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Abstract: In this paper we study a monomial module M generated by an s-sequence and the main
algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy
module of a finitely generated module M, over any commutative Noetherian ring with unit, has a
specific initial module with respect to an admissible order, provided M is generated by an s-sequence.
Significant examples complement the results.
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1. Introduction

In this paper we consider finitely generated modules, over a Noetherian commutative
ring with identity R, generated by an s-sequence, whose rank is greater or equal to one,
that is the modules are not necessarily ideals.

In this direction, the modules that imitate the ideals are the direct sum modules
@I;e;, submodules of a free R-module with basis {¢;},i = 1,...,n, and I; ideals of R.
Since the main idea in the use of Grobner bases is to reduce all problems to questions
of monomial ideals, we study the monomial submodules ©I;e;, where all I; are mono-
mial ideals. Monomial modules were defined in [1] and were studied by many authors
(see [2-7]). The aim of this paper is to investigate the symmetric algebra of a monomial
module M = @®Ie;, a submodule of R”, R = K[x1, ..., x|, Kafield, and I, ..., [, mono-
mial ideals of R, via the theory of s-sequences [8-10]. the In Section 2, we review basic
concepts of the theory of s-sequences and results about the main algebraic and homological
invariants of the symmetric algebra of a finitely generated graded R-module M, generated
by an s-sequence, provided R is a standard graded K-algebra and the generators of M
are homogeneous sequence, or R is a polynomial ring in the field K. Then we introduce
monomial modules and we recall several results and examples. After introducing a term
order on the free module M = Ie;, I; C K|xq,...,Xxn], which is induced by the order
X1 <X <...<xp<e <...< ey weformulate sufficient conditions to be a monomial
module M generated by an s-sequence. As an application, we consider the special class
of squarefree monomial S-modules M = @I()e;, where each 1) is the (; — 1)-th square-
free Veronese ideal of the polynomial ring s = K[x%l), o, xg)], S = K[g(l),g(z), .. .,g(”)],
xi = {xgl), xg), ees, xg) },1 <i < n. InSection 3, inspired by [8], we introduce an admissible
term order on the free module R", with basis {¢;},i =1,...,n,such thate; < e, < ... < ey,
R a Noetherian ring with unit. We prove a remarkable result for the feature of the initial
module, with respect to <, of the first syzygy module of a finitely generated R-module
M generated by an s-sequence. Finally, we give an application to the first syzygy mod-
ule of the class of mixed product ideals in two sets of variables [11,12], generated by an
s-sequence [13-15].
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Although the theory of s-sequences is defined in any field K, char(K) = p > 0,pa
prime natural number, we fix the field K = Q if we use software CoCoA ([16]) to compute
the Grobner basis of the relation ideal of the symmetric algebra of a finitely generated
K[x1,...,xm]-module and the related algebraic invariants.

2. s-Sequences and Monomial Modules

The notion of s-sequences was given first in [8]. Let R be a Noetherian ring and let
M be a finitely generated R-module with generators fi, fa,- -+, f.. We denote by (a;;),
i=1,...,t,j=1,...,n, the presentation matrix of M and by Symg(M) = &;>oSym;(M)
the symmetric algebra of M, Sym;(M) the i-th symmetric power of Sympg(M). Note that
Symgr(M) = R[y1,...,yn]/], where ] = (g1,...,8t), and g; = Z}Ll ajyj, i =1,...,t. We
consider a graded ring S = R[y, ..., Y] by assigning to each variable y; the degree 1 and to
the elements of R the degree 0. Then | is a graded ideal of S and the natural epimorphism
S — Symg(M) is a homomorphism of graded R-algebras. Now, we introduce a monomial
order < on the monomials in y,...,y, which is induced by the order on the variables
y1 < y2 < ... < yu. We call such an order an admissible order. For any polynomial
f€Ry1, ..., ynl, f = Lyaay®, we putin(f) = a,y* where y* is the largest monomial in
fwitha, #0,and wesetin(]) = (in(f): f € J). Fori =1,...,n, weset M; = Z;»:l Rfj,
and let [; be the colon ideal M; 1 :< f; >. For convenience we put I = (0).

The colon ideals I; are called annihilator ideals of the sequence fi, ..., f;. It easy to
see that (i1, by, - .., Inyn) C in(J) and the two ideals coincide in degree 1.

Definition 1. The generators fi, ..., fu of M are called an s-sequence (with respect to an admis-
sible order <) ifin(]) = (Liy1, Lya, - - -, Inyn).
Ifinaddition Iy C Iy C --- C I, then fy,..., fu is called a strong s-sequence.

In the case M is generated by an s-sequence, the theory of s-sequences leads to
computations of invariants of Sympg (M) quite efficiently, in particular the Krull dimen-
sion dim(Sympg(M)), the multiplicity e(Symg(M)), the Castelnuovo Mumford regular-
ity reg(Symg(M)) and the depth(Symg(M)), with respect to the graded maximal ideal,
in terms of the invariants of quotients of R by the annihilators ideals of M (for more details
on the invariants, see [17]).

Proposition 1 ([8] (Proposition 2.4, Proposition 2.6)). Let M be a graded R-module, R a
standard graded algebra, generated by a homogeneous s-sequence f1, ..., fn, where f1, ..., fy have
the same degree, with annihilator graded ideals I, . .., I,. Then

d := dim(Symg(M)) = max {dim(R/(L;; +...+ L)) +r};
1< S e

e(Symgr(M)) = ) e(R/(Iiy+...+1;)).

0<r=mn,
1<ip<..<ir<mn,
dim(R/(Il1 +,..+Iir)):d—r

When fi, ..., fu is a strong s-sequence, then

d= Orgragxn{dlm(R/I,) +r};

e(Symgr(M)) = Y. e(R/L).

0<r<n,
dim(R/Iy) =d —r

IfR=K]x1,...,xm| and f1, fo, ..., fu is a strong s-sequence:
reg(Symg(M)) < max{reg(l;) :i=1,...,n};

depth(Symg(M)) > min{depth(R/I;)+i:i=0,1,...,n}.
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We recall fundamental results on monomial sequences.

Consider R = K|[x1,x3,...,%n], where K is a field, and let = (fy,..., fu) be, where
fi,---, fn are monomials. Set f;; = m, i # j. Then ] is generated by g;; := fijy; —
sz']/i/ 1 < i < j < n, and the annihilator ideals of the sequence fi, ..., f, are the ideals
I = (f1i, fair - - -, f(i-1)i)- As a consequence, a monomial sequence is an s-sequence if and
only if the set {g;;, 1 < i < j < n}, is a Grobner basis for | for any term order on the
monomials of R[y1, ..., y,] which extends an admissible term order on the monomials in
the y;. Let us now fix such a term order.

Proposition 2 ([8] (Proposition 1.7)). Let I = (f1,..., fu) C K[x1,x2,..., x| be a monomial
ideal. Suppose that for all i,j,k,1 € {1,...,n}, withi < j, k < 1,i # kand j # I, we have
ged(fij, fu) = 1. Then fy, ..., fu is an s-sequence.

Now let R = K]xq,xp,..., %] be and let F be the finite free R-module F = Re; @
... ® Re,, with basis ¢y, . .., e,. We refer to [1] (Ch.15, 15.2) for definitions and results on
monomial modules.

Definition 2. An element m € F is a monomial if m has the form ue;, for some i, where u is a
monomial of R. A submodule U C F is a monomial module if it is generated by monomials of F.

One can observe that if U be a submodule of the free R-module F = ®}_, Re;, then U
is a monomial module if and only if for each i there exists a monomial ideal I; such that
U= lhe ®Ley®...®D e, In particular, U is finitely generated.

Theorem 1. Let M = @I Iie; be a monomial R-module, M; = ILie;, I; = (mj, ..., my,), a
monomial ideal of R = K([x1, ..., xy] then

(1) Syzy (M;)=Syz1(I;),
(i)  Syz;(M)=Syzi(I1) ® Syz1(Lr) ® ... ® Syz1(In),
Proof. (i) Write M; = <mi1ei, ceey miriei) and let
0— Syzy(M;) = R'i—=M; —0 1)

be a presentation of M;. Consider the R-linear homomorphism R'i — M; such that
gj — mjje;, R = Rg1 @ ... ® Rgy,, and asyzygy of M;,a € R'i,a = (Ajy, ..., Ajy,). Then

T
> Aijmij =0,
j=1

and a is a syzygy of I;.
(ii) It follows by (i). O

Let M be a monomial R-module defined as in Theorem 1. We will prove a criterion
for a monomial module to be generated by an s-sequence. Set

H’li]'

_—, m;; € I, my, € 1p,
8“1(7’11']', miy) v

Mijik =

1S11]Snr 1S]Sru 1§k§rl

Theorem 2. Let M = @}, Lie; be a monomial module, I; = (mj,...,my,), i = 1,...,n.
Suppose ged(myjix, M) = 1, j < k, u < v, withi = tand j # u, k # vorwithi # t
and 1 < j,k < r;,1 < u,v < r. Then M is generated by the s-sequence myyey, ..., My eq,.. .,
My1€n, - - -, Myr, €p.



Mathematics 2021, 9, 2659

40f12

Proof. Foreachi=1,...,n, Syzi(M;) is generated by the binomials:
Mijix&ik — Mik,ij&ij

since i is fixed, 1 < j, k < r;, being gix, Sij the free basis of R"i. Thanks to the hypothesis,
we have gcd(m,-j,ik, Miyiw) =1,j <k u<wv,j#uk#vVi=1,...,n and we conclude,
by Proposition 2, that M; is generated by an s-sequence.

Now, suppose i < t. If Ty, and Ty, are the variables that correspond to gj and g,
then Ty # Ty. We have gcd (mi]-,ikTik, Mo Tro) = ged (ml-]-,ik, Miyty) = 1by hypothesis.
In conclusion, the S-pair S(bjjx, bruv) reduces to zero, where b;j = m;; i Ty — m ;i T;; and
btuo = My t0 Tro — My, 4y Try. Then the assertion follows. [

Example 1. Let M = Ije; @ Ley, T = (x?,y?,z) and I = (22, zy) be ideals of K[x,y, z]. We

_ ) _ 2 _ : _
have my112 = mi113 = X°,mip13 = Yyo,mppn = z. Since ged(miy1z,mM1213) =
ged(myi12, M1 0) = ged(myya3,mp1m) = 1, then M is generated by the s-sequence
2

xX-eq, y2€1, zeq, 226’2, zyey.

The next example considers a monomial module M not generated by an s-sequence,
even if each addend is generated by an s-sequence.

Example 2. Let M = (x,y)e1 @ (x,y)ex be, | = I, = (x,y) ideals of R = K|[x,y]. Write
Symg(M) = R[Ty, Ty, T3, Ta] /], where | = (yTy — xTp,yT3 — xTy) We compute the S-pair
S(yTl —xTh,yT;3 —xTy) = —y(T1T4 —DT), with Ty > Tz > T, > Tj. If Ty > TT5,
inc] = (xTp, xTy, yT1 Ty) and if 1Ty < ToTs, in<] = (xTp, xTy, yTpT3). In any case, ] does
not have a Grobner basis which is linear in the variables T;.

Now we quote a statement on computation of the annihilator ideals of M = @, L;e;,
that is to say the annihilator ideals of the generating sequence of M

mqq€1, M€, ..., mlr] ey, mpi€ep,..., mZ72€2, N (TR ,mnrnen.

Proposition 3. Let Kj1, Ky, . .., Kj;, be the annihilator ideals of M; = Iie;, Set J1, ..., Jr, Jri+1,
Jri42s - Jritrar Jeytrat1s -+ oo Jri 1o bty the annihilator ideals of the sequence. Then we have:

J1 =K1 =1(0),J2 =Kz, ..., Jr, = Ky, Jry+1 = K21 = (0), Jr 42 = K22, - . .,
]r1+r2 = K2r2/ . ~-1]r1+r2+...+rn_1+1 =Kpn = (O)r]r1+r2+...+rn,1+2 = Ky,
.- ~/]r1+r2+...+rn = Knrn-
Proof. An elementary computation gives:
(0) : (m11e1) = Ky1 = (0)
(myger) : (mzer) = Kip
(mirer, miger) : (mizer) = Kis

(mirer, myzey, ..., my, _e1) : (mye1) = Ky,

(myie1, mygeq, ..., myy,_e1,my e1) : (mojep) = Iiey @ (mprez) + (0) : (mp1ep) =
= (0) + K1 = (0)

<m11311m1231/~"/m1r1,161/m1r161/m2162> : <m22€2> = <1161/m21€2> : <m22€2> =
= Iiey : (mxez) + Ky = (0) + Koz = Kpo.
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The proof goes on by a routine computation. [

Example 3. Let M = ILe; @ e, be a monomial module on R = K]|x,y,z|, where
I = (x%,y%, xy), I = (2%,zy).Then M is generated by the s-sequence x*e1,y?ey, xyeq,z%ea, zyeo
withx <y <z < ey < ep. The s-sequence has the following annihilator ideals:

J1=1(0) : (x*e1) = K31 = (0)

Ja = (¥Pe1) : (yPer) = Kip = (x?)

Js = (x*e1,ye1) : (xyer) = Ky = (x,y)

Ja= <x2€1,yzelrxyel> <Z 32> Ky = (0)

Js = (x%e1, y%er, xyer, 2%e2) : (zyez) = (0) + Koo = (2)

By Proposition 1, we have dim(Symg(M)) = 5. The maximum of the dimensions
is obtained by dim(R/(J1 + J2 + J3 + Ja + J5)) +5 = dim(R/((x?) + (x,y) + (2)) +5 =5.
For the multiplicity, we have e(Symg(M)) = e(R/(J1i+]Js))+e(R/(J1+ 2+ 3+ ]4
+J5)) =1, since e(R/(J1+]Js)) =e(K[x,y,z]) =1 and e(R/(1++]3+]a+]5)) =
e(K) =0. Concerning the depth and the Castelnuovo regularity, since it results
SymR(M) = R[Tl, Tz, T3, T4, T5] /] = R[Tl, Tz, Tg, T4, T5] /(XTZ — yTg,yTl — ng,yT4 — ZT5),
we compute depth(Symg(M)) = 5 and reg(Symg(M)) = 3 using software CoCoA ([16]).

We conclude the section yielding a class of monomial modules that would be of large
interest in combinatorics, considering that they involve monomial squarefree ideals. Let
S = K[g(l),g(z), ... ,g(”)] be a polynomial ring in 7 sets of variables xi = {xgl), xg), ., xE,l) 1,
1 < i < n. Let I; be the monomial ideal of S generated by all squarefree monomials of
degree s (the s-th squarefree Veronese ideal of S). Consider the squarefree monomial ideal
It(’_lzl,i =1,...,n,0f S = K[g(i)] generated by all squarefree monomials of degree f; — 1
(the (t; — 1)-th squarefree Veronese ideal ) as a monomial ideal of S.

1 eion S =KxW,x? . x(M]is generated

Theorem 3. The monomial module M = @l 11,

by an s-sequence.

Proof. It is known that for each 7, I @ ’, is generated by an s-sequence ([14] (Theorem 2.3)),
being generated by t; squarefree monomlals in t; — 1 variables in the polynomial ring in

t; variables and that condition 1) of [14] (Theorem 1.3.2.) is satisfied. The ideals I @ ~,and
I

I)2,, forany i # j,i,j = 1,...,n, are generated in 2 disjoint sets of variables, then the
condition of Theorem 2 is easily verified. [J

The invariants of Symg(M) depend on the invariants of each addend of M.

Theorem 4. Let M = @ I t( ) 16i be and let Symg (M) be its symmetric algebra. Then:
(1) dimg(Syms(M)) = iy t; +n = Y dimg (Symgw (M;))

(2) depth(Syms(M)) = L1y by + 1 = Ty depihy (Symay (M)
(3) e(Syms(M)) = XEY "1 (EE ) 42
(4)  reg(Syms(M)) = Ty t; —n

Proof. We consider an admissible term order on the monomials of S [Tl(l), e, Tt(nn)} such
that x} < TV <1V < < T(”)

( ) The annihilators ideals of the module M; = I (0 _,¢; are the annihilators ideals ]

(i)

the sequence generating It~—1' in the lexicographic order, foreachi=1,...,n,j=1,...,4
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By [14] (Proposition 3.1), we have ]1(i) = (0), ]21) (xt “1)s ]3 (xg)d)/“-r]t(j) = (xgi)).
Then, if ] is the relation ideal of Symgs(M), we have:

inc()) = (0,70 (0,70,
X T o)

and it is generated by a regular sequence. We obtain

n n n n
dimg(Syms(M)) = Y ti+ ) i — (2@- —n> =Y ti+n
‘ ' i=1 i=1
(2) Since depth(Syms(M)) < dimg(Symg(M)) = Y/ t; + n and depth(Symg(M)) >
depth(S[Tl(l), e, Tt(ll), e, Tl(”), s, Tt(,,”)] /in<(])) = LI, ti + n, the equality follows.
(3) In the following, we often use methods and tools of [14] (Theorem 3.6). For each i,
1<i<n,with () = K[g(l)}, we have

e(Syms<f>(It(iillei)) - ¥ e<5(i)/(]i(1i)"'"]i(ri)))
1<iy <. <ir <t;
with dlm(S( VP ) = d =1 d = dim(Symg (117 1) = ti +1and 1 < 7 <1,
i)

being | () S, ](, the annihilators ideals of I (1)7 . It results, by the structure of the anni-
1 tl t;—1

hilators ideals, H) = (J\",...,]%) = (xff),... #)). PutH = (HV,H®, ..., H") =
(x; (1) . l(l),x(z),. 2P, ( )) Then e(S/H) = 1since S/H is a polinomial

1 4 1 4
rmg on a fleld k. Let '

t;,

M:

d' =dim(s/(J}",....1")) Zt +n-rl<i<nl<r<
i=1

Il
—_

then e(Symg(M)) is given by the sum of the following addends:

e(5/(0)) =
forr=1,d =Y ti+n—1

e(s/1") =1+...+1
= 21‘,’77’!

forr=2,d =Y ti+n—-2

(k) r(Dyy _
) e(S/ () ) =14...+1

2<ky <t,2<1 <ty (Di*”)
2

forr=3,d=Y"ti+n—-31<kl<n

K1) m)yy _

e(s/g", 10, 1Y) =14 .. 41

2<ky <t,2<ly <t;,2<my <ty ' 1 1 TZ?IT
3

forr=4,d =Yt;+n—-41<klm<n
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y e(S/ U il IS ) =1

2<uy < <up <ty ,2<51 < <5, <ty ( St )
Yti—n-1

forr=%t—-1,d =n+1.
€<5/(I§1),--',]t(ll),]z@),m, t(zz), én),-'-/]t(nz)» =1

forr=Y" ,t;, d =n.Thus,

o(syms(M) = § (Z fi - ”) +2

=1 J

(4) reg(Syms(M)) = reg(S[TW),..., T™M]/]) < reg(S[TW,..., T™M]/in<(])), TV =
{Tl(l) .. Tt(il)}, for 1 < i < n. The ideal

. 1) (1 (1) (2) (2 2) (1
ine(l) = (0,10, A7 4@ 7@ @ g o)
is generated by a regular sequence of length ) t; — n of monomials of degree 2. The ring
ST, ..., TM]/in-(]) has a resolution of length Y., ti —n, equal to the number of
generators of in.(J), given by the Koszul complex of in(J). Then reg(Symg(M)) <
i |t — n. Since | is Cohen-Macaulay and

n n n
dim(Syms(M)) = Y t; +n,dim S[TV,..., TM] /1 =Y t;+ Y t; — ht(]),
i=1 i=1 i=1

then ht(J) = grad(J) =2y 1 t; — (i, ti+n) = Y 1 t; — n. Since | is a graded ideal [17]
(Proposition 1.5.12), we can choose the regular sequence in | inside the binomials of degree
two generating J. So the Koszul complex on the regular sequence gives a 2-linear resolution
of J. It follows

reg(S[I(l),...,I(")]/]) > 2<iti—n> - (iti—n> = iti —n.
i=1 i=1

i=1
The equality follows. [

3. Groebner Bases of Syzygy Modules and s-Sequences

Let R be a Noetherian commutative ring with unit. Let N be a finitely generated
R-module submodule of a free R-module R" = Re; @ ... @& Rey, N = Rgy + ... + Rgm,
gi =aner +...ajuen, i =1,...,m. Consider an order on the standard vectors ey, ..., e, of
R" such thate, > ... > e;. We may view N as a graded module by assigning to each vector
e; the degree 1 and to the elements of R the degree 0. For any vector h € Rej + ... Rey,
h =Y. ae;, we putin(h) = aje;, where ¢; is the largest vector in 1 with a; # 0. Such an
order will be called admissible. Set in(N) =< in(h),h € N >. We say that g1,...,gm isa
initial basis for N if in(N) =< Kyey, ..., Kye, >= ®K;e;, where K]- are ideals of R.

Take N = Syz,(M) the first syzygy module of a finitely generated R-module M.
We have:

Theorem 5. Let M be a finitely R-module generated by an s-sequence fi,..., fn and let
N = Syz,(M). Then in(N) =< Ley,..., Iney >, where Iy, ..., 1, are the annihilator ideals of
the sequence f1, ..., fu.

Proof. Let us introduce an admissible order in R" = @ ;Re;, withe; < ex < ... < ey.
Then in<(N) =< in<(f),f € N >=< Kyey,...,Kyey >, with K; ideals of R. Passing to
the symmetric algebras Sympg (M), the relation ideal | is generated linearly in the variables
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T,j=1...n corresponding to the vectors e; < ep < ... < e,, with the order Ty <
T <...<Tpandinc(J) = (LhTy,...,I,Ty). Let G(J) be the finite set of linear forms in
T1, Ty, ..., Ta, which generate | and such that in<(J) = (in<f, f € G(J)) and let G(]) =
G(N) be the set of generators f of N = Syz,(M) corresponding to f under the substitution
T; — ej,i = 1,...,n. Then we have in-(N) =< in-(f),f € G(N) >. We deduce that
Kj = I]- forj =1,...,n. Hence the assertion follows. [

Example 4. Let [ = (X2,Y?, XY) be an ideal of R = K[X,Y]. The relation ideal | of Symg(I)
is | = (XT3 — YT1,YTs — XTp). The Grobner basis of [ is G(J) = {XTz — YTy, YT3 —
XTo, X2Ty — Y?Ty } which is linear in the variables Ty, To, T3 and I is generated by the s-sequence
X2,Y?,XY. Consider Syz,(I) =< Xes — Yey, Yez — Xe; >. Then G(]) = G(N) = {Xe3 —
Yeq, Yes — Xep, X?ep — Y?e }andin. | = ((X*) T, (X, Y)T3),in< (N) =< (X?)ea, (X, Y)e3 >.

Notice that X2,XY,Y? is not an s-sequence for 1. In fact, in such case, the relation ideal
is ] = (XTp — YT, YTr — XT3) and G(]) = {XT, — YTy, YT, — XT3, X*T5 — Y?Ty, T? —
Ti1 T3} not linear in the variables Ty, Ty, Ts, in both cases T?> > T T3 or T;Tz > T2. We have
G(N) = {Xey — Yey, Ye, — Xe, X%e3 — Y?e1 }, but the generators of G(N) are not obtained by
the substitution of T; with e;, in the elements of the Grobner basis of |.

Now, let R = K[Xj, ..., X¢] be a polynomial ring over the field K, and let < be a term
order on the monomials of R” = K[X,..., X¢ler ® ... B K[Xy, ..., Xi]ep withe; < ... < ey
and X; < ¢;, for alli and j. The excellent book of D. Eisenbud ([1] (Ch.15,15.2)) covers all
background for free modules on polynomial rings and Grébner bases for their submodules.
It is easy to prove:

1.  For any Grobner basis G of N (with respect to the order <) that exists finite, we have
in(N) =<in(f),f € G >.
2. If M is a monomial module, in (M) = in(M).

Now we recall the definition of monomial mixed product ideals which were first
introduced in [11], since some classes of such ideals are generated by an s-sequence.
To be precise, in the polynomial ring R = K[X3, ..., Xy; Y1, ..., Y] in two set of variables
on a field K, the squarefree monomial ideals IiJ, + I;J;, with k +r = s+t , are called
ideals of mixed products, where I; (resp. J;) is the squarefree ideal of K[Xj, ..., X,]
(resp. K[Y1,...,Yw]) generated by all squarefree monomials of degree k(resp. degree
r). In the same way Is and J; are defined. Setting Iy = Jo = R, in [14] we find the
following classification:

L+ Ji, 1<k < inf{n,m}

L], 1<k<nl1<r<m
Llr+h1)i-1,1<k<n2<r<m

Jy+ L], withr =s+t,1<s<n1<r<mt>1
Ly + L]y, withk+r=s+t1<k<n1<r<m

Ol L=

Theorem 6 ([14] (Theorem 2.8, Theorem 2.11, Theorem 2.14)). Let the ideal L; be one of the
following mixed product ideals

1. Li=Iy1lm

2. Ly=IyJm

3. Ls=Im

4. Ly=1I.]1

5. Ls=LijJn1+Li-1]m

6. Le=LiJi+Jun+1=m.

Then L; is generated by an s-sequence.

We premise the following:
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Proposition 4. Let I,,_1 be the Veronese squarefree (n — 1)-th ideal of R = K[X1, ..., Xy]. Let
N = Syz(I,,_1) and G be the Grobner basis of N. Then
1. G={Xney — Xp-162, X162 — Xp—2€3,..., Xoey—1 — X1}
2. incN= (X, 1)e2® (Xp_2)e3D... 0 (Xq)ey =
R(n)® R(n) & ...® R(n) as graded R-modules.

(n—1)—times
3. in<N is generated by a s-sequence.

Proof. Let < be an admissible term order introduced on the monomials of R” = @Re;,
withX] < Xp < ... < Xy <ep <ep<...<ey R=K[Xq,...,Xy]. Theideal I, 1 =
(X1 Xp-1,..., X2+ X—1Xn) is generated by an s-sequence ([14] (Theorem 2.3)), then

in<(]) = (Ksz,. . .,KnTn),

where ] is the relation ideal of Symg(I,—1) and K; = (X,_;41),i = 2,...,n, are the
annihilator ideals of I,,_; (See [14] (Proposition 3.1)). Let N = Syz,(I,—1) be. Then
N =< Xye1 — Xy_162, Xpy—162 — Xp—2€3, ..., Xoey_1, X2e,—1 — X164 > is generated by a
Grobner basis, being | generated by a Grobner basis, | = (X, T1 — X;,—1T2, Xy-1T2 —
Xy 2T3,...,X0Ty_1,XoT,—1 — XlTn), withX] < Xo < ...< Xy <Th <Th <...<
Ty ([13] (Theorem 2.13)) and

ineN =< (Xy_1)ea, (Xn-2)es, ..., (Xy)en >

and it is trivially generated by an s-sequence or it follows by Theorem 2. O

Foreach L;, i = 1,...,6, as in Theorem 6, we assume that f; < f, < ... < f; in
the lexicografic order and X7 < X < ... < X, < Y] < Y, < ... < Yy in the ring
R=K[Xy,...Xu;Y1,.-, Yn).

Theorem 7. Let N; = Syz(L;) be the first syzygy module of L; defined in Theorem 6 and let G(Nj)
be the Grobner basis of N;. Then we have:

1. G(Ny) ={Xney — X;160, X160 — Xyy—2e3,..., Xoe, 1 — X1e, } and
inc(Ny) =Koep @ ... 0 Kyey, Kj = (Xpy_i41),i=2,...,0n
2. G(Ny) ={Ymer — Y162, Yiu_162 — Yy—2e3,..., Yoey, 1 — Y1 } and
inc(Np) =Koeo® ... Kpew, Ki = (YVy_iz1),i=2,...,m
3. G(N3) ={Xjep — Xpeq, Xpe3 — X3e,..., Xy_16n — Xpe,_1} and
inc(N3) =Kper ®...®Kpey, Ki=(Xq,...,X;1),i=2,...,1n
4. G(Ny) = {Y1eo — Yae1, Yoes — Ysen, ..., Yy 16m — Ymem_1}
inc(Ny) =Koer @ ... Kyen, Ki=(Y1,...,Y;1),i=2,...,m

5. G(N5) = {Ymel - melez, N Yzem,1 — Ylem, Ylem — Xneerl,
Xnems1 — Xn—1€m+2,- - -, Xolmyn—1 — Xi€min}

and in<(N5) = Kpep @ ... B Kypeyy @ Kiypr181 @ -+ - D Kytnmn
with Ky = (Yy—iv1),i=2,...,mand Ky = (Xy4m—iy1), i=m+1,...,m+n
6. G(Né) = {Y162 — Yzel,Yzeg — Ygez, .. .,Ym_lem — Ymem_l, (X1 s Xn)em+1 — (Yz cee
Y )e1} and

il’l<(N6) =Kyer ... 05 Kpey @ (Xl . -Xn)emH, K; = (Ylw--/Yi—l)/i =2,...,m.
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Proof. For eachi = 1,...,6, the relation ideal J; of Sympg(L;) is generated by a Grébner

basis G(]), then we apply Theorem 5 and we obtain the Grobner basis G(N;), by the

substitution of the vector e; to the variable T; in the forms of the set G(J;). For the structure

ofinc(N;),i=1,...,6, we have:

1.  The ideal I, 1], has annihilator ideals K; = (X, ;11), i = 2,...,n (See [14]
(Proposition 3.3)). Then

ineNp =< (Xn,1)€2, (Xn,2)€3, ey (Xl)en >= (Xn,1)€2 S5) (Xn,2)€3 b...0 (Xl)en =

~R(m+n)&...®R(m+n)

(n—1)—times

as graded R-modules.

2. In this case the the annihilator ideals of I,,],,_1 are K; = (Y,;;_;41),i = 2,...,m
The proof is analogue to the case of I;,_1 .

3. Theideal 1 ],y = (X1,..., Xn)(Y1 - - - Vi) is generated by an s-sequence and in (J) =
(KyTy, ..., Ky T,), where K; = (Xq,...,X;_1),i = 2,...,n, are the annihilator ideals
(See [13] (Proposition 3.7)). Let N3 = Syz;(I1]s) be. Then

n
iTl<N3 =< (Xl)EZI (Xll XZ)e?)/ sy (Xl/ e /anl)ei’l >g @ Kl(m + 2)
i=2

as graded R-modules.
4.  The annihilator ideals of I,J; are K; = (Y1,...,Y;1),i = 2,...,m (See [13]
m

(Proposition 3.7)). The proof is analogue to the case of I; J;; and in« Ny = @ Ki(n+1)
i=2
as graded R-modules.
5. The annihilator ideals of I,];—1 + I,—1Jm are K; = (Y;;_iy1) fori = 2,...,m and
Ki = (Xy4m—iy1) fori =m+1,...,m+ n by [13] (Proposition 3.11). The assertion
follows and we have

m+n
in<Ns = P Kie; 2 R(m+n—1)®...® R(m+n)
i=2

(m+n)—times

as graded R-modules.

6. The annihilator ideals of I,J1 + J;, are K; = (Y1,...,Y;1),i = 2,...,m (See [13]
(Proposition 3.7)) and Ky, 11 = (X1 X3 - - - Xy), generated by the monomial X1 X; - - - X,.
The assertion follows and we have

m
ineNg =2 @Kel - Xu)emi1 = P Ki(n+2) ® R(m + n)
i=2

as graded R-modules.
O

Proposition 5. The modules in N1, in« Ny, in. N5 are generated by an s-sequence.

Proof. The assertion follows by Theorem 2. [

Theorem 8. The modules in. N3, in< Ny and in Ng are not generated by an s-sequence.

Proof. Letin-N3 =< (X1)ep, (X1, X2)es, ..., (Xq,..., Xy—1)en > be and with generating

sequence Xjep, Xye3, Xoes, Xieq, Xpeq, X3y, ..., Xp—2en, Xy—164. The corresponding sym-
metric algebra is
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Symg(in<N3) = R[T12, T1z, Toz, Tra, Toa, Taa, - - - Tiu—2yns Tn—1ynl /T,

WithT) o < Ti3 < T3 < Tia < Toyg < Ty < ... < T(nfz)n < T(nfl)n' Consider the relations
81 = X1To3 — XoThs, §2 = X1Tos — XoThy and the S-pair 5(g1,82) = —Xo(T3Tig — ToaTh3).
Then we have:

ine] = (X1Taz, X1To4, XoTo3T1g, . ..) if TozTig > TosTis

or
inc] = (X1To3, X1To4, XoTos T3, . ..) if TozTiy < ToyThs,

where < is a term order on all monomials in the variables X;, Tj.

Since all initial terms of | are of the form X; sz, 3 < j < n, the Grobner basis of | is
never linear in the variables Tj.

The same argument can be applied to in< Ny and in<Ng . O

Author Contributions: Conceptualization, G.F. and PL.S.; methodology, G.F. and P.L.S,; validation,
G.F. and P.L.S,; formal analysis, G.F. and P.L.S,; investigation, G.F. and P.L.S.; resources, G.F. and
PL.S.; data curation, G.F. and P.L.S.; writing—original draft preparation, G.F. and P.L.S.; writing—
review and editing, G.F. and PL.S; visualization, G.F. and P.L.S.; supervision, G.F. and PL.S.; project
administration, G.F. and P.L.S.; funding acquisition, G.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by COGITO project (PON 2014-2020), project code ARS01-00836

Acknowledgments: The author wishes to thank the anonymous referees for their comments and
suggestions which helped to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eisenbud, D. Commutative Algebra with a View towards Algebraic Geometry; Springer: New York, NY, USA, 1995.

2. Crupi, M,; Barbiera, M.L. Algebraic Properties of Universal Squarefree Lexsegment Ideals. Algebra Collog. 2016, 23, 293-302.
[CrossRef]

3. Crupi, M.; Restuccia, G. Monomial Modules. In Proceedings of the V International Conference of Stochastic Geometry,
Convex Bodies, Empirical Measures & Applications to Engineering, Medical and Earth Sciences, Mondello, Palermo, Italy,
611 September 2004; Rendiconti del Circolo Matematico di Palermo, Supplemento, Serie II; Volume 77, pp. 203-216.

4. Crupi, M,; Restuccia, G. Monomial Modules and graded betti numbers. Math. Notes 2009, 85, 690-702. [CrossRef]

5. Crupi, M.; Utano, R. Minimal resolutions of some monomial modules. Results Math. 2009, 55, 311-328. [CrossRef]

6. Ene, V; Herzog, ]. Groebner bases in Commutative algebra. In Graduate Studies in Mathematics; American Mathematical Society:
Providence, RI, USA, 2012; Volume 130.

7.  Stagliano, P.L. Graded Modules on Commutative Noetherian Rings Generated by s-Sequences. Ph.D. Thesis, University of
Messina, Messina, Italy, 2010.

8. Herzog, ].; Restuccia, G.; Tang, Z. s-Sequences and symmetric algebras. Manuscripta Math. 2001, 104, 479-501. [CrossRef]

9.  Restuccia, G.; Utano, R.; Tang, Z. On the Symmetric Algebra of the First Syzygy of a Graded Maximal Ideal. Commun. Algebra
2016, 44, 1110-1118. [CrossRef]

10. Restuccia, G.; Utano, R.; Tang, Z. On invariants of certain symmetric algebra. Ann. Mat. Pura Appl. 2018, 197, 1923-1935.
[CrossRef]

11. Restuccia, G.; Villareal, R.H. On the normality of monomial ideals of mixed products. Comun. Algebra 2001, 29, 3571-3580.
[CrossRef]

12.  Villareal, R.H. Monomial algebras. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York,
NY, USA, 2001; Volume 238.

13. La Barbiera, M.; Lahyane, M.; Restuccia, G. The Jacobian Dual of Certain Mixed Product Ideals*. Algebra Collog. 2020, 27, 263-280.
[CrossRef]

14. La Barbiera, M.; Restuccia, G. Mixed Product Ideals Generated by s—Sequences. Algebra Collog. 2011, 18, 553-570. [CrossRef]

15. La Barbiera, M.; Restuccia, G. A note on the symmetric algebra of mixed products ideals generated by s-sequences. Boll. Mat.

Pura Appl. 2014, VIII, 53-60.


http://doi.org/10.1142/S1005386716000316
http://dx.doi.org/10.1134/S0001434609050095
http://dx.doi.org/10.1007/s00025-009-0414-9
http://dx.doi.org/10.1007/s002290170022
http://dx.doi.org/10.1080/00927872.2014.999929
http://dx.doi.org/10.1007/s10231-018-0756-6
http://dx.doi.org/10.1081/AGB-100105039
http://dx.doi.org/10.1142/S1005386720000218
http://dx.doi.org/10.1142/S1005386711000435

Mathematics 2021, 9, 2659 12 of 12

16. CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra. Available online: http://cocoa.dima.unige.it
(accessed on 9 September 2021).

Bruns, W.; Herzog, H.]. Cohen-Macaulay rings. In Cambridge Studies in Advanced Mathematics; Cambridge University Press:
Cambridge, UK, 1998; Volume 39.

17.


http://cocoa.dima.unige.it

	Introduction
	s-Sequences and Monomial Modules
	Groebner Bases of Syzygy Modules and s-Sequences
	References

