e2, zye2.

The next example considers a monomial module M not generated by an s-sequence,
even if each addend is generated by an s-sequence.

Example 2. Let M = (x, y)e1 ⊕ (x, y)e2 be, I1 = I2 = (x, y) ideals of R = K[x, y]. Write
SymR(M) = R[T1, T2, T3, T4]/J, where J = (yT1 − xT2, yT3 − xT4) We compute the S-pair
S(yT1 − xT2, yT3 − xT4) = −y(T1T4 − T2T3), with T4 > T3 > T2 > T1. If T1T4 > T2T3,
in< J = (xT2, xT4, yT1T4) and if T1T4 < T2T3, in< J = (xT2, xT4, yT2T3). In any case, J does
not have a Gröbner basis which is linear in the variables Ti.

Now we quote a statement on computation of the annihilator ideals of M = ⊕n
i=1 Iiei,

that is to say the annihilator ideals of the generating sequence of M

m11e1, m12e1, . . . , m1r1 e1, m21e2, . . . , m2r2 e2, . . . , mn1en, . . . , mnrn en.

Proposition 3. Let Ki1, Ki2, . . . , Kiri be the annihilator ideals of Mi = Iiei, Set J1, . . . , Jr1 , Jr1+1,
Jr1+2, . . . , Jr1+r2 , Jr1+r2+1, . . . , Jr1+r2+...+rn the annihilator ideals of the sequence. Then we have:

J1 = K11 = (0), J2 = K12, . . . , Jr1 = K1r1 , Jr1+1 = K21 = (0), Jr1+2 = K22, . . . ,

Jr1+r2 = K2r2 , . . . , Jr1+r2+...+rn−1+1 = Kn1 = (0), Jr1+r2+...+rn−1+2 = Kn2,

. . . , Jr1+r2+...+rn = Knrn .

Proof. An elementary computation gives:

〈0〉 : 〈m11e1〉 = K11 = (0)

〈m11e1〉 : 〈m12e1〉 = K12

〈m11e1, m12e1〉 : 〈m13e1〉 = K13

. . . . . . . . .

〈m11e1, m12e2, . . . , m1r1−1 e1〉 : 〈m1r1 e1〉 = K1r1

〈m11e1, m12e1, . . . , m1r1−1 e1, m1r1 e1〉 : 〈m21e2〉 = I1e1 : 〈m21e2〉+ (0) : 〈m21e2〉 =
= (0) + K21 = (0)

〈m11e1, m12e1, . . . , m1r1−1 e1, m1r1 e1, m21e2〉 : 〈m22e2〉 = 〈I1e1, m21e2〉 : 〈m22e2〉 =
= I1e1 : 〈m22e2〉+ K22 = (0) + K22 = K22.
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The proof goes on by a routine computation.

Example 3. Let M = I1e1 ⊕ I2e2 be a monomial module on R = K[x, y, z], where
I1 = (x2, y2, xy), I2 = (z2, zy).Then M is generated by the s-sequence x2e1, y2e1, xye1, z2e2, zye2
with x < y < z < e1 < e2. The s-sequence has the following annihilator ideals:

J1 = 〈0〉 : 〈x2e1〉 = K11 = (0)

J2 = 〈x2e1〉 : 〈y2e1〉 = K12 = (x2)

J3 = 〈x2e1, y2e1〉 : 〈xye1〉 = K13 = (x, y)

J4 = 〈x2e1, y2e1, xye1〉 : 〈z2e2〉 = K21 = (0)

J5 = 〈x2e1, y2e1, xye1, z2e2〉 : 〈zye2〉 = (0) + K22 = (z)

By Proposition 1, we have dim(SymR(M)) = 5. The maximum of the dimensions
is obtained by dim(R/(J1 + J2 + J3 + J4 + J5)) + 5 = dim(R/((x2) + (x, y) + (z)) + 5 = 5.
For the multiplicity, we have e(SymR(M)) = e(R/(J1 + J4)) + e(R/(J1 + J2 + J3 + J4
+J5)) = 1, since e(R/(J1 + J4)) = e(K[x, y, z]) = 1 and e(R/(J1 + J2 + J3 + J4 + J5)) =
e(K) = 0. Concerning the depth and the Castelnuovo regularity, since it results
SymR(M) = R[T1, T2, T3, T4, T5]/J = R[T1, T2, T3, T4, T5]/(xT2 − yT3, yT1 − xT3, yT4 − zT5),
we compute depth(SymR(M)) = 5 and reg(SymR(M)) = 3 using software CoCoA ([16]).

We conclude the section yielding a class of monomial modules that would be of large
interest in combinatorics, considering that they involve monomial squarefree ideals. Let
S = K[x(1), x(2), . . . , x(n)] be a polynomial ring in n sets of variables xi = {x(i)1 , x(i)2 , . . . , x(i)ti

},
1 ≤ i ≤ n. Let Is be the monomial ideal of S generated by all squarefree monomials of
degree s (the s-th squarefree Veronese ideal of S). Consider the squarefree monomial ideal
I(i)ti−1, i = 1, . . . , n, of S(i) = K[x(i)] generated by all squarefree monomials of degree ti − 1
(the (ti − 1)-th squarefree Veronese ideal ) as a monomial ideal of S.

Theorem 3. The monomial module M = ⊕n
i=1 I(i)ti−1ei on S = K[x(1), x(2), . . . , x(n)] is generated

by an s-sequence.

Proof. It is known that for each i, I(i)ti−1 is generated by an s-sequence ([14] (Theorem 2.3)),
being generated by ti squarefree monomials in ti − 1 variables in the polynomial ring in
ti variables and that condition 1) of [14] (Theorem 1.3.2.) is satisfied. The ideals I(i)ti−1 and

I(j)
tj−1, for any i 6= j, i, j = 1, . . . , n, are generated in 2 disjoint sets of variables, then the

condition of Theorem 2 is easily verified.

The invariants of SymS(M) depend on the invariants of each addend of M.

Theorem 4. Let M = ⊕n
i=1 I(i)ti−1ei be and let SymS(M) be its symmetric algebra. Then:

(1) dimS(SymS(M)) = ∑n
i=1 ti + n = ∑n

i=1 dimS(i)(SymS(i)(Mi))
(2) depth(SymS(M)) = ∑n

i=1 ti + n = ∑n
i=1 depthS(i)(SymS(i)(Mi))

(3) e(SymS(M)) = ∑∑ ti−n−1
j=1 (∑ ti−n

j ) + 2

(4) reg(SymS(M)) = ∑n
i=1 ti − n

Proof. We consider an admissible term order on the monomials of S[T(1)
1 , . . . , T(n)

tn
] such

that xl
j < T(1)

1 < T(1)
2 < . . . < T(n)

tn
.

(1) The annihilators ideals of the module Mi = I(i)ti−1ei are the annihilators ideals J(i)j of

the sequence generating I(i)ti−1, in the lexicographic order, for each i = 1, . . . , n, j = 1, . . . , ti.
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By [14] (Proposition 3.1), we have J(i)1 = (0), J(i)2 = (x(i)ti−1), J(i)3 = (x(i)ti−2), . . . , J(i)ti
= (x(i)1 ).

Then, if J is the relation ideal of SymS(M), we have:

in<(J) = (x(1)t1−1T(1)
2 , x(1)t1−2T(1)

3 , . . . , x(1)1 T(1)
t1

, . . . , x(n)tn−1T(n)
2 ,

x(n)tn−2T(n)
3 , . . . , x(n)1 T(n)

tn
)

and it is generated by a regular sequence. We obtain

dimS(SymS(M)) =
n

∑
i=1

ti +
n

∑
i=1

ti −
(

n

∑
i=1

ti − n

)
=

n

∑
i=1

ti + n.

(2) Since depth(SymS(M)) ≤ dimS(SymS(M)) = ∑n
i=1 ti + n and depth(SymS(M)) ≥

depth(S[T(1)
1 , . . . , T(1)

t1
, . . . , T(n)

1 , . . . , T(n)
tn

]/in<(J)) = ∑n
i=1 ti + n, the equality follows.

(3) In the following, we often use methods and tools of [14] (Theorem 3.6). For each i,
1 ≤ i ≤ n, with S(i) = K[x(i)], we have

e(SymS(i)(I(i)ti−1ei)) = ∑
1≤i1<...<ir≤ti

e
(

S(i)/(J(i)i1
, . . . , J(i)ir )

)
with dim

(
S(i)/(J(i)i1

, . . . , J(i)ir )
)
= d− r, d = dim(SymS(i)(I(i)ti−1ei)) = ti + 1 and 1 ≤ r ≤ ti,

being J(i)i1
, . . . , J(i)ti

the annihilators ideals of I(i)ti−1. It results, by the structure of the anni-

hilators ideals, H(i) = (J(i)i1
, . . . , J(i)ir ) = (x(i)i1

, . . . , x(i)ir ). Put H = (H(1), H(2), . . . , H(n)) =

(x(1)i1
, . . . , x(1)ir , x(2)i1

, . . . , x(2)ir , . . . , x(n)i1
, . . . , x(n)ir ). Then e(S/H) = 1 since S/H is a polinomial

ring on a field k. Let

d′ = dim(S/(J(i)i1
, . . . , J(i)ir )) =

n

∑
i=1

ti + n− r, 1 ≤ i ≤ n, 1 ≤ r ≤
n

∑
i=1

ti,

then e(SymS(M)) is given by the sum of the following addends:

e(S/(0)) = 1

for r = 1, d′ = ∑n
i=1 ti + n− 1.

∑ ti

∑
j=2

e(S/J(i)j ) = 1 + . . . + 1︸ ︷︷ ︸
∑ ti−n

for r = 2, d′ = ∑n
i=1 ti + n− 2.

∑
2≤k1≤tk ,2≤l1≤tl

e(S/(J(k)k1
, J(l)l1

)) = 1 + . . . + 1︸ ︷︷ ︸
(∑ ti−n

2 )

for r = 3, d′ = ∑n
i=1 ti + n− 3, 1 ≤ k, l ≤ n

∑
2≤k1≤tk ,2≤l1≤tl ,2≤m1≤tm

e(S/(J(k)k1
, J(l)l1

, J(m)
m1 )) = 1 + . . . + 1︸ ︷︷ ︸

(∑ ti−n
3 )

for r = 4, d′ = ∑ ti + n− 4, 1 ≤ k, l, m ≤ n

...
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∑
2≤u1<···<ur≤t1,...,2≤s1<···<sr≤tn

e(S/(J(1)u1 , . . . , J(1)ur , . . . , J(n)s1 , . . . , J(n)sr ) = 1 + . . . + 1︸ ︷︷ ︸
( ∑ ti−n

∑ ti−n−1)

for r = ∑ ti − 1, d′ = n + 1.

e
(

S/(J(1)2 , . . . , J(1)t1
, J(2)2 , . . . , J(2)t2

, J(n)2 , . . . , J(2)tn
)
)
= 1

for r = ∑n
i=1 ti, d′ = n. Thus,

e(SymS(M)) =
∑ ti−n−1

∑
j=1

(
∑ ti − n

j

)
+ 2.

(4) reg(SymS(M)) = reg(S[T(1), . . . , T(n)]/J) ≤ reg(S[T(1), . . . , T(n)]/in<(J)), T(i) =

{T(i)
1 . . . T(i)

ti
}, for 1 ≤ i ≤ n. The ideal

in<(J) = (x(1)t1−1T(1)
2 , . . . , x(1)1 T(1)

t1
, x(2)t2−1T(2)

2 , . . . , x(2)1 T(1)
t2

, . . . x(n)tn−1T(n)
2 , . . . , x(n)1 T(n)

tn
)

is generated by a regular sequence of length ∑ ti − n of monomials of degree 2. The ring
S[T(1), . . . , T(n)]/in<(J) has a resolution of length ∑n

i=1 ti − n, equal to the number of
generators of in<(J), given by the Koszul complex of in<(J). Then reg(SymS(M)) ≤
∑n

i=1 ti − n. Since J is Cohen-Macaulay and

dim(SymS(M)) =
n

∑
i=1

ti + n, dim S[T(1), . . . , T(n)]/J =
n

∑
i=1

ti +
n

∑
i=1

ti − ht(J),

then ht(J) = grad(J) = 2 ∑n
i=1 ti − (∑n

i=1 ti + n) = ∑n
i=1 ti − n. Since J is a graded ideal [17]

(Proposition 1.5.12), we can choose the regular sequence in J inside the binomials of degree
two generating J. So the Koszul complex on the regular sequence gives a 2-linear resolution
of J. It follows

reg(S[T(1), . . . , T(n)]/J) ≥ 2

(
n

∑
i=1

ti − n

)
−
(

n

∑
i=1

ti − n

)
=

n

∑
i=1

ti − n.

The equality follows.

3. Groebner Bases of Syzygy Modules and s-Sequences

Let R be a Noetherian commutative ring with unit. Let N be a finitely generated
R-module submodule of a free R-module Rn = Re1 ⊕ . . . ⊕ Ren, N = Rg1 + . . . + Rgm,
gi = ai1e1 + . . . ainen, i = 1, . . . , m. Consider an order on the standard vectors e1, . . . , en of
Rn such that en > . . . > e1. We may view N as a graded module by assigning to each vector
ei the degree 1 and to the elements of R the degree 0. For any vector h ∈ Re1 + . . . Ren,
h = ∑n

i=1 aiei, we put in(h) = ajej, where ej is the largest vector in h with aj 6= 0. Such an
order will be called admissible. Set in(N) =< in(h), h ∈ N >. We say that g1, . . . , gm is a
initial basis for N if in(N) =< K1e1, . . . , Knen >= ⊕Kiei, where Kj are ideals of R.

Take N = Syz1(M) the first syzygy module of a finitely generated R-module M.
We have:

Theorem 5. Let M be a finitely R-module generated by an s-sequence f1, . . . , fn and let
N = Syz1(M). Then in(N) =< I1e1, . . . , Inen >, where I1, . . . , In are the annihilator ideals of
the sequence f1, . . . , fn.

Proof. Let us introduce an admissible order in Rn = ⊕n
i=1Rei, with e1 < e2 < . . . < en.

Then in<(N) =< in<( f ), f ∈ N >=< K1e1, . . . , Knen >, with Kj ideals of R. Passing to
the symmetric algebras SymR(M), the relation ideal J is generated linearly in the variables
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Tj, j = 1, . . . , n, corresponding to the vectors e1 < e2 < . . . < en, with the order T1 <
T2 < . . . < Tn, and in<(J) = (I1T1, . . . , InTn). Let G(J) be the finite set of linear forms in
T1, T2, . . . , Tn, which generate J and such that in<(J) = (in< f , f ∈ G(J)) and let G̃(J) =
G(N) be the set of generators f̃ of N = Syz1(M) corresponding to f under the substitution
Ti → ei, i = 1, . . . , n. Then we have in<(N) =< in<( f̃ ), f̃ ∈ G(N) >. We deduce that
Kj = Ij for j = 1, . . . , n. Hence the assertion follows.

Example 4. Let I = (X2, Y2, XY) be an ideal of R = K[X, Y]. The relation ideal J of SymR(I)
is J = (XT3 − YT1, YT3 − XT2). The Gröbner basis of J is G(J) = {XT3 − YT1, YT3 −
XT2, X2T2 −Y2T1} which is linear in the variables T1, T2, T3 and I is generated by the s-sequence
X2, Y2, XY. Consider Syz1(I) =< Xe3 − Ye1, Ye3 − Xe2 >. Then G̃(J) = G(N) = {Xe3 −
Ye1, Ye3−Xe2, X2e2−Y2e1} and in< J = ((X2)T2, (X, Y)T3), in<(N) =< (X2)e2, (X, Y)e3 >.

Notice that X2, XY, Y2 is not an s-sequence for I. In fact, in such case, the relation ideal
is J = (XT2 − YT2, YT2 − XT3) and G(J) = {XT2 − YT1, YT2 − XT3, X2T3 − Y2T1, T2

2 −
T1T3} not linear in the variables T1, T2, T3, in both cases T2 > T1T3 or T1T3 > T2. We have
G(N) = {Xe2 − Ye1, Ye2 − Xe3, X2e3 − Y2e1}, but the generators of G(N) are not obtained by
the substitution of Ti with ei, in the elements of the Gröbner basis of J.

Now, let R = K[X1, . . . , Xt] be a polynomial ring over the field K, and let < be a term
order on the monomials of Rn = K[X1, . . . , Xt]e1 ⊕ . . .⊕ K[X1, . . . , Xt]en with e1 < . . . < en
and Xj < ei, for all i and j. The excellent book of D. Eisenbud ([1] (Ch.15,15.2)) covers all
background for free modules on polynomial rings and Gröbner bases for their submodules.
It is easy to prove:

1. For any Gröbner basis G of N (with respect to the order <) that exists finite, we have
in(N) =< in( f ), f ∈ G >.

2. If M is a monomial module, in<(M) = in(M).

Now we recall the definition of monomial mixed product ideals which were first
introduced in [11], since some classes of such ideals are generated by an s-sequence.
To be precise, in the polynomial ring R = K[X1, . . . , Xn; Y1, . . . , Ym] in two set of variables
on a field K, the squarefree monomial ideals Ik Jr + Is Jt, with k + r = s + t , are called
ideals of mixed products, where Ik (resp. Jr) is the squarefree ideal of K[X1, . . . , Xn]
(resp. K[Y1, . . . , Ym]) generated by all squarefree monomials of degree k(resp. degree
r). In the same way Is and Jt are defined. Setting I0 = J0 = R, in [14] we find the
following classification:

1. Ik + Jk, 1 ≤ k ≤ inf{n, m}
2. Ik Jr, 1 ≤ k ≤ n, 1 ≤ r ≤ m
3. Ik Jr + Ik+1 Jr−1, 1 ≤ k ≤ n, 2 ≤ r ≤ m
4. Jr + Is Jt, with r = s + t, 1 ≤ s ≤ n, 1 ≤ r ≤ m, t ≥ 1
5. Ik Jr + Is Jt, with k + r = s + t, 1 ≤ k ≤ n, 1 ≤ r ≤ m

Theorem 6 ([14] (Theorem 2.8, Theorem 2.11, Theorem 2.14)). Let the ideal Li be one of the
following mixed product ideals

1. L1 = In−1 Jm
2. L2 = In Jm−1
3. L3 = I1 Jm
4. L4 = In J1
5. L5 = In Jm−1 + In−1 Jm
6. L6 = In J1 + Jm, n + 1 = m.

Then Li is generated by an s-sequence.

We premise the following:
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Proposition 4. Let In−1 be the Veronese squarefree (n− 1)-th ideal of R = K[X1, . . . , Xn]. Let
N = Syz(In−1) and G be the Gröbner basis of N. Then

1. G = {Xne1 − Xn−1e2, Xn−1e2 − Xn−2e3, . . . , X2en−1 − X1en}
2. in<N = (Xn−1)e2 ⊕ (Xn−2)e3 ⊕ . . .⊕ (X1)en ∼=

R(n)⊕ R(n)⊕ . . .⊕ R(n)︸ ︷︷ ︸
(n−1)−times

as graded R-modules.

3. in<N is generated by a s-sequence.

Proof. Let < be an admissible term order introduced on the monomials of Rn = ⊕Rei,
with X1 < X2 < . . . < Xn < e1 < e2 < . . . < en, R = K[X1, . . . , Xn]. The ideal In−1 =
(X1 · · ·Xn−1, . . . , X2 · · ·Xn−1Xn) is generated by an s-sequence ([14] (Theorem 2.3)), then

in<(J) = (K2T2, . . . , KnTn),

where J is the relation ideal of SymR(In−1) and Ki = (Xn−i+1), i = 2, . . . , n, are the
annihilator ideals of In−1 (See [14] (Proposition 3.1)). Let N = Syz1(In−1) be. Then
N =< Xne1 − Xn−1e2, Xn−1e2 − Xn−2e3, . . . , X2en−1, X2en−1 − X1en > is generated by a
Gröbner basis, being J generated by a Gröbner basis, J = (XnT1 − Xn−1T2, Xn−1T2 −
Xn−2T3, . . . , X2Tn−1, X2Tn−1 − X1Tn), with X1 < X2 < . . . < Xn < T1 < T2 < . . . <
Tn ([13] (Theorem 2.13)) and

in<N =< (Xn−1)e2, (Xn−2)e3, . . . , (X1)en >

and it is trivially generated by an s-sequence or it follows by Theorem 2.

For each Li, i = 1, . . . , 6, as in Theorem 6, we assume that f1 < f2 < . . . < fsi in
the lexicografic order and X1 < X2 < . . . < Xn < Y1 < Y2 < . . . < Ym in the ring
R = K[X1, . . . Xn; Y1, . . . , Ym].

Theorem 7. Let Ni = Syz(Li) be the first syzygy module of Li defined in Theorem 6 and let G(Ni)
be the Gröbner basis of Ni. Then we have:

1. G(N1) = {Xne1 − Xn−1e2, Xn−1e2 − Xn−2e3, . . . , X2en−1 − X1en} and

in<(N1) = K2e2 ⊕ . . .⊕ Knen, Ki = (Xn−i+1), i = 2, . . . , n

2. G(N2) = {Yme1 −Ym−1e2, Ym−1e2 −Ym−2e3, . . . , Y2em−1 −Y1em} and

in<(N2) = K2e2 ⊕ . . .⊕ Kmem, Ki = (Ym−i+1), i = 2, . . . , m

3. G(N3) = {X1e2 − X2e1, X2e3 − X3e2, . . . , Xn−1en − Xnen−1} and

in<(N3) = K2e2 ⊕ . . .⊕ Knen, Ki = (X1, . . . , Xi−1), i = 2, . . . , n

4. G(N4) = {Y1e2 −Y2e1, Y2e3 −Y3e2, . . . , Ym−1em −Ymem−1}

in<(N4) = K2e2 ⊕ . . .⊕ Kmem, Ki = (Y1, . . . , Yi−1), i = 2, . . . , m

5. G(N5) = {Yme1 −Ym−1e2, . . . , Y2em−1 −Y1em, Y1em − Xnem+1,
Xnem+1 − Xn−1em+2, . . . , X2em+n−1 − X1em+n}

and in<(N5) = K2e2 ⊕ . . .⊕ Kmem ⊕ Km+1em+1 ⊕ . . .⊕ Km+nem+n

with Ki = (Ym−i+1), i = 2, . . . , m, and Ki = (Xn+m−i+1), i = m + 1, . . . , m + n
6. G(N6) = {Y1e2 − Y2e1, Y2e3 − Y3e2, . . . , Ym−1em − Ymem−1, (X1 · · ·Xn)em+1 − (Y2 · · ·

Ym)e1} and

in<(N6) = K2e2 ⊕ . . .⊕ Kmem ⊕ (X1 · · ·Xn)em+1, Ki = (Y1, . . . , Yi−1), i = 2, . . . , m.



Mathematics 2021, 9, 2659 10 of 12

Proof. For each i = 1, . . . , 6, the relation ideal Ji of SymR(Li) is generated by a Gröbner
basis G(J), then we apply Theorem 5 and we obtain the Gröbner basis G(Ni), by the
substitution of the vector ei to the variable Ti in the forms of the set G(Ji). For the structure
of in<(Ni), i = 1, . . . , 6, we have:

1. The ideal In−1 Jm has annihilator ideals Ki = (Xn−i+1), i = 2, . . . , n (See [14]
(Proposition 3.3)). Then

in<N1 =< (Xn−1)e2, (Xn−2)e3, . . . , (X1)en >= (Xn−1)e2⊕ (Xn−2)e3⊕ . . .⊕ (X1)en ∼=

∼= R(m + n)⊕ . . .⊕ R(m + n)︸ ︷︷ ︸
(n−1)−times

as graded R-modules.
2. In this case the the annihilator ideals of In Jm−1 are Ki = (Ym−i+1), i = 2, . . . , m.

The proof is analogue to the case of In−1 Jm.
3. The ideal I1 Jm = (X1, . . . , Xn)(Y1 · · ·Ym) is generated by an s-sequence and in<(J) =

(K2T2, . . . , KnTn), where Ki = (X1, . . . , Xi−1), i = 2, . . . , n, are the annihilator ideals
(See [13] (Proposition 3.7)). Let N3 = Syz1(I1 Jm) be. Then

in<N3 =< (X1)e2, (X1, X2)e3, . . . , (X1, . . . , Xn−1)en >∼=
n⊕

i=2

Ki(m + 2)

as graded R-modules.
4. The annihilator ideals of In J1 are Ki = (Y1, . . . , Yi−1), i = 2, . . . , m (See [13]

(Proposition 3.7)). The proof is analogue to the case of I1 Jm and in<N4
∼=

m⊕
i=2

Ki(n + 1)

as graded R-modules.
5. The annihilator ideals of In Jm−1 + In−1 Jm are Ki = (Ym−i+1) for i = 2, . . . , m and

Ki = (Xn+m−i+1) for i = m + 1, . . . , m + n by [13] (Proposition 3.11). The assertion
follows and we have

in<N5 =
m+n⊕
i=2

Kiei
∼= R(m + n− 1)⊕ . . .⊕ R(m + n)︸ ︷︷ ︸

(m+n)−times

as graded R-modules.
6. The annihilator ideals of In J1 + Jm are Ki = (Y1, . . . , Yi−1), i = 2, . . . , m (See [13]

(Proposition 3.7)) and Km+1 = (X1X2 · · ·Xn), generated by the monomial X1X2 · · ·Xn.
The assertion follows and we have

in<N6 ∼=
m⊕

i=2

Kiei ⊕ (X1 · · ·Xn)em+1
∼=

m⊕
i=2

Ki(n + 2)⊕ R(m + n)

as graded R-modules.

Proposition 5. The modules in<N1, in<N2, in<N5 are generated by an s-sequence.

Proof. The assertion follows by Theorem 2.

Theorem 8. The modules in<N3, in<N4 and in<N6 are not generated by an s-sequence.

Proof. Let in<N3 =< (X1)e2, (X1, X2)e3, . . . , (X1, . . . , Xn−1)en > be and with generating
sequence X1e2, X1e3, X2e3, X1e4, X2e4, X3e4, . . . , Xn−2en, Xn−1en. The corresponding sym-
metric algebra is
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SymR(in<N3) = R[T12, T13, T23, T14, T24, T34, . . . T(n−2)n, T(n−1)n]/J,

with T12 < T13 < T23 < T14 < T24 < T34 < . . . < T(n−2)n < T(n−1)n. Consider the relations
g1 = X1T23 − X2T13, g2 = X1T24 − X2T14 and the S-pair S(g1, g2) = −X2(T23T14 − T24T13).
Then we have:

in< J = (X1T23, X1T24, X2T23T14, . . .) if T23T14 > T24T13

or
in< J = (X1T23, X1T24, X2T24T13, . . .) if T23T14 < T24T13,

where < is a term order on all monomials in the variables Xi, Tjk.
Since all initial terms of J are of the form X1T2j, 3 ≤ j ≤ n, the Gröbner basis of J is

never linear in the variables Tjk.
The same argument can be applied to in<N4 and in<N6 .

Author Contributions: Conceptualization, G.F. and P.L.S.; methodology, G.F. and P.L.S.; validation,
G.F. and P.L.S.; formal analysis, G.F. and P.L.S.; investigation, G.F. and P.L.S.; resources, G.F. and
P.L.S.; data curation, G.F. and P.L.S.; writing—original draft preparation, G.F. and P.L.S.; writing—
review and editing, G.F. and P.L.S.; visualization, G.F. and P.L.S.; supervision, G.F. and P.L.S.; project
administration, G.F. and P.L.S.; funding acquisition, G.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by COGITO project (PON 2014-2020), project code ARS01-00836

Acknowledgments: The author wishes to thank the anonymous referees for their comments and
suggestions which helped to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eisenbud, D. Commutative Algebra with a View towards Algebraic Geometry; Springer: New York, NY, USA, 1995.
2. Crupi, M.; Barbiera, M.L. Algebraic Properties of Universal Squarefree Lexsegment Ideals. Algebra Colloq. 2016, 23, 293–302.

[CrossRef]
3. Crupi, M.; Restuccia, G. Monomial Modules. In Proceedings of the V International Conference of Stochastic Geometry,

Convex Bodies, Empirical Measures & Applications to Engineering, Medical and Earth Sciences, Mondello, Palermo, Italy,
6–11 September 2004; Rendiconti del Circolo Matematico di Palermo, Supplemento, Serie II; Volume 77, pp. 203–216.

4. Crupi, M.; Restuccia, G. Monomial Modules and graded betti numbers. Math. Notes 2009, 85, 690–702. [CrossRef]
5. Crupi, M.; Utano, R. Minimal resolutions of some monomial modules. Results Math. 2009, 55, 311–328. [CrossRef]
6. Ene, V.; Herzog, J. Groebner bases in Commutative algebra. In Graduate Studies in Mathematics; American Mathematical Society:

Providence, RI, USA, 2012; Volume 130.
7. Staglianò, P.L. Graded Modules on Commutative Noetherian Rings Generated by s-Sequences. Ph.D. Thesis, University of

Messina, Messina, Italy, 2010.
8. Herzog, J.; Restuccia, G.; Tang, Z. s-Sequences and symmetric algebras. Manuscripta Math. 2001, 104, 479–501. [CrossRef]
9. Restuccia, G.; Utano, R.; Tang, Z. On the Symmetric Algebra of the First Syzygy of a Graded Maximal Ideal. Commun. Algebra

2016, 44, 1110–1118. [CrossRef]
10. Restuccia, G.; Utano, R.; Tang, Z. On invariants of certain symmetric algebra. Ann. Mat. Pura Appl. 2018, 197, 1923–1935.

[CrossRef]
11. Restuccia, G.; Villareal, R.H. On the normality of monomial ideals of mixed products. Comun. Algebra 2001, 29, 3571–3580.

[CrossRef]
12. Villareal, R.H. Monomial algebras. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York,

NY, USA, 2001; Volume 238.
13. La Barbiera, M.; Lahyane, M.; Restuccia, G. The Jacobian Dual of Certain Mixed Product Ideals*. Algebra Colloq. 2020, 27, 263–280.

[CrossRef]
14. La Barbiera, M.; Restuccia, G. Mixed Product Ideals Generated by s−Sequences. Algebra Colloq. 2011, 18, 553–570. [CrossRef]
15. La Barbiera, M.; Restuccia, G. A note on the symmetric algebra of mixed products ideals generated by s-sequences. Boll. Mat.

Pura Appl. 2014, VIII, 53–60.

http://doi.org/10.1142/S1005386716000316
http://dx.doi.org/10.1134/S0001434609050095
http://dx.doi.org/10.1007/s00025-009-0414-9
http://dx.doi.org/10.1007/s002290170022
http://dx.doi.org/10.1080/00927872.2014.999929
http://dx.doi.org/10.1007/s10231-018-0756-6
http://dx.doi.org/10.1081/AGB-100105039
http://dx.doi.org/10.1142/S1005386720000218
http://dx.doi.org/10.1142/S1005386711000435


Mathematics 2021, 9, 2659 12 of 12

16. CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra. Available online: http://cocoa.dima.unige.it
(accessed on 9 September 2021).

17. Bruns, W.; Herzog, H.J. Cohen-Macaulay rings. In Cambridge Studies in Advanced Mathematics; Cambridge University Press:
Cambridge, UK, 1998; Volume 39.

http://cocoa.dima.unige.it

	Introduction
	s-Sequences and Monomial Modules
	Groebner Bases of Syzygy Modules and s-Sequences
	References

