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Abstract: When conducting an analysis of nature’s time series, such as meteorological ones, an
important matter is a long-range dependence to quantify the global behavior of the series and
connect it with other physical characteristics of the region of study. In this paper, we applied
the Higuchi fractal dimension and the Hurst exponent (rescaled range) to quantify the relative
trend underlying the time series of historical data from 17 of the 34 weather stations located in the
Río Bravo-San Juan Basin, Mexico; these data were provided by the National Water Commission
(CONAGUA) in Mexico. In this way, this work aims to perform a comparative study about the level
of persistency obtained by using the Higuchi fractal dimension and Hurst exponent for each station
of the basin. The comparison is supported by a climate clustering of the stations, according to the
Köppen classification. Results showed a better fitting between the climate of each station and its
Higuchi fractal dimension obtained than when using the Hurst exponent. In fact, we found that the
more the aridity of the zone the more the persistency of rainfall, according to Higuchi’s values. In
turn, we found more relation between the Hurst exponent and the accumulated amount of rainfall.
These are relations between the climate and the long-term persistency of rainfall in the basin that
could help to better understand and complete the climatological models of the study region. Trends
between the fractal exponents used and the accumulated annual rainfall were also analyzed.

Keywords: rainfall data; time series; long-range dependence; Higuchi fractal dimension; Hurst
exponent; clustering; climate; Köppen climate classification; Monterrey Metropolitan Area (MMA)

1. Introduction

Climate changes dynamically over time, and factors like the increase of population,
cattle and agriculture, industry, among others contribute to these changes [1]. Climate
changes could increase or decrease precipitations, which provoke floods or droughts [2],
changes in plant and bacterial diversity [3], and soil sealing [4]. Moreover, global warming
has been presented as a concerning factor, in recent years, that have increased heavy
precipitations [5].

Rainfall characterization is considered as an useful information to make decisions about
water resource availability, agricultural production, or prediction of precipitations [6,7]. Due
to the complex nature of rainfall phenomena, some studies suggest obtaining characteristics
using fractal algorithms, first because of their cyclic behavior over long-range time series [8],
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and second, because of the lack of regularity of occurrence of the phenomena [9,10]. Indeed,
since decades ago, some studies have used algorithms based on fractals to characterize
rainfalls, predict climatology and behavior of water processes [11–17], some of which have
been dealt with the Hurst exponent (H) or the Higuchi fractal dimension (HFD) [16,18]. In
addition, such methodologies have been used to quantify the persistency, anti-persistency
or randomness of the data from the different weather stations with monthly records, in
different periods [10,19].

The measure of the persistency of the series in the Hurst exponent consists of a dimen-
sionless scale between 0 and 1 so that the closer the value is to 1, the more persistency [20].
In detail, if H < 0.5, the time series presents anti-persistency; if H = 0.5, it presents a
behaviour similar to Gaussian noise; and H > 0.5, the time series presents persistency. In
turn, HFD calculates persistency by values going from 1 (anti-persistency in the series) to
2 (persistency) [21].

In this context, the most used method to calculate Hurst exponent is rescaled range
because of their simplicity to calculate it using statistical tools, [19,22], however, it has some
disadvantages against trends, Kantelhardt et al. [23]. Rescaled range is not the only method
to calculate Hurst exponent, wavelets [24], power spectrum [25] and Annys Lloyd [26] meth-
ods have been also reported. Rehman and Siddiqi [16] used a methodology based on Hurst
exponent and wavelets to calculate persistency of climate predictability indices, founding
that precipitation and temperature indices are independent. Chandrasekaran et al. [18]
used H for rainfall prediction, concluding that such index must be close to 1 for obtaining
an accurate forecast.

Moreover, Kalauzi et al. [27] calculated fractal dimension (FD) in rainfall time series
using HFD with Fast Fourier Transform (FFT) to determine tendency of rainfalls of two
regions. Ciobotaru et al. [28] related temperature-humidity index oscillations with HFD to
calculated the impact on tourism activity.

The Río Bravo-San Juan (RBSJ) Basin covers an area of 34,000 km2 within the Mexican
States of Coahuila, Nuevo León, and Tamaulipas. It is located in the northeastern region of
Mexico. RBSJ Basin belongs to the RH24 hydrological region, one of the largest watershed
areas. RH24 is characterized to be constantly hit by hurricanes and heavy rainfalls that
provoke dangerous landslides [29]. The main stem of RBSJ Basin is named Río San Juan,
but other smaller branches such as Río Pilón, Río Salinas, Río Pesquería, Río Santa Catarina,
and Río Ramos are important tributaries [30]. Figure 1 illustrates its three main types of
climates according to the National Commission for the Knowledge and Use of Biodiversity
(CONABIO) of Mexico [31]: hot semi-arid, hot desert and humid sub-tropical. In general
semi-arid to arid (i.e., desert) climates dominate in the RBSJ Basin. These climatic conditions
joined to the annual-cyclical patterns of rainfall [32], create an unstable water supply for the
region [33]. The humid sub-tropical climate covers the majority of Monterrey Metropolitan
Area (MMA), which is one of the third main metropolises in Mexico, and concentrates
90% of the population of Nuevo León. The rapid increasing water demand for industrial,
agricultural and domestic usage in the MMA has stressed the current water supply, while
severe droughts continue to exhaust the region’s known reserves. For these reasons and
also because of the constant pollution in the MMA [34], this region must be analyzed in
order to prevent possible events that could cause disasters for the population.

In this work, time series obtained from 17 of the 34 weather stations of RBSJ Basin
were analyzed. We investigated the underlying long-term dependency behavior patterns
of those series through the Higuchi fractal dimension (HFD) and the rescaled range version
of the Hurst exponent (Hrs). Then, we related our comparative analysis with the different
types of climate of the basin. Finally, a classification or clustering of the stations with
similar behaviors was carried out in order to discuss about the climatic characteristics of
the region, the amount of rainfall per year, and their relation with the rainfall persistency.
The structure of the paper is as follows: Section 2 describes the methodology, from the way
to obtain the time series to the building of the fractal exponents used; Section 3 shows our
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results, including the clustering of the stations; finally, we interpret and discuss our results
in Section 4, and show some concluding remarks in Section 5.

Bsh	(Hot	semi-arid)
BWh	(Hot	desert)
Cwa	(Humid	subtropical)
Cwb	(Subtropical	highland)

Köppen	climate	classification

Figure 1. CONABIO’s clustering of Río Bravo-San Juan Basin, Mexico, by using the Köppen climate
classification [35].

2. Methodology

In our case study, 17 of 34 weather stations of the RBSJ Basin were analyzed. They
are located in the northeast region of Mexico, covering an approximate area of 29,420 km2.
The selected stations were those having uninterrupted records within the period of years
1964–2016, this in order to have homogeneity in the quality of the data for the time series
of all the stations. The region of study, including the 17 georeferenced stations are shown
in Figure 1, tagged by their station number. For each weather station we have information
of the month-accumulated rainfall, which leads to 636 data points for each series. We used
monthly data because it is the available public information reported by CONAGUA.

2.1. Hurst Exponent (Hrs)

The version of the Hurst exponent we consider is the rescaled range, in which the
information of each station is represented as vectors (Xk)k∈1:N , where N is the number of
months considered for the analysis. Each vector (Xk) is divided into a set of d-subseries of
shorter time with the same quantity of data, such that all the n-th subseries, n = 1, 2, . . . , d,
have a length of m. Then, according to [36,37], the following steps are carried out for
each subseries:

1. Calculate the mean Mn and the standard deviation Sn of the subseries.
2. Determine the variation Vin of each term with respect to the mean:

Vin = Xin −Mn , for i = 1, . . . , m (1)

3. Obtain the accumulated sum of variation until the ith-term:

Yin =
i

∑
j=1

Vjn , for i = 1, . . . , m (2)

4. Calculate the range of each subseries:

Rn = max
j=1:m

Yjn − min
j=1:m

Yjn (3)
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5. Normalize the calculated ranges (this is why it is called rescaled range):

Rn/ Sn (4)

6. Once this is done for each subseries of length m, they are averaged:

〈R̂n/ Sn〉 =
1
d

d

∑
n=1

Rn

Sn
(5)

7. Finally, the relation of the statistic 〈R̂n/ Sn〉 is given by the following power law:〈
R̂/S

〉
m
≈ cmH (6)

where H refers to Hrs and its a dimensionless number, and c > 0 is a constant.

In this way, Hrs can be estimated by rewriting (7) in logarithmic terms:

log10

〈
R̂/S

〉
m
= log10(c) + H log10(m), (7)

so that Hrs is the slope of the straight line. In this work, we used a total of d = 53 partitions,
each of them with a length of m = 12 months.

2.2. Higuchi Fractal Dimension (HFD)

Higuchi fractal dimension (HFD) approximates the fractal dimension in a similar way
to Hrs, in the sense of dividing the total time series in windows, however, their procedure
are some different. For a time series X, with N data points [38],

Lm(k) =
N − 1
bN−m

k ck2

b N−m
k c

∑
i=1
|XN(m + ik)− XN(m + (i− 1)k)| (8)

expresses the fractal length of the subseries Xm
k , where k ∈ {1, . . . , kmax} indicates the k-th

time, m ∈ {1, . . . , k} is the interval time of that subseries, and kmax is the total number of
subseries used. In this work, we used kmax = 8, which is a significant number about an
intermediate value between the Köppen classification by semesters [35] and the annual
periodicity of the phenomenon in the region [37]. In addition, we carried out the calculation
of HFD with several kmax, obtaining that kmax = 8 gave the best relation between HFD
and climate in terms of better limits between clusters, see Table A1 in Appendix A.

Thus, the total fractal length L(k) is defined as the mean of all the Lm(k)’s, so that

L(k) =
1
k

k

∑
m=1

Lm(k) (9)

In this way, HFD is the slope F (dimensionless) that fits to the equation

log10(L(k)) = log10(b) + F log10

(
1
k

)
, (10)

where b > 0 is a constant.

3. Results

For illustration of the general behaviour, time series of three representatives rain-
fall stations (Allende, El Cuchillo and La Popa) are plotted in Figure 2, from 1964 to
2016. In this sense, Allende represents the humid subtropical climate (Cwa), whereas El
Cuchillo and La Popa represent the arid climates, namely, hot semi-arid (Bsh) and hot
desert (BWh), respectively.
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Figure 2. Time series of the stations Allende, El Cuchillo and La Popa.

Figure 3 shows the linear adjustments applied to Equation (7) for the selected stations.
The calculation of the Hurst exponents was made by means of the least squares method.
The value of the slope of the curve fitted is Hrs.
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Figure 3. Calculation of Hrs by fitting the slope H from Equation (7), obtaining the coefficient of determination R2 when
considering d = 53, m = 12, which leads to seven data points to fit.

In turn, Figure 4 shows the linear adjustments applied to Equation (10), in order to
perform the calculation of HFD for the selected stations, by means of the least squares
method. The value of the slope of the curve fitted is HFD.
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Figure 4. Calculation of HFD by fitting the slope F from Equation (10), obtaining the coefficient of determination R2 when
considering kmax = 8, i.e., eight data points to fit.

Table 1 contains the summary of the adjustments carried out for all the stations
analyzed. For each station, the table shows its number, name, coordinates (latitude and
longitude), the obtained values of Hrs and HFD, accumulated annual rainfall (A.A.R.) in
mm, and climate (with colors). Results are shown in an ascending order according to the
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obtained value of HFD. All the values of Hrs and HFD were calculated up to the second
decimal place as there is no significance from the third place [39].

Table 1. Characteristics and results for the 17 stations analyzed. Climate is shown by the corresponding color taken from
the CONABIO’s clustering that uses the Köppen climate classification, see Figure 1. Rows follow an ascending order with
respect to the value of HFD.

Station Name Latitude Longitude Hrs HFD A.A.R. Climate
19002 Agua Blanca 25.5442 −100.5231 0.62 1.78 614 Cwa
19018 El Pajonal 25.4897 −100.3889 0.50 1.79 557 Cwa
19069 La Boca 25.4294 −100.1289 0.48 1.81 1098 Cwa
19033 Laguna de Sánchez 25.3461 −100.2800 0.57 1.81 737 Cwa
19047 Mimbres 24.9739 −100.2586 0.54 1.82 676 Cwa
19009 Casillas 25.1964 −100.2142 0.48 1.82 590 Bsh
19039 Las Enramadas 25.5014 −99.5214 0.62 1.85 688 Bsh
19012 Ciénega de Flores 25.9522 −100.1722 0.70 1.86 647 Cwa
19003 Allende 25.2836 −100.0203 0.57 1.87 1091 Cwa
19048 Montemorelos 25.1819 −99.8322 0.50 1.87 904 Cwa
19052 Monterrey 25.7336 −100.3047 0.56 1.87 688 Cwa
19004 Apodaca 25.7936 −100.1972 0.48 1.88 566 Bsh
19016 El Cuchillo 25.7181 −99.2558 0.58 1.89 573 Bsh
19022 General Bravo 25.8014 −99.1756 0.62 1.89 593 Bsh
19056 San Juan 25.5433 −99.8403 0.53 1.89 731 Bsh
19036 La Popa 26.1639 −100.8278 0.71 1.90 246 BWh
19026 Icamole 25.9411 −100.6869 0.63 1.92 210 BWh

4. Discussion

Accumulated rainfall per month are shown in time series of Figure 2. The amount and
dispersion of rainfall are larger for Allende, which belongs to Cwa than for El Cuchillo and
La Popa, which belong to more arid and hotter climates, Bsh and BWh, respectively.

Table 1 shows the persistency level obtained by Hrs and HFD, and relates their order
with the climate clustering of the region provided by the Köppen classification. Hrs and
HFD were calculated by fitting the illustrations in Figures 3 and 4, following their respective
procedures of Section 2. As seen in Table 1, values of Hrs go from 0.48 to 0.71, i.e., about
0.23 units in range, whereas HFD goes from 1.78 to 1.92, having a range of 0.14 units.
Instead of this, HFD fits better to the clustering of climates than Hrs. With the exception
of Casillas and Las Enramadas, it is seen that HFD ∈ [1.78, 1.87] correspond to the Cwa,
while HFD ∈ [1.88, 1.89] correspond to Bsh, and HFD ∈ [1.90, 1.92] correspond to BWh.
Moreover, station Casillas is very close the border between Cwa and Bsh geographical
zones, see Figure 1. This could suggest a relation between aridity and long-term memory of
rainfall for this region study. In fact, there is a precedent that supports such assumption, in
which there was found more persistency in rainfall time series associated to more arid zones
of the Sahel region in Africa, although persistency was also found in subtropical areas [40];
nevertheless, the amount of rainfall is only considered for the internal classification of
arid climates (type B), according to Köppen [35] in which the A.A.R. and its distribution
throughout the year define the sub-climates.

Then, our results of A.A.R. in Table 1 relate to the climate in an inverse way than
HFD, so that, the more the amount of rainfall the more humidity. Similarly to HFD, the
border between BWh and Bsh is well identified by the amount of rainfall (about 300 mm
of separation), but three stations do not permit a compact clustering for separating Bsh
(572–731 mm) from Cwa (557–1098 mm), namely, Las Enramadas, and San Juan and El
Pajonal. The two latter stations are also located in a geographical border of climates, see
Table 1 and Figure 1. In this way, Las Enramadas is the only station, geographically far to
the borders, that does not fit to the relations HFD-climate and A.A.R.-climate.
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We associate the difference in fit of each model to the way in which they define
or calculate fractality. Namely, HFD fits better because each i-measure consists of the
difference between rainfall of two timely consecutive i-subseries, in Equation (8), which
agrees with the division by seasons in the arid classification of Köppen. In contrast to this,
Hrs measures the range of each n-subseries to calculate fractality, in Equation (3).

Regarding our obtained values of Hurst, all of them are higher than 0.5 and do not have
a direct relation with climate, as mentioned before. This agrees with the results of López-
Lambraño et al. [24], who found persistency in their precipitation series, obtaining Hurst
values from 0.5 to 0.9, but contrasts with Kantelhardt et al. [23], who did not found relation
between hydrologic persistence and Hurst (values lower than 0.5). Such observations
could be related to two main reasons. On the one hand, there is the climate-physical
part, which deals with the fact that López-Lambraño et al. [24] analyzed a very similar
region about climate than ours, while Kantelhardt et al. [23] studied three very different
regions to our work. On the other hand, there is the climate-methodological part, since
the studies mentioned in Kantelhardt et al. [23] dealt with large time series of more than
100 years, in which climate could have changed and led to low values of persistence. In
fact, López-Lambraño et al. [24] found a decrease in the values of Hrs by increasing the
length of their time series from 5 to 30 years.

Additionally, we measured and plotted the relations Hrs-A.A.R. and HFD-A.A.R. in
Figure 5. Despite a clear trend in both curves, there is a lot of dispersion indicating a weak
relation (R2 ≈ 0.1 for HFD-A.A.R. relation and R2 ≈ 0.3 for Hrs-A.A.R. ). In turn, relation
HFD− HRS is also weak (R2 ≈ 0.1), see Figure 6. We associated the larger dispersion in
our curves to the predominance of the subtropical climate of the region since arid climates
possess more roughness, as mentioned in [41].
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Figure 5. Relation between fractal exponents and A.A.R., showing their coefficients of determination (R2) of the fits.

Therefore, our final observations are focused on three main points:

• The RBSJ Basin is a complex region composed by mainly three climates Cwa, Bsh and
BWh. Its complexity consists of a geographical mixing of those climates, which makes
it difficult to perform a good interpolation by traditional techniques like the Köppen
climate classification and A.A.R., and even by more complex techniques like Hrs and
HFD. Indeed, about five weather stations are located in the border of zones cataloged
as subtropical (Cwa) and semi-arid (Bsh) climates.

• Nevertheless, fractal exponents have shown to have a relation with climates (HFD)
and in a weaker sense with A.A.R., which have been reported previously in regions
with similar climates [40,41]. In this manner, our study aims to suggest the use of those
fractal exponents as an alternative way to understand and complete the climate maps
of the region study, positioning HFD as a measure of classification at the same level of
A.A.R., and having as an advantage the memory of the time that the method posses.

• As future research, we propose to determine the relation between HFD and the
weather to a regional scale, extending this to east and north, where the weather is
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similar, and considering other regions like Veracruz, Tabasco and Chiapas, which are
southeast Mexico’s states where the weather is different to the studied region. In this
form, it could be possible to analyze if the correlation between HFD and the weather
change lightly or radically. In the first case, the relation will be not a regional case,
and it will derive to a larger scale.
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Figure 6. Relation between fractal exponents, showing the coefficients of determination (R2) of
the fit.

5. Conclusions

This work aimed to analyze the dependency of long-range time series by using Hurst
Exponent and Higuchi Dimensional Fractal. We found a strong dependency between HFD
and the climates, but not for Hurst Exponent and the climates.

We evaluated the persistency of 17 rainfall time series of the RBSJ Basin in Mex-
ico utilizing Hrs and HFD, and compared their values with the climate classification
proposed by the CONABIO, which uses the Köppen climate classification. We found
more relation between the clusters formed by the Köppen classification and the obtained
Higuchi’s values.

In detail, our Higuchi’s results suggest that the persistency of the series increase with
the aridity of the zone, so that, the stations located at the humid subtropical zone have
the lowest HFD’s values, HFD ∈ [1.78, 1.87]; those located at the hot semi-arid zone have
HFD ∈ [1.88, 1.89]; and finally, the hot desert zone contains the stations with the highest
values HFD ∈ [1.90, 1.92]. This suggests that the arid zones of the study region have
more persistent rainfalls, although not necessarily predictable, which has been reported
previously in region studies with similar climates [40,41]. In turn, Hrs did not fit very well
to the climates and had a weak relation with the A.A.R.

In this way, we concluded that HFD is a powerful indicator for analyzing rainfall time
series that can help to understand the climates of the case study in terms of combining a
climate classification with a mathematical measure. Thus, the climate-mathematical clus-
tering technique that we present is a primary study that quantifies the limits of the climatic
zones within the RBSJ Basin, which could help to complete or redefine the climatological
models of the study region.
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Appendix A

Table A1. Results of HFD for the 17 stations analyzed with different kmax. Stations are shown in an
ascendant order according to kmax = 8.

Station Name kmax = 6 7 8 9 10 11 12

19002 Agua Blanca 1.72 1.75 1.78 1.81 1.86 1.90 1.95
19018 El Pajonal 1.74 1.76 1.79 1.82 1.86 1.91 1.95
19069 La Boca 1.76 1.78 1.81 1.84 1.88 1.93 1.98
19033 Laguna De Sánchez 1.77 1.78 1.81 1.84 1.88 1.93 1.98
19047 Mimbres 1.76 1.78 1.82 1.85 1.88 1.91 1.95
19009 Casillas 1.78 1.80 1.82 1.86 1.89 1.93 1.98
19039 Las Enramadas 1.81 1.83 1.85 1.87 1.91 1.94 1.99
19012 Cienega De Flores 1.82 1.84 1.86 1.89 1.91 1.94 1.97
19003 Allende 1.83 1.85 1.87 1.89 1.91 1.94 1.99
19048 Montemorelos 1.84 1.85 1.87 1.89 1.91 1.94 1.98
19052 Monterrey 1.84 1.85 1.87 1.89 1.91 1.95 1.99
19004 Apodaca 1.84 1.86 1.88 1.89 1.91 1.94 1.97
19016 El Cuchillo 1.84 1.86 1.89 1.91 1.92 1.95 1.98
19022 General Bravo 1.85 1.86 1.89 1.91 1.92 1.94 1.97
19056 San Juan 1.85 1.87 1.89 1.90 1.92 1.95 1.98
19036 La Popa 1.87 1.88 1.90 1.91 1.93 1.95 1.97
19026 Icamole 1.91 1.91 1.92 1.93 1.93 1.94 1.97
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27. Kalauzi, A.; Čukić, M.; Millán, H.; Bonafoni, S.; Biondi, R. Comparison of fractal dimension oscillations and trends of rainfall
data from Pastaza Province, Ecuador and Veneto, Italy. Atmos. Res. 2009, 93, 673–679. [CrossRef]

28. Ciobotaru, A.M.; Andronache, I.; Dey, N.; Petralli, M.; Mansouri Daneshvar, M.R.; Wang, Q.; Radulovic, M.; Pintilii, R.
Temperature-Humidity Index described by fractal Higuchi Dimension affects tourism activity in the urban environment of
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