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Abstract: The pressing process is a part of the fabrication process of multi-layer printed circuit
board (PCB) manufacturing. This paper presents the application of a new mixed-integer linear
programming model to the short-term scheduling of the pressing process. The objective was to
minimize the makespan. The proposed model is an improvement from our previous model in the
literature. The size complexity of the proposed model is better than that of the previous model,
whereby the number of variables, constraints, and the dimensionality of variables in the previous
model are reduced. To compare their performance, problems from literature and additional generated
test problems were solved. The proposed model was shown to outperform the previous model in
terms of computational complexity. It can verify a new optimal solution for some problems. For
the problems that could not be solved optimally, the proposed model could find the incumbent
solution using much less computational time than the previous model, and the makespan of the
incumbent solution from the proposed model was better than or equal to that of the previous model.
The proposed model can be a good option to provide an optimal schedule for the pressing process in
any PCB industry.

Keywords: pressing process; printed circuit board; scheduling; mixed-integer linear programming

1. Introduction

Printed circuit boards (PCBs) are used as a major component in most electronic de-
vices [1]. Nowadays, most PCB manufacturers are facing the challenge of improving
production efficiency to cope with the strong competition [2]. In every aspect of pro-
duction, the productivity and cost are crucial matters. Reducing the production cost
whilst maximizing the efficiency of the production machines are the prime objectives of a
manufacturing enterprise.

PCBs can be classified into three types, according to the number of their layers, as
single-layer PCBs, double-layer PCBs, and multi-layer PCBs. This paper only considers
multi-layer PCBs. Multi-layer PCB manufacturing consists of the design, fabrication,
assembly, and testing [3]. The design step is creating a circuit schematic by PCB designers.
The fabrication step is creating the PCB or bare board. There are many processes in multi-
layer PCB fabrication, such as cutting, pressing, and drilling processes. The assembly step
is the placing of electronic components at the predefined positions on the bare board. Lastly,
the testing step identifies early fallouts before the PCBs are sent for use in the field.

This paper focuses on the pressing process in multi-layer PCB fabrication, which
involves various PCB components and costly machines. Scheduling an efficient pressing
process requires backgrounds in assignment and sequencing to reduce the production time
and to increase machine utilization. The mathematical problems in the literature that have
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similar backgrounds to the pressing process (assignment and sequencing) are the flexible
job shop scheduling problem (FJSP) [4–7] and the hybrid flow shop scheduling problem
(HFSP) [8,9]. However, literature about pressing process scheduling is quite limited. To the
best of the authors’ knowledge, there is no prior work that directly investigated pressing
process scheduling, except the authors’ prior publication [10], where a mixed integer linear
programming (MILP) model and a heuristic algorithm were used for solving the pressing
process scheduling. The objective of pressing process scheduling is to minimize makespan.
The test problems generated from the data of an actual PCB company were solved using
both methods to show the performance.

Although approximate methods, such as a heuristic algorithm, can solve an optimiza-
tion problem within a relatively short time, it can be difficult to guarantee the quality of
the solution to the problem. The first key step to study an optimization problem is to
mathematically formulate it. A mathematical programming model is the first natural way
to approach a scheduling problem [8,11]. It can explicitly describe the objective, constraints,
and all the other characteristics of the scheduling problem. Moreover, it can serve as the
key to develop a heuristic algorithm for solving the problem [12]. The MILP is a type
of mathematical programming model that allows an exact method to solve a scheduling
problem and gives an optimal solution if one exists. Therefore, it is important to improve
the MILP model to be more effective at solving scheduling problems. The efficiency of a
MILP depends on many factors, such as the number of binary variables (NBV), the number
of continuous variables (NCV), the number of constraints (NC), the dimensionality of
decision variables, and the constraints’ tightness [9]. The most deciding factor that affects
the performance of a MILP is the NBV, and the next influential factor is the NC [11].

To compare the performance between any two MILP models, there are two widely
used performance measures of size and computational complexities [8,9,13]. The size
complexity counts the NBV, NCV, and NC generated by the MILP model. If every size
complexity factor of a MILP model is smaller than another model, it certainly is more
superior. The computational complexity is determined by the computational time required
to solve the problem. A MILP model outperforms another model in terms of computational
complexity if it can solve the problem using less computational time. Table 1 shows the
literature that aims to improve and compare the performance of MILP models of various
types of scheduling using these performance measures.

Table 1. Articles related to the comparison and improvement of MILP models of scheduling problems.

Ref. Problem Objective Highlight

[14]

Open shop, job shop, flow shop,
and permutation flow shop

scheduling problems with limited
waiting time constraints (LWT-OSP,
LWT-JSP, LWT-FSP, and LWT-PFSP)

Minimize makespan

For each problem (LWT-OSP, LWT-JSP, LWT-FSP, and
LWT-PFSP), the authors proposed two MILP models
and compared the size complexity between them to find
the best model.

[15] Open shop scheduling problem
(OSP) Minimize tardiness

The authors proposed four MILP models for the OSP
and compared their performance in terms of both size
and computational complexities to find the best model
for the OSP.

[16] FJSP with sequence dependent
setup time (SDST-FJSP) Minimize tardiness

The author proposed a MILP model for the SDST-FJSP
and compared the performance of the proposed model
with the existing MILP model [17] in terms of both size
and computational complexities. The results showed
that the proposed model outperformed the existing
model [17] in terms of both complexities.

[7] FJSP Minimize makespan

The authors proposed two MILP models for the FJSP
and compared the performance of these two proposed
models with the existing models [5,18,19] in terms of
both size and computational complexities. The results
showed that the two proposed models outperformed the
existing models [5,18,19] in terms of both complexities.
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Table 1. Cont.

Ref. Problem Objective Highlight

[8] HFSP Minimize makespan

The authors proposed four MILP models for the HFSP
and compared the performance of them in terms of both
size and computational complexities to find the best
model for the HFSP.

[13] Distributed job shop scheduling
problem (DJSP) Minimize makespan

The authors proposed a MILP model for the DJSP and
compared the performance of the proposed model with
the existing model [20] in terms of both size and
computational complexities. The results showed that the
proposed model outperformed the existing model [20]
in terms of both complexities.

[9] HFSP with unrelated parallel
machines (UPM-HFSP) Minimize makespan

The authors proposed eight MILP models for the
UPM-HFSP and compared the performance of them
with the existing model [21] in terms of both size and
computational complexities to find the best model for
the UPM-HFSP.

[22] Distributed FJSP (DFJSP) Minimize makespan

The authors proposed four MILP models for the DFJSP
and compared the performance of these four models in
terms of both size and computational complexities to
find the best model for the DFJSP.

The aim of this paper is to propose an improvement of the MILP model for pressing
process scheduling in the literature, where the proposed MILP model outperformed the
previous MILP model in terms of both size and computational complexities. The motivation
of this innovation is that the previous MILP model for pressing process scheduling suffered
from its large size complexity. Specifically, it used a large number of binary variables
(NBV) and constraints (NC). A lot of binary variables and constraints were used in the
previous model to handle the non-overlapping condition in an oven. The previous model
also used too many continuous variables to define the starting time of the pressing process
phase of a cycle of a press machine. Furthermore, it used a set of variables to define the
completion times, which can be essentially eliminated from the model. These lead to a
poor model performance as it then requires a large computational time for solving the
model (poor computational complexity). This paper aims to enhance these shortcomings.
The proposed MILP model is better than the previous MILP model in terms of all three
factors of size complexity, where it has the NBV, NCV, and NC less than the previous MILP
model has. The proposed MILP model is also better than the previous MILP model in
terms of computational complexity because it can find an optimal solution or incumbent
solution for the problems in the literature and the newly generated test problems using
less computational time than the previous MILP model. The contributions of this paper
can be summarized as follows:

1. This paper shows an application of MILP for solving pressing process scheduling,
which is a problem from real-world industry.

2. This paper proposes an improved MILP model (hereafter Model 2) for solving the
pressing process scheduling that outperforms the previous model in the literature [10]
(hereafter Model 1) in terms of both size and computational complexities. A compari-
son of the size complexity of both models is summarized in Table 2 in Section 3. For
the computational complexity, Model 2 can reduce the computational time from the
previous model with an average relative percentage improvement (RPI) of 34.71%.
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Table 2. The size complexity of each model.

Type Model 1 Model 2

Binary variable IKLPT + PTO+ P(P− 1)T2O IKLPT + PTO +
P(P−1)

2 T2

Continuous variable 3PT + 2PTO + 1 3PT + 1

Constraint
8PT + 2P(T − 1)

+2P(P− 1)T2O + 3PTO
+IKLPT + I

7PT + 2P(T − 1) +
P(P− 1)T2O +IKLPT + I

The remainder of this paper is organized as follows. The problem description of the
pressing process is described in Section 2. The proposed Model 2 is presented in Section 3.
Numerical results are shown in Section 4. Finally, the discussions and the conclusions are
drawn in Section 5 and Section 6, respectively.

2. Problem Description

This section describes the pressing process in multi-layer PCB manufacturing. The
purpose of the pressing process is to press the panel, which is the stack of copper foil,
prepreg, and core(s). The details of the problem are as follows:

• There is a fixed number of panel types (I), and the demand of each panel type
(di; i ∈ {1, 2, . . . , I}) is given. The panel types rely on the customers’ design.

• The company has a certain number of sizes (K) of stainless-steel templates (SST) and
a certain number of layouts (L). A layout is a pattern of arrangement of panels on a
SST. The arrangement of panels on a SST using a layout is called a book.

• Inner and outer gaps are needed when the panels are placed on a SST. The inner gap
(g) is the minimal gap among two panels in a book, and the outer gap (G) is the
minimal gap between each panel and the borders of the SST. The number of panels on
a book depends on the panel size, the SST size, the layout, and the gaps. In general, a
PCB company may have its own formula for computing the number of panels on a
SST using a layout.

• The overall process of one cycle of a press machine in the pressing process takes 360
min. Figure 1 shows all the processes of a cycle of a press machine, which includes the
following three phases:

1. Lay-up process phase: The books are created and inserted into all openings
(slots) of the press machine. The number of books that are inserted is equal to
the number of openings of the press machine. This phase takes 120 min.

2. Pressing process phase: The press machine, which is already inserted with books,
is moved into an oven, and the books are pressed and heated in the oven. After
120 min, the press machine is removed from the oven.

3. Cool-down process phase: The pressed books are cooled down for 120 min.
Finally, the books are separated from the press machine to complete one press
machine cycle.

• The three phases of the press machine cycle must be worked continually without
idle time.

• A press machine can immediately start a new cycle after it has finished the previous
cycle. Likewise, an oven is ready for the pressing process phase of another press
machine after finishing the current pressing process phase.

• The company has a fixed number of press machines (P), each of which has m openings,
and a fixed number of ovens (O). Normally, a PCB company has a small number of
ovens because the cost of an oven is very expensive.

• The company considers a planning horizon of 3 d. The maximum number of available
cycles (T) of each press machine to be operated in the pressing process is given. In
reality, this value can be estimated from the order of the customers and the available
resources by the production planning department.
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Figure 1. The overall processes of one cycle of a press machine.

In addition, this paper has the following two assumptions:

• The demands of panels from the customer can be satisfied within the planning hori-
zon and available resources, i.e., the demands or inputs from the customer have a
feasible schedule.

• The number of SSTs is unlimitedly available.

The three main constraints for the pressing process are as follows:

1. The books that are pressed in all openings of a cycle of the press machine must have
the same specifications, i.e., all books must have the same panel type, the same SST
size, and the same layout. This constraint is needed to ensure that the pressure from
the press machine will be equally distributed to each panel.

2. An oven can perform the pressing process phase of only one press machine at a time.
3. The number of outputs (finished goods) of each panel type must be greater than or

equal to the demand.

The objective of the pressing process is to minimize the makespan. The minimum
makespan implies a good utilization of available resources [23].

3. Improved MILP Model (Model 2)

This section presents Model 2 for pressing process scheduling. The parameters, sets,
indices, and variables used in Model 2 are defined below.

Parameters:
I The number of panel types.
K The number of SST sizes.
L The number of layouts.
P The number of press machines.
O The number of ovens.
T The maximum number of available cycles of each press machine.
m The number of openings of each press machine.
n The processing time of each phase in the pressing process, i.e., the lay-up, pressing,

and cool-down process phases. In our case, n = 120 min.
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aikl The number of panels of type i per book (or per opening) using SST size k and
layout l.

di The demand of panel type i.
M A large positive number.
Sets:
Î The set of all panel types, i ∈ Î = {1, 2, . . . , I}.
K̂ The set of all SST sizes, k ∈ K̂ = {1, 2, . . . , K}.
L̂ The set of all layouts, l ∈ L̂ = {1, 2, . . . , L}.
P̂ The set of all press machines, p ∈ P̂ = {1, 2, . . . , P}.
Ô The set of all ovens, o ∈ Ô = {1, 2, . . . , O}.
T̂ The set of all numbers of available cycles of each press machine, t ∈ T̂ =

{1, 2, . . . , T}.
Variables:
xiklpt 1, if panel type i is assigned with SST size k and layout l to press machine p at

cycle t, and 0 otherwise.
Xpto 1, if press machine p is sent into oven o at cycle t, and 0 otherwise.
Yptp′t′ 1, if cycle t of press machine p is processed before cycle t′ of press machine p′

in the same oven, and 0 otherwise.
Apt The starting time of cycle t of press machine p (the starting time of the lay-up

process phase).
Bpt The starting time of the pressing process phase in cycle t of press machine p.
A′pt The auxiliary variable which is equal to Apt if there are a panel type, a SST

size, and a layout assigned in press machine p at cycle t. Otherwise, it is equal to 0.
Cmax The maximum completion time of the last cycle of all press machines that

perform the pressing process (the makespan of the overall process).
Model 2 for scheduling the pressing process is as follows.

Min Cmax (1)

subject to:
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt ≤ 1, ∀p ∈ P̂, ∀t ∈ T̂, (2)

xiklpt ≤ aikl , ∀i ∈ Î, ∀k ∈ K̂, ∀l ∈ L̂, ∀p ∈ P̂, ∀t ∈ T̂, (3)

K

∑
k=1

L

∑
l=1

P

∑
p=1

T

∑
t=1

xiklpt(maikl) ≥ di, ∀i ∈ Î, (4)

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklp(t−1) ≥
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt, ∀p ∈ P̂, ∀t ∈ T̂ − {1}, (5)

O

∑
o=1

Xpto = 1, ∀p ∈ P̂, ∀t ∈ T̂, (6)

Ap,t ≥ Ap,t−1 + 3n, ∀p ∈ P̂, ∀t ∈ T̂ − {1}, (7)

Bpt = Apt + n, ∀p ∈ P̂, ∀t ∈ T̂, (8)

Bp′t′ ≥ Bpt + n−
(

3−Yptp′t′ − Xpto − Xp′t′o

)
M,

∀p, p′ ∈ P̂, p < p′, ∀t, t′ ∈ T̂, ∀o ∈ Ô,
(9)

Bpt ≥ Bp′t′ + n−
(

2 + Yptp′t′ − Xpto − Xp′t′o

)
M,

∀p, p′ ∈ P̂, p < p′, ∀t, t′ ∈ T̂, ∀o ∈ Ô,
(10)

Apt −M

[
1−

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

]
≤ A′pt, ∀p ∈ P̂, ∀t ∈ T̂, (11)
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A′pt ≤ Apt + M

[
1−

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

]
, ∀p ∈ P̂, ∀t ∈ T̂, (12)

A′pt ≤ M

(
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

)
, ∀p ∈ P̂, ∀t ∈ T̂, (13)

Cmax ≥ A′pt + 3n, ∀p ∈ P̂, ∀t ∈ T̂, (14)

and,
xiklpt ∈ {0, 1} ∀i ∈ Î, ∀k ∈ K̂, ∀l ∈ L̂, ∀p ∈ P̂, ∀t ∈ T̂,

Xpto ∈ {0, 1} ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô,

Yptp′t′ ∈ {0, 1} ∀p, p′ ∈ P̂, p < p′, ∀t, t′ ∈ T̂,

Apt ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂,

Bpt ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂,

A′pt ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂,

Cmax ≥ 0
The objective function (1) is to minimize the makespan of the overall process.
Constraint (2) ensures that at most one type of panel, one size of SST, and one layout

can be assigned in each cycle of each press machine. If there is an assignment of a panel
type, a SST size, and a layout in a press machine cycle, it means that all books that are
inserted in all openings of this press machine in this cycle are created using this pattern.

Constraint (3) makes sure that if panel type i is not compatible with SST size k and
layout l (aikl = 0), then this pattern cannot be assigned to any press machine cycle.

Constraint (4) enforces that the overall outputs of each panel type from all cycles of all
press machines must satisfy the demand.

Constraint (5) ensures that a panel type, a SST size, and a layout must be assigned
to consecutive cycles of a press machine. This helps push the empty cycles (the cycles of
a press machine with no panel assignment) to be placed after the non-empty cycles (the
cycles that really operate the pressing process).

Constraint (6) enforces that any press machine cycle must only be assigned to one oven.
Constraint (7) ensures that the starting time of a cycle of a press machine is not less

than the completion time of the previous cycle. The completion time of the previous cycle
is equal to its starting time plus the processing time 3n (the processing time of one cycle).
In other words, this constraint enforces that any cycle of a press machine can be started
after the previous cycle has been completed.

Constraint (8) sets the starting time of the pressing process phase in cycle t of press
machine p to be equal to the starting time of this press machine cycle plus the processing
time n that it takes in the lay-up process phase.

Constraints (9) and (10) make sure that the pressing process phase in cycle t of press
machine p and the pressing process phase in cycle t′ of press machine p′, which are assigned
in the same oven o

(
Xpto = Xp′t′o = 1

)
, cannot be performed simultaneously. It depends

on the binary variable Yptp′t′ . If Yptp′t′ = 1, the pressing process phase in cycle t of press
machine p precedes the pressing process phase in cycle t′ of press machine p′ in oven o.
Otherwise, the pressing process phase in cycle t of press machine p is performed after the
pressing process phase in cycle t′ of press machine p′ in oven o.

Constraints (11)–(13) enforce that if there is an assignment of a panel type, a SST size,
and a layout in press machine p at cycle t, then the auxiliary variable A′pt is equal to Apt.
Otherwise, it is equal to 0. The auxiliary variable A′pt will be used in Constraint (14).
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Lastly, Constraint (14) determines the maximum completion time of the last cycle
of the press machines that really operate the pressing process or the makespan of the
overall process.

Compared with Model 1 for scheduling the pressing process [10], Model 2, developed
in this paper, has many improved parts as follows.

• The binary variable Yptp′t′o (Yptp′t′o = 1 if press machine p at cycle t precedes press
machine p′ at cycle t′ in oven o) in Model 1 is replaced by the new binary variable
Yptp′t′ in Model 2, where both variables have the same role to avoid an overlapping of
any two pressing process phases that are processed in the same oven o. However, the
definition of Yptp′t′ is without reference to the oven. This can significantly reduce the
NBV in the model. Model 2 can still retrieve the oven information from the variables
Xpto and Xp′t′o. For example, assume that the variables X111 = X221 = 1. This means
that press machine 1 at cycle 1 and press machine 2 at cycle 2 are assigned to do the
pressing process phase in oven 1. Suppose that Y11221 = 1 in Model 1 while Y1122 = 1
in Model 2. The variable Y11221 = 1 in Model 1 means that press machine 1 at cycle 1
is processed before press machine 2 at cycle 2 in oven 1, while the variable Y1122 = 1
in Model 2 means that press machine 1 at cycle 1 is processed before press machine 2
at cycle 2 in the same oven. Although the variable Y1122 = 1 in Model 2 does not give
the oven information, it can be known from the variables X111 = X221 = 1, i.e., both
tasks are processed in the same oven 1.

• The continuous variable Bpto, the starting time of the pressing process phase in cycle t
of press machine p in oven o, in Model 1 is replaced in Model 2 by the variable Bpt,
which is without reference to the oven. This replacement can significantly reduce the
NCV and eliminate some constraints in Model 1 that were related to the variable Bpto.
For example, suppose that Xptõ = 1, which means that press machine p at cycle t is
assigned to oven õ. In Model 1, the constraint that forces the variable Bpto to be 0 is
needed when press machine p at cycle t must not be assigned to oven o ∈ Ô− {õ} so
that the model has only the non-zero value of Bptõ. In Model 2, however, this constraint
is not needed because the model defines the variable Bpt, which has no oven index.
If needed, Model 2 can retrieve the oven information from the variable Xpto to find
which oven is assigned to press machine p at cycle t to do the pressing process phase.
For example, assume that the variable X221 = 1, which means that press machine 2
at cycle 2 is assigned to do the pressing process phase in oven 1. Suppose that the
variable B221 = 480 min in Model 1 while the variable B22 = 480 min in Model 2.
The variable B221 = 480 in Model 1 means that press machine 2 at cycle 2 starts the
pressing process phase in oven 1 at time 480 while the variable B22 = 480 in Model 2
means that press machine 2 at cycle 2 starts the pressing process phase at time 480.
Although the variable B22 = 480 in Model 2 does not give the oven information, it can
be known from the variables X221 = 1, i.e., the press machine 2 at cycle 2 starts the
pressing process phase at time 480 in oven 1.

• Model 2 does not use the variables about the completion times. In Model 1, the
variables Cpt and Dpto, the completion time of cycle t of press machine p and the
completion time of the pressing process phase in cycle t of press machine p in oven
o, respectively, were used. Model 2 can retrieve these values after solving the model
where the former is equal to Apt + 3n and the latter is equal to Bpt + n (the completion
time is equal to the starting time plus the processing time). This can significantly
reduce not only the NCV but also the NC in the model because the constraints that
are related to the completion time variables are no longer needed.

• Model 1 used too many constraints to handle the non-overlapping conditions in the
oven. It formulated the constraint in cases p 6= p′ to avoid an overlapping of any two
pressing process phases in the same oven. However, Model 2 formulates the constraint
only in cases p < p′, which can completely define the non-overlapping conditions
in the oven. This is because either Constraint (9) or Constraint (10) is active for any
two pressing process phases from cycle t of press machine p and cycle t′ of press
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machine p′, which are processed in the same oven o
(

Xpto = Xp′t′o = 1
)

. Constraint
(9) is active if the task from cycle t of press machine p is processed before the task from
cycle t′ of press machine p′. Otherwise, Constraint (10) is active if the task from cycle
t′ of press machine p′ is processed before the task from cycle t of press machine p.
From the cases p < p′, it can guarantee that any two pressing process phases from any
cycle of two press machines p and p′, which are processed in the same oven, cannot
overlap. It is clear that the non-overlapping conditions in the oven are completely
defined, and the constraint in cases p > p′ need not be considered.

Table 2 shows the NBV, NCV, and NC that were used to formulate Model 1 and Model
2. An evaluation of Model 2 in comparison to Model 1 is presented in Section 4.

4. Numerical Results

To evaluate the proposed MILP model, the previous data and test problems [10]
were used. Furthermore, additional larger-sized (than in [10]) test problems were also
generated in this paper. All problems were solved using both the previous Model 1 [10]
and the proposed Model 2, and the results from both models were compared. The data
and test problems are shown in Section 4.1, and the results from both models are shown
in Section 4.2.

4.1. Data and Test Problems

The same data previously used for Model 1 [10], which were acquired from an actual
PCB company, were used in this study and consisted of the following. The number of
panel types (I), the number of SST sizes (K), the number of layouts (L), the number of
press machines (P), and the number of ovens (O) were seven, six, eight, six, and three,
respectively. The number of openings of each press machine (m) was 10. The sizes of
each panel type, which included the warp (a) and fill (b) as well as the inner gap (g) and
outer gap (G), are shown in Table 3. The sizes of each SST, which included the warp (X)
and fill (Y), are shown in Table 4. Figure 2 shows the illustration of eight layouts [10].
Note that Figure 2 illustrates only examples that show the direction of the arrangement of
panels on a SST. The number of panels in the book is not restricted to those shown in the
illustration. For example, Figure 2a illustrates the first layout with two horizontal sections,
and the panels are arranged vertically in each section. The company had the formulas for
computing the number of panels of type i ∈ Î per book based on SST size k ∈ K̂ and layout
l ∈ L̂ (aikl), which are shown in Table 5. It should be noted that the notation x is the largest
integer that is less than or equal to x. The processing time of each phase in the pressing
process (n) was assumed to be 120 min. In addition, the maximum number of available
cycles (T) of each press machine was 12. This is because the processing time of one cycle
of a press machine is 360 min (6 h). If a press machine operates continually, it can conduct
up to 12 cycles of the pressing process in 3 d.

Table 3. Sizes, inner gap, and outer gap of each panel type.

Panel Warp (a) Fill (b) Inner Gap (g) Outer Gap (G)

1 20.5 24 0.5 0.25
2 25.65 22.25 1 0.5
3 26 24 0.5 0.25
4 26.5 22.5 1 0.5
5 19 22.25 0.5 0.25
6 15 23.8 0.5 0.25
7 27.75 20.5 0.5 0.25
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Table 4. Sizes of each SST.

Stainless-Steel Warp (X) Fill (Y)

1 50 44
2 50 53
3 50 56
4 50 58
5 43 25.5
6 43 27

Figure 2. Illustration of the eight layouts (a–h) of the panel arrangement [10].

Table 5. Formulas for computing aikl , which is the number of panels of type i ∈ {1, 2, . . . I} per book
using SST size k ∈ {1, 2, . . . K}, and layout l ∈ {1, 2, . . . L}.

Layout (l) aikl

1 | X−2(G− g
2 )

a+g | × | Y−2(G− g
2 )

b+g |
2 | X−2(G− g

2 )
b+g | × | Y−2(G− g

2 )
a+g |

3 | X−2(G− g
2 )

a+g |+
(
| X−2(G− g

2 )
b+g | × | Y−b−G−2(G− g

2 )
a+g |

)
4 | Y−2(G− g

2 )
a+g |+

(
| Y−2(G− g

2 )
b+g | × | X−b−G−2(G− g

2 )
a+g |

)
5 | X−2(G− g

2 )
b+g |+

(
| X−2(G− g

2 )
a+g | × | Y−a−G−2(G− g

2 )
b+g |

)
6 | Y−2(G− g

2 )
b+g |+

(
| Y−2(G− g

2 )
a+g | × | X−a−G−2(G− g

2 )
b+g |

)
7 | X−2(G− g

2 )
a+g |

8 | X−2(G− g
2 )

b+g |

Moreover, the planning horizons of 2 and 1.5 d were also considered in [10] for
different problem sizes, where the maximum number of available cycles of each press
machine was eight and six, respectively. The previous test problems [10] were generated
using the acquired data, and the parameters P and O in some test problems were also
slightly different from the real data for a variety of the problem sizes. The demand of
each panel type i (di) in each problem was randomly generated. The test problems were
categorized into the three types of small, medium, and large problems, according to the
NBV, and were totaled five, eight, and nine problems, respectively, as shown in Tables 6–8.
A problem that has three panel types means that there are panel types 1–3 (in Table 3).
Similarly, a problem that has four, five, six, or seven panel types means that there are panel
types 1–4, 1–5, 1–6, or 1–7 (in Table 3), respectively.
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Table 6. The small problems.

No. I K L P O T di, i∈
^
I

S1 3 6 8 3 2 6 110, 150, 125
S2 3 6 8 3 2 8 200, 220, 230
S3 3 6 8 3 2 12 270, 250, 210
S4 3 6 8 4 2 6 110, 150, 125
S5 3 6 8 4 3 6 110, 150, 125

Table 7. The medium problems.

No. I K L P O T di, i∈
^
I

M1 3 6 8 6 3 6 300, 300, 300
M2 3 6 8 6 3 8 450, 480, 500
M3 3 6 8 6 3 12 720, 900, 600
M4 4 6 8 6 3 6 200, 300, 400, 100
M5 4 6 8 6 3 8 300, 400, 200, 500
M6 4 6 8 6 3 12 500, 700, 700, 500
M7 5 6 8 6 3 6 200, 250, 200, 250, 200
M8 5 6 8 6 3 8 400, 300, 200, 250, 300

Table 8. The large problems.

No. I K L P O T di, i∈
^
I

L1 5 6 8 6 3 12 500, 500, 500, 500, 500
L2 5 6 8 7 3 12 500, 500, 500, 500, 500
L3 5 6 8 6 4 12 500, 500, 500, 500, 500
L4 6 6 8 6 3 12 500, 360, 220, 180, 380, 720
L5 6 6 8 7 3 12 500, 360, 220, 180, 380, 720
L6 6 6 8 6 4 12 500, 360, 220, 180, 380, 720
L7 7 6 8 6 3 12 300, 325, 290, 425, 450, 475, 200
L8 7 6 8 7 3 12 300, 325, 290, 425, 450, 475, 200
L9 7 6 8 6 4 12 300, 325, 290, 425, 450, 475, 200

Furthermore, in this paper, additional test problems were generated using the data
in [10]. The planning horizon of these problems was 4 d, where the maximum number
of available cycles (T) of each press machine was 16. The demand of each panel type in
each problem was randomly generated. The additional test problems are shown in Table 9.
Similarly, a problem that has five, six, or seven panel types means that there are panel types
1–5, 1–6, or 1–7 (in Table 3), respectively.

Table 9. The additional test problems.

No. I K L P O T di, i∈
^
I

A1 5 6 8 6 3 16 660, 525, 740, 850, 480
A2 5 6 8 7 3 16 660, 525, 740, 850, 480
A3 5 6 8 6 4 16 660, 525, 740, 850, 480
A4 6 6 8 6 3 16 400, 495, 800, 630, 700, 800
A5 6 6 8 7 3 16 400, 495, 800, 630, 700, 800
A6 6 6 8 6 4 16 400, 495, 800, 630, 700, 800
A7 7 6 8 6 3 16 500, 420, 595, 375, 330, 680, 580
A8 7 6 8 7 3 16 500, 420, 595, 375, 330, 680, 580
A9 7 6 8 6 4 16 500, 420, 595, 375, 330, 680, 580
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4.2. Computational Results

To compare the performance between Model 1 and Model 2, the two widely used
performance measures of size and computational complexities were used. All problems
were solved using ILOG OPL CPLEX 12.6 software running on a personal computer with a
core i7 2.20 GHz CPU and 8 GB RAM, within a maximum time limit of 2 h.

4.2.1. Computational Results of the Small Problems

The model size, which included the NBV, the NCV, and the NC as well as the compu-
tational results of each small problem using Model 1 and Model 2, are shown in Table 10.
The results included the number of outputs (finished goods) of each panel type, CPU time,
and the makespan (Cmax) of the overall process. The last column in Table 10 reports the
RPItime or the relative percentage improvement of the CPU times of Model 2 over Model 1,
which is defined as CPUtimeModel1−CPUtimeModel2

CPUtimeModel1
× 100%.

Table 10. Computational results of the small problems using Model 1 and Model 2.

No.

Results Using Model 1 Results Using Model 2

RPItime
Model Size Results Model Size Results

NBV NCV NC Outputs CPU
Time

Cmax
(Min) NBV NCV NC Outputs CPU

Time
Cmax
(Min)

S1 3060 127 3741 120, 160, 160 2.31 s 1440 a 2736 55 3183 120, 160, 160 1.51 s 1440 a 34.63%
S2 4272 169 5373 200, 240, 240 2.48 s 2160 a 3696 73 4437 200, 240, 240 1.76 s 2160 a 29.03%
S3 6984 253 9213 280, 280, 240 3.21 s 2520 a 5688 109 7233 280, 280, 240 1.82 s 2520 a 43.30%
S4 4368 169 5563 120, 160, 160 8.15 s 1200 a 3720 73 4531 120, 160, 160 5.29 s 1200 a 35.09%
S5 4824 217 6499 120, 160, 160 3.18 s 1080 a 3744 73 4963 120, 160, 160 1.84 s 1080 a 42.14%

Average 36.84%
a Optimal solution. The better values are displayed in boldface.

As shown in Table 10, the NBV, NCV, and NC in Model 2 from each small problem
were lower than those in Model 1. Figure 3a–c shows the NBV, NCV, and NC, respectively,
for each model generated in each small problem. This reveals that Model 2 outperformed
Model 1 in terms of the size complexity for the small problems. Both Model 1 and Model 2
could solve all the small problems to an optimal solution. The optimal makespan could
be found, and the demand of each panel type was satisfied. For example, the optimal
makespan of Problem S1 was 1,440 min, and the outputs of panel types 1–3 were 120, 160,
and 160, respectively, which is greater than or equal to the demands of Problem S1 shown
in Table 6. However, Model 2 could find an optimal solution for all small problems at a
smaller CPU time. Figure 3d demonstrates the CPU time for solving each small problem
using Model 1 and Model 2, where Model 2 also outperformed Model 1 in terms of the
computational complexity for the small problems. From the last row of Table 10, Model 2
provided a better CPU time with an average RPItime of 36.84% for the small problems.

4.2.2. Computational Results of the Medium Problems

Table 11 shows the NBV, NCV, NC, and the results of each medium problem using
Model 1 and Model 2. The number of NBV, NCV, and NC that Model 2 generated in each
medium problem was less than those that Model 1 generated. Figure 4a–c shows the NBV,
NCV, and NC, respectively, that each model generated for each medium problem, where
Model 2 outperformed Model 1 in terms of the size complexity for the medium problems.
Both models could find an optimal solution for all medium problems, but Model 2 could
find the optimal solution using a smaller CPU time in all problems with an average RPItime
of 69.98%. The CPU times used for solving each medium problem using Model 1 and
Model 2 are shown in Figure 4d, where Model 2 also outperformed Model 1 in terms of the
computational complexity for the medium problems.
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Figure 3. Comparison of model sizes, as the (a) NBV (number of binary variables), (b) NCV (number of continuous
variables), and (c) NC (number of constraints) and (d) the CPU times for solving the small problems between Model 1
and Model 2.

Table 11. Computational results of the medium problems using Model 1 and Model 2.

No.

Results Using Model 1 Results Using Model 2

RPItime
Model Size Results Model Size Results

NBV NCV NC Outputs CPU
Time

Cmax
(Min) NBV NCV NC Outputs CPU Time Cmax

(Min)

M1 8532 325 12,339 320, 320, 320 32.81 s 1560 a 5832 109 8739 320, 320, 320 13.93 s 1560 a 57.54%
M2 12,816 433 19,335 480, 480, 520 16.79 s 2520 a 8016 145 13,095 480, 480, 520 6.29 s 2520 a 62.54%
M3 23,544 649 37,647 720, 920, 600 1 m 28 s 3600 a 12,744 217 23,967 720, 920, 600 25.46 s 3600 a 71.07%
M4 10,260 325 14,068 200, 320, 400, 120 20.65 s 1800 a 7560 109 10,468 200, 320, 400, 120 2.40 s 1800 a 88.38%
M5 15,120 433 21,640 320, 400, 200, 520 3 m 59 s 2280 a 10,320 145 15,400 320, 400, 200, 520 55.21 s 2280 a 76.90%
M6 27,000 649 41,104 520, 720, 720, 520 4 m 2 s 3960 a 16,200 217 27,424 520, 720, 720, 520 20.48 s 3960 a 91.54%

M7 11,988 325 15,797 200, 280, 200, 280,
200 9 m 31 s 1920 a 9288 109 12,197 200, 280, 200, 280,

200 6 m 59 s 1920 a 26.62%

M8 17,424 433 23,945 400, 320, 200, 280,
320 49.31 s 2520 a 12,624 145 17,705 400, 320, 200, 280,

320 7.26 s 2520 a 85.28%

Average 69.98%

a Optimal solution. The better values are displayed in boldface.

Figure 4. Comparison of the model size, as the (a) NBV (number of binary variables), (b) NCV (number of continuous
variables), and (c) NC (number of constraints) and (d) the CPU times for solving the medium problems between Model 1
and Model 2.
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4.2.3. Computational Results of the Large Problems

Table 12 shows the NBV, NCV, NC, and the results for each large problem using
Model 1 and Model 2. The results included the outputs, CPU time, %gap, and makespan
(Cmax). In Table 12, the column “CPU time” denotes the computational time taken by
CPLEX to solve the MILP model to reach optimality, or 2 h if CPLEX cannot solve the
MILP model optimally within the time limit. The %gap is the relative gap tolerance of the
objective value for the solution from CPLEX, which is defined as |BestBound−BestInteger|

BestInteger ×
100%. The BestInteger is the current best feasible solution (or incumbent solution) that
could be found by the model within the time limit, and the BestBound is the current lower
bound that the model could obtain within the time limit. The smaller the %gap value is, the
better performance the model will be. If the problem could be solved to reach optimality,
then the %gap is equal to 0%. Note that, for the solution that we get within the time limit
and %gap 6= 0, it needs to use more computational time than 2 h for solving the problem
to reach optimality. The column “Cmax” reports the optimal makespan or the incumbent
makespan that could be found within the time limit. Table 12 also reports timeinc, which
is the computational time to reach the incumbent solution. For the problem that could
be solved optimally, the timeinc is the time to reach the incumbent solution, which is an
optimal solution, but the status of the problem at that time is not at optimality because
the %gap is not equal to 0 at that time. The last column in Table 12 reports RPItime and
RPIinc

time, where the RPIinc
time is the relative percentage improvement of timeinc of Model 2

over Model 1, and is defined as (timeinc)Model1−(timeinc)Model2
(timeinc)Model1

× 100%.

As shown in Table 12, the NBV, NCV, and NC in Model 2 for each large problem were
lower than those in Model 1. Figure 5a–c shows the NBV, NCV, and NC, respectively, that
each model generated in each large problem. Model 2 clearly outperformed Model 1 in
terms of the size complexity for the large problems. Compared to Figures 3a–c and 4a–c,
the differences in the NBV and NC between the two models become more significant when
the problem size increased from small to large.

Figure 5. Comparison of the model size, as the (a) NBV (number of binary variables), (b) NCV (number of continuous
variables), and (c) NC (number of constraints) and the (d) CPU time and (e) timeinc (computational time to reach the
incumbent solution) for solving the large problems between Model 1 and Model 2.
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Table 12. Computational results of the large problems using Model 1 and Model 2.

No.

Results Using Model 1 Results Using Model 2

RPItime/RPIinc
time

Model Size Results Model Size Results

NBV NCV NC Outputs CPU
Time %gap Cmax

(Min) Timeinc NBV NCV NC Outputs CPU
Time %gap Cmax

(Min) Timeinc

L1 30,456 649 44,561 520, 520, 520,
520, 520 44 m 38 s 0% 4080 a 4 m

44 s 19,656 217 30,881
520, 520,
520, 520,

520
23 m 34 s 0% 4080 a 33.68 s 47.20%/88.14%

L2 38,556 757 58,035 520, 520, 520,
520, 520 23 m 42 s 0% 3600 a 6 m

42 s 23,436 253 39,051
520, 520,
520, 520,

520
4 m 43 s 0% 3600 a 2 m 50 s 80.10%/57.71%

L3 34,848 793 53,417 520, 520, 520,
520, 520 2 h 2.94% 4080 b 5 m

13 s 19,728 217 35,201
520, 520,
520, 520,

520
2 h 2.94% 4080 b 1 m 5 s 0%/79.23%

L4 33,912 649 48,018 520, 360, 240,
200, 400, 770 48 m 14 s 0% 3360 a 16 m

7 s 23,112 217 34,338
520, 360,
240, 200,
400, 770

6 m 23 s 0% 3360 a 22.55 s 86.77%/97.67%

L5 42,588 757 62,068 520, 360, 240,
200, 400, 770 2 h 4% 3000 b 8 m

19 s 27,468 253 43,084
520, 360,
240, 200,
400, 770

2 h 4% 3000 b 1 m 54 s 0%/77.15%

L6 38,304 793 56,874 520, 360, 240,
200, 400, 770 2 h 3.57% 3360 b 6 m

21 s 23,184 217 38,658
520, 360,
240, 200,
400, 770

1 h 47 m
55 s 0% 3360 a 24.77 s 10.07%/93.50%

L7 37,368 649 51,475
320, 360, 320,
440, 480, 490,

200
2 h 1.61% 3720 b 16 m

32 s 26,568 217 37,795

320, 360,
320, 440,
480, 490,

200

1 h 29 m
2 s 0% 3720 a 1 m 15 s 25.81%/92.44%

L8 46,620 757 66,101
320, 360, 320,
440, 480, 490,

200
2 h 3.57% 3360 b 10 m

36 s 31,500 253 47,117

320, 360,
320, 440,
480, 490,

200

2 h 3.57% 3360 b 2 m 24 s 0%/77.36%

L9 41,760 793 60,331
320, 360, 320,
440, 480, 490,

200
2 h 3.23% 3720 b 6 m

9 s 26,640 217 42,115

320, 360,
320, 440,
480, 490,

200

1 h 18 m
41 s 0% 3720 a 1 m 31 s 34.43%/75.34%

Average 31.60%/82.06%
a Optimal solution. b The incumbent solution that could be found within the time limit. The better values are displayed in boldface.
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Furthermore, from Table 12, Model 1 could solve only three large problems optimally
within the time limit (Problem L1, L2, and L4), whereas Model 2 could optimally solve
these problems using a smaller CPU time. For Problem L6, L7, and L9, Model 1 could
not solve them to reach optimality within the time limit since the %gap was not equal to
0%. However, Model 2 could solve these problems to reach optimality within the time
limit (%gap = 0%). For Problem L3, L5, and L8, neither models could solve them to reach
optimality. The makespan of the incumbent solution from Model 2 was equal to that from
Model 1 (the incumbent solutions from both models have the same quality), and the values
of %gap from both models were also the same in each problem. However, Model 2 used a
smaller timeinc than Model 1 to reach the incumbent solution for these problems.

Figure 5d,e shows the CPU time and timeinc, respectively, for solving each large
problem using Model 1 and Model 2. From Figure 5d, solving Problem L3, L5, and L8
using Model 1 and Model 2 was not achieved within the 2-h time limit, but a significant
difference in the CPU times between the two models was evident for the other problems.
From Figure 5e, moreover, Model 2 used a smaller timeinc to reach the incumbent solution
for all the large problems. The average RPItime and RPIinc

time values were 31.60% and 82.06%,
respectively. These show that Model 2 outperformed Model 1 in terms of computational
complexity for the large problems.

In a real-life application, any PCB manufacturing company may not need to solve a
problem to reach optimality if it takes a long computational time, but the company needs
to find a promising solution for the problem as fast as possible. The timeinc of each large
problem using Model 2 was small and acceptable in a real-life application. The maximum
value of timeinc to reach the incumbent for large problems using Model 2 is only 2 min 50 s
(in Problem L2). Hence, Model 2 can fulfill this preference and can be a practical option to
provide a promising schedule for the pressing process in any PCB manufacturing industry.

4.2.4. Computational Results of the Additional Test Problems

Table 13 shows the NBV, NCV, NC, and the results for each additional test problem
using Model 1 and Model 2. Model 2 had lower NBV, NCV, and NC in each problem
than Model 1. Figure 6a–c shows the NBV, NCV, and NC, respectively, that each model
generated in each additional test problem. This revealed that Model 2 clearly outperformed
Model 1 in terms of size complexity for the additional test problems.

In addition, from Table 13, neither models could solve all the additional test problems
optimally within the 2-h time limit, except for Model 2, which could solve Problem A1
optimally. For the problems that could not be solved optimally, both models could find the
incumbent solution with the same value of makespan and %gap, except for Problem A2 and
A8. For Problem A2, each model could find the incumbent solution with the same value of
makespan, but the %gap from Model 2 (4.39%) was smaller than that from Model 1 (5.26%).
In Problem A8, Model 2 could find a better incumbent solution (Cmax = 4440 min) than that
by Model 1 (Cmax = 4560 min). For Problem A3–A7 and A9, the incumbent solutions from
both models have the same quality, but Model 2 used less timeinc than Model 1 to reach the
incumbent solution for these problems.
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Table 13. Computational results of the additional test problems using Model 1 and Model 2.

No.

Results Using Model 1 Results Using Model 2

RPItime/RPIinc
time

Model Size Results Model Size Results

NBV NCV NC Outputs CPU
Time %gap Cmax

(Min) Timeinc NBV NCV NC Outputs CPU
Time %gap Cmax

(Min) Timeinc

A1 46,368 865 70,937 680, 560, 760,
880, 480 2 h 4.55% 5280 b 12 m

49 s 27,168 289 46,937
680, 560,
760, 880,

480

1 h 2 m
58 s 0% 5160 a 1 m 13 s 47.53%/90.51%

A2 59,472 1009 93,511 680, 560, 760,
880, 480 2 h 5.26% 4560 b 48 m

35 s 32,592 337 60,135
680, 560,
760, 880,

480
2 h 4.39% 4560 b 3 m 43 s 0%/92.35%

A3 54,144 1057 86,585 680, 560, 760,
880, 480 2 h 2.33% 5160 b 16 m

4 s 27,264 289 54,617
680, 560,
760, 880,

480
2 h 2.33% 5160 b 1 m 19 s 0%/91.80%

A4 50,976 865 75,546 400, 520, 800,
640, 720, 840 2 h 2.17% 5520 b 10 m

30 s 31,776 289 51,546
400, 520,
800, 640,
720, 840

2 h 2.17% 5520 b 1 m 44 s 0%/83.49%

A5 64,848 1009 98,888 400, 520, 800,
640, 720, 840 2 h 2.50% 4800 b 1 h 18 m

26 s 37,968 337 65,512
400, 520,
800, 640,
720, 840

2 h 2.50% 4800 b 2 m 32 s 0%/96.77%

A6 58,752 1057 91,194 400, 520, 800,
640, 720, 840 2 h 2.17% 5520 b 14 m

59 s 31,872 289 59,226
400, 520,
800, 640,
720, 840

2 h 2.17% 5520 b 1 m 11 s 0%/92.10%

A7 55,584 865 80,115
520, 440, 600,
400, 360, 700,

600
2 h 2.33% 5160 b 16 m

9 s 36,384 289 56,155

520, 440,
600, 400,
360, 700,

600

2 h 2.33% 5160 b 1 m 18 s 0%/91.95%

A8 70,224 1009 104,265
520, 440, 600,
400, 360, 700,

600
2 h 5.26% 4560 b 44 m

4 s 43,344 337 70,889

520, 440,
600, 400,
360, 700,

600

2 h 2.70% 4440 b 14 m 16 s 0%/67.62%

A9 63,360 1057 95,803
520, 440, 600,
400, 360, 700,

600
2 h 2.33% 5160 b 13 m

30 s 36,480 289 63,835

520, 440,
600, 400,
360, 700,

600

2 h 2.33% 5160 b 1 m 7 s 0%/91.72%

Average 5.28%/88.70%
a Optimal solution. b The incumbent solution that could be found within the time limit. The better values are displayed in boldface.
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Figure 6. Comparison of the model size, as the (a) NBV (number of binary variables), (b) NCV (number of continuous
variables), and (c) NC (number of constraints) and the (d) CPU time and (e) timeinc (computational time to reach the
incumbent solution) for solving the additional test problems between Model 1 and Model 2.

Figure 6d demonstrates the CPU time for solving each additional test problem using
Model 1 and Model 2. The CPU time for solving Problem A1 using Model 2 was smaller
than that using Model 1, but the CPU times for solving the other problems using both
models were 2 h because they could not verify optimality within the time limit. However,
Model 2 used a smaller timeinc to reach the incumbent solution for all additional test
problems (Figure 6e). Thus, Model 2 saved a large amount of computational time to reach
the incumbent solution, compared with Model 1, for all problems, where the quality of
the incumbent solution from Model 2 was no worse than that from Model 1. For example,
in Problem A8, Model 2 used a timeinc of 14 min 16 s to reach the incumbent solution
(Cmax = 4440 min) compared to 44 min 4 s (Cmax = 4560 min) for Model 1. The timeinc used
in the other problems using Model 2 varied in the range of only 1–4 min. The difference
in timeinc between Model 1 and Model 2 is particularly prominent in Problem A2 and A5.
Model 2 used a timeinc of only 3 min 43 s and 2 min 32 s to reach the incumbent solution of
Problem A2 and A5, respectively, compared to 48 min 35 s and 78 min 26 s, respectively,
for Model 1 with the same makespan. In addition, the average RPItime and RPIinc

time were
5.28% and 88.70%, respectively. These show that Model 2 is very efficient and effective at
finding a good solution within a small computational time and so can be a practical option
in the real PCB manufacturing industry.
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Moreover, the results from Model 2 can give useful information. For example, from
Problem A1–A3 in Table 9, all the parameters in the problems were the same except for
the number of press machines and ovens, where the number of press machines and ovens
were increased (from Problem A1) by one in Problem A2 and A3, respectively. The results
of these problems (Table 13) showed that the makespan of Problem A1–A3 were 5160 min,
4560 min, and 5160 min, respectively. This means that increasing the number of press
machines by one from Problem A1 could reduce the makespan from 5160 to 4560 min, but
increasing the number of ovens by one from Problem A1 could not reduce the makespan.
Thus, Model 2 can help in deciding which resources should be increased to reduce the
production time.

5. Discussions

Model 2 was found to outperform Model 1 in terms of all three structural elements
of size complexity (the NBV, NCV, and NC). This is because Model 2 used the binary
variable Yptp′t′ and the continuous variable Bpt instead of Yptp′t′o and Bpto in Model 1,
respectively, which can reduce the NBV and NCV in the model, but the meaning of both
models remained the same. It can also reduce the NC that are related to the index of the
oven. In addition, the dimensionalities of the two decision variables were also reduced
because the variables Yptp′t′o and Bpto have five and three indices, but the variables Yptp′t′

and Bpt have only four and two indices, respectively. Moreover, Model 2 did not use the
variables that were related to the completion time and could reduce the NC to handle
the non-overlapping conditions in an oven. Some examples of these replacements and
eliminations are provided in Section 3. Since the most deciding factor that affects the
performance of a MILP is the NBV, and the next influential factor is the NC [11], reducing
these in Model 2 can help to solve large-sized problems more efficiently.

Furthermore, Model 2 used less computational time than Model 1 for solving all the
problems that could be solved to reach optimality. It could also newly verify an optimal
solution for some large problems and additional test problems that Model 1 could not. The
average RPItime of the small, medium, large, and additional test problems were 36.84%,
69.98%, 31.60%, and 5.28%, respectively, where the average RPItime of all problems is
5(36.84)+8(69.98)+9(31.60)+9(5.28)

5+8+9+9 = 34.71%. In addition, Model 2 used a smaller computational
time to find the incumbent solution for all the problems that could not be solved optimally
within the 2-h time limit, where the incumbent solution from Model 2 is better or has the
same quality as the incumbent solution from Model 1. The average RPIinc

time of the large
and additional test problems were 82.06% and 88.70%, respectively. Thus, Model 2 also
outperformed Model 1 in terms of computational complexity. Note that, although the
average RPItime of the additional test problems is small, because most of them could not
be solved optimally, the average RPIinc

time is still very high. This shows that Model 2 is very
effective at finding the incumbent solution for large-sized problems within a relatively
short time.

The computational times of Model 2 to reach the incumbent solution of large problems
with a planning horizon of 3 d and additional test problems with a planning horizon of
4 d are small and practicable. In the real situation, a PCB company needs to find a good
schedule for the pressing process scheduling within a small computational time, and an
incumbent solution can be just what they need. Hence, in practice, a PCB company can
use Model 2 to find an optimal solution or a good feasible solution for pressing process
scheduling by setting a small time limit, such as 5 min, or by setting a small %gap, such
as 5%.

Moreover, the proposed Model 2 has implications for both theory and practice. In
theory, the techniques to reduce the model size in this paper can be applied to other similar
scheduling problems. In practice, the following are examples of the real-world situations
that can be beneficial from Model 2.

1. A PCB company which manually schedules the pressing process can use the proposed
model to find an optimal schedule or a good feasible schedule for the pressing process
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scheduling. The manager of the PCB company can compare the solution from the
proposed model with the manual schedule and choose the better schedule to proceed
in the real situation.

2. In case of a rush order, a PCB company can use the proposed model to decide which
resources should be increased to reduce the production time before proceeding in the
real situation. For example, the manager of the PCB company can try to increase the
parameters in the proposed model (e.g., the number of press machines or the number
of ovens) and find how much the makespan can be reduced.

6. Conclusions

This study investigated pressing process scheduling, which is a real-world application
in the PCB manufacturing industry. An application of MILP for pressing process scheduling
is presented. The objective of the problem was to minimize the makespan. This objective
can imply maximizing the utilization of the resources, which is usually the main objective
of any PCB manufacturing enterprise.

The aim of this study was to improve the existing MILP model (Model 1 [10]) for
solving pressing process scheduling. The obtained improvement (Model 2) revealed the
possible application of MILP to handle an application in the real-world industry. The
development of MILP models is interesting because the MILP model has the benefit that it
can guarantee an optimal solution if one exists. MILP is also an approach that is widely
used to cope with problems coming from organizations or industries. In this study, the
previous Model 1 [10] and the improved Model 2 of this study were used to solve problems
in the literature and additional test problems that were newly generated, and then, the
computational results from both models were compared. The models were compared
in terms of both size and computational complexities. The results show that Model 2
outperformed Model 1 in terms of both complexities. For the problems that could be
solved optimally by Model 1, Model 2 could also solve them optimally but using less
computational time. Furthermore, Model 2 could newly verify the optimal solution for
some large problems and some additional test problems within the 2-h time limit. Model 2
also used an acceptable computational time (and less than Model 1) to find the incumbent
solution for all the problems that could not be solved to reach optimality, where the
makespan of the incumbent solution from Model 2 was less than or equal to the makespan
of that from Model 1. In actual practice, a PCB company needs to use a small computational
time to provide an effective schedule for the problem at hand. Therefore, Model 2 is suitable
to use in actual practice.

The limitation of this approach is that the MILP model is not effective for solving
pressing process scheduling problems with large planning horizons, such as, a period of a
month. This is because the size of the model will become very large, which leads to a very
long computational time. To be practical, it needs to use other methods, such as heuristic
and metaheuristic algorithms, for solving long-term pressing process scheduling.

For future research, some extensions of the MILP model for the pressing process with
additional constraints could be of interest. For example, the panel types have different cycle
times and different due dates, one cycle of a press machine can press a group of compatible
panel types, and press machines or ovens require machine maintenance. These additional
constraints increase the complication of the problem, but it can be very challenging for
further research. Another future research line is to develop heuristic or metaheuristic
algorithms for solving pressing process scheduling problems using the solutions from the
MILP model in this paper as references.
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