Article

On Graded S-Primary Ideals

Azzh Saad Alshehry

Citation: Alshehry, A.S. On Graded S-Primary Ideals. Mathematics 2021, 9 , 2637. https://doi.org/10.3390/
math9202637

Academic Editor: Takayuki Hibi

Received: 13 September 2021
Accepted: 17 October 2021
Published: 19 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; asalshihry@pnu.edu.sa

Abstract

Let R be a commutative graded ring with unity, S be a multiplicative subset of homogeneous elements of R and P be a graded ideal of R such that $P \cap S=\varnothing$. In this article, we introduce the concept of graded S-primary ideals which is a generalization of graded primary ideals. We say that P is a graded S-primary ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $x y \in P$, then $s x \in P$ or $s y \in \operatorname{Grad}(P)$ (the graded radical of P). We investigate some basic properties of graded S-primary ideals.

Keywords: graded prime ideals; graded primary ideals; graded S-prime ideals; graded S-primary ideals

1. Introduction

Throughout this article, G will be a group with the identity of e and R will be a commutative ring with a nonzero unity of 1 . Then R is called G-graded if $R=\bigoplus_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$ where R_{g} is an additive subgroup of R. The elements of R_{g} are called homogeneous of degree g. If $a \in R$, then a can be written uniquely as $\sum_{g \in G} a_{g}$, where a_{g} is the component of a in R_{g}. The component R_{e} is a subring of R and $1 \in R_{e}$. The set of all homogeneous elements of R is $h(R)=\bigcup_{g \in G} R_{g}$. Let P be an ideal of a graded ring R. Then P is called a graded ideal if $P=\bigoplus_{g \in G}\left(P \cap R_{g}\right)$, i.e., for $a \in P, a=\sum_{g \in G} a_{g}$ where $a_{g} \in P$ for all $g \in G$. It is not necessary that every ideal of a graded ring is a graded ideal. For more details and terminology, look at [1,2].

Let P be a proper graded ideal of R. Then the graded radical of P is denoted by $\operatorname{Grad}(P)$ and it is defined as written below:
$\operatorname{Grad}(P)=\left\{x=\sum_{g \in G} x_{g} \in R:\right.$ for all $g \in G$, there exists $n_{g} \in \mathbb{N}$ such that $\left.x_{g}^{n_{g}} \in P\right\}$.
Note that $\operatorname{Grad}(P)$ is always a graded ideal of R (check [3]).
A proper graded ideal P of R is said to be a graded prime if $x y \in P$ implies that $x \in P$ or $y \in P$ where $x, y \in h(R)$ [3]. Graded prime ideals play a very important role in the Commutative Graded Rings Theory. There are several ways to generalize the concept of a graded prime ideal, for example, Refai and Al-Zoubi in [4] introduced the concept of graded primary ideals, a proper graded ideal P of R is said to be a graded primary ideal whenever $a b \in P$ where $a, b \in h(R)$, then either $a \in P$ or $b \in \operatorname{Grad}(P)$.

Let $S \subseteq R$ be a multiplicative set and P be an ideal of R such that $P \cap S=\varnothing$. In [5], P is said to be a S-primary ideal of R if $s \in S$ exists such that for all $x, y \in R$, if $x y \in P$, then $s x \in P$ or $s y$ is in the radical of P.

Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \bigcap S=\varnothing$. In [6], P is said to be a graded S-prime ideal of R if $s \in S$ exists such that if $x y \in P$, then $s x \in P$ or $s y \in P$ where $x, y \in h(R)$. Also, several properties of graded S-prime ideals have been examined and investigated in [7]. In this article, motivated
by [5], we introduce the concept of graded S-primary ideals. We say that P is a graded S-primary ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $x y \in P$, then $s x \in P$ or $s y \in \operatorname{Grad}(P)$. Clearly, every S-primary ideal is graded S-primary, we prove that the converse is not necessarily true (Example 1). It is also evident that every graded primary ideal that is disjoint with S is graded S-primary, we prove that the converse is not necessarily true (Example 2). Note that if S consists of units of $h(R)$, then the notions of graded S-primary and graded primary ideal coincide. We investigate some basic properties of graded S-primary ideals. Indeed, our results are motivated by the interesting results proved in [5-7].

2. Graded S-Primary Ideals

In this section, we introduce the concept of graded S-primary ideals. We investigate some basic properties of graded S-primary ideals.

Definition 1. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \cap S=\varnothing$. We say that P is a graded S-primary ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $x y \in P$, then $s x \in P$ or sy $\operatorname{Grad}(P)$.

Clearly, every S-primary ideal is graded S-primary, but the converse is not necessarily true, check the following example that is raised from ([7], Example 2.2):

Example 1. Consider $R=\mathbb{Z}[i]$ and $G=\mathbb{Z}_{2}$. Then R is G-graded by $R_{0}=\mathbb{Z}$ and $R_{1}=i \mathbb{Z}$. Consider the graded ideal $I=5 R$ of R. We show that I is a graded prime ideal of R. Let $x y \in I$ for some $x, y \in h(R)$.

Case (1): $x, y \in R_{0}$. In this case, $x, y \in \mathbb{Z}$ such that 5 divides $x y$, and then either 5 divides x or 5 divides y as 5 is a prime, which implies that either $x \in I$ or $y \in I$.

Case (2): $x, y \in R_{1}$. In this case, $x=i a$ and $y=i b$ for some $a, b \in \mathbb{Z}$ such that 5 divides $x y=-a b$, and then 5 divides $a b$ in \mathbb{Z}, and again either 5 divides a or 5 divides b, which implies that either 5 divides $x=i a$ or 5 divides $y=i b$, and hence either $x \in I$ or $y \in I$.

Case (3): $x \in R_{0}$ and $y \in R_{1}$. In this case, $x \in \mathbb{Z}$ and $y=i b$ for some $b \in \mathbb{Z}$ such that 5 divides $x y=i x b$ in R, that is $i x b=5(\alpha+i \beta)$ for some $\alpha, \beta \in \mathbb{Z}$, which gives that $x b=5 \beta$, that is 5 divides $x b$ in \mathbb{Z}, and again either 5 divides x or 5 divides b, and then either 5 divides x or 5 divides $y=i$ in R, and hence either $x \in I$ or $y \in I$.

So, I is a graded prime ideal of R. Consider the graded ideal $P=10 R$ of R and the multiplicative subset $S=\left\{2^{n}: n\right.$ is a non-negative integer $\}$ of $h(R)$. We show that P is a graded S-prime ideal of R. Note that $P \cap S=\varnothing$. Let $x y \in P$ for some $x, y \in h(R)$. Then 10 divides $x y$ in R. Then $x y \in I$, and then $x \in I$ or $y \in I$ as I is graded prime, which implies that $2 x \in P$ or $2 y \in P$. Therefore, P is a graded S-prime ideal of R, and hence P is a graded S-primary ideal of R.

On the other hand, P is not an S-primary ideal of R since $3-i, 3+i \in R$ with $(3-i)(3+i) \in$ $P,(s(3-i))^{n} \notin P$ and $(s(3+i))^{n} \notin P$ for each $s \in S$ and positive integer n.

It is obvious that every graded primary ideal that is disjoint with S is graded S-primary, but the converse is not necessarily true, check the next example. In fact, if S consists of units of $h(R)$, then the notions of graded primary and graded S-primary ideals coincide. The next example is motivated by ([7], Example 2.3).

Example 2. Consider $R=\mathbb{Z}[X]$ and $G=\mathbb{Z}$. Then R is G-graded by $R_{j}=\mathbb{Z} X^{j}$ for $j \geq 0$ and $R_{j}=\{0\}$ otherwise. Consider the graded ideal $P=9 X R$ of R and the multiplicative subset $S=\left\{9^{n}: n\right.$ is a non-negative integer $\}$ of $h(R)$. We show that P is a graded S-prime ideal of R. Note that $P \bigcap S=\varnothing$. Let $f(X) g(X) \in P$ for some $f(X), g(X) \in h(R)$. Then X divides $f(X) g(X)$, and X divides $f(X)$ or X divides $g(X)$, which implies that $9 f(X) \in P$ or $9 g(X) \in P$. Therefore, P is a graded S-prime ideal of R, hence that P is a graded S-primary ideal of R. On the other hand, P is not a graded primary ideal of R since $9, X \in h(R)$ with $9 . X \in P, 9^{n} \notin P$ and $X^{n} \notin P$ for each positive integer n.

Proposition 1. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. If P is a graded S-primary ideal of R, then $\operatorname{Grad}(P)$ is a graded S-prime ideal of R.

Proof. Since $P \cap S=\varnothing, \operatorname{Grad}(P) \cap S=\varnothing$. Let $x, y \in h(R)$ such that $x y \in \operatorname{Grad}(P)$. Then $(x y)^{n}=x^{n} y^{n} \in P$ for some positive integer n, and then there exists $s \in S$ such that $s x^{n} \in P$ or $s y^{n} \in \operatorname{Grad}(P)$, which implies that $s x \in \operatorname{Grad}(P)$ or $s y \in \operatorname{Grad}(\operatorname{Grad}(P))=\operatorname{Grad}(P)$. Therefore, $\operatorname{Grad}(P)$ is a graded S-prime ideal of R.

The next lemma is inspired by Example 2.
Lemma 1. Let R be an integral domain. Suppose that R is a graded ring, $a, b \in h(R)$ such that $R a$ is a nonzero graded prime ideal of R and $R b$ is a graded primary ideal of R. If $R b \nsubseteq R a$ and $S=\left\{b^{n}: n\right.$ is a non-negative integer $\}$. Then $P=R a b$ is a graded S-prime ideal of R which is not graded primary.

Proof. Firstly, we show that $a \notin P$. If $a \in P$, then $a=r a b$ for some $r \in R$, and then $a(1-r b)=0$, which implies that $a=0$ or $1=r b$, and then $R a=\{0\}$ or b is a unit, which is a contradiction in both cases. Secondly, we show that $P \bigcap S=\varnothing$. If $x \in P \bigcap S$, then $x=b^{n} \in R a$ for some non-negative integer n, and then $b \in R a$ as $R a$ is graded prime, and so $R b \subseteq R a$, which is a contradiction. Now, let $x, y \in h(R)$ such that $x y \in P$. Then $x y \in R a$, and then $x \in R a$ or $y \in R a$, so $s=b \in S$ such that $s x \in P$ or $s y \in P$. Therefore, P is a graded S-prime ideal of R. On the other hand, $a, b \in h(R)$ such that $a b \in P$ and $a \notin P$. If $b \in \operatorname{Grad}(P)$, then $b^{n} \in P$ for some positive integer n, which yields that $b^{n} \in P \cap S$, which is a contradiction. Therefore, P is not a graded primary ideal of R.

Remark 1. In Example 2, $\langle X\rangle$ is a nonzero graded prime ideal of R and $\langle 9\rangle$ is a graded primary ideal of R with $\langle 9\rangle \nsubseteq\langle X\rangle$. So, by Lemma 1, $P=\langle 9 X\rangle=9 X R$ is a graded S-prime ideal of R which is not graded primary, where $S=\left\{9^{n}: n\right.$ is a non-negative integer $\}$.

Proposition 2. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \bigcap S=\varnothing$. Then P is a graded S-primary ideal of R if and only if $(P: s)$ is a graded primary ideal of R for some $s \in S$.

Proof. Suppose that P is a graded S-primary ideal of R. Then there exists $s \in S$ such that whenever $x, y \in h(R)$ with $x y \in P$, then either $s x \in P$ or $s y \in \operatorname{Grad}(P)$. We show that $\operatorname{Grad}((P: s))=\operatorname{Grad}\left(\left(P: s^{n}\right)\right)$ for all positive integer n. Let n be a positive integer. Then $(P: s) \subseteq\left(P: s^{n}\right)$, and then $\operatorname{Grad}((P: s)) \subseteq \operatorname{Grad}\left(\left(P: s^{n}\right)\right)$. Let $x \in \operatorname{Grad}\left(\left(P: s^{n}\right)\right)$. Then $x_{g} \in \operatorname{Grad}\left(\left(P: s^{n}\right)\right)$ for all $g \in G$ as the graded radical is a graded ideal, and then there exists a positive integer k such that $x_{g}^{k} s^{n} \in P$ for all $g \in G$. If $s^{n+1} \in \operatorname{Grad}(P)$, then $s^{(n+1) m} \in P \bigcap S$ for some positive integer m, which is a contradiction. So, $s x_{g}^{k} \in P$ for all $g \in G$, and hence $x_{g} \in \operatorname{Grad}((P: s))$ for all $g \in G$, so $x \in \operatorname{Grad}((P: s))$. Therefore, $\operatorname{Grad}((P: s))=\operatorname{Grad}\left(\left(P: s^{n}\right)\right)$. Now, let $x, y \in h(R)$ such that $x y \in(P: s)$. Then $s x y \in P$, and then $s^{2} x \in P$ or $s y \in \operatorname{Grad}(P)$. If $s^{2} x \in P$, then as $s^{3} \notin \operatorname{Grad}(P)$, we have $s x \in P$, which means that $x \in(P: s)$. If $s y \in \operatorname{Grad}(P)$, then $(s y)^{n}=s^{n} y^{n} \in P$ for some positive integer n, and then $y \in \operatorname{Grad}\left(\left(P: s^{n}\right)\right)=\operatorname{Grad}((P: s))$. Hence, $(P: s)$ is a graded primary ideal of R. Conversely, assume that $(P: s)$ is a graded primary ideal of R for some $s \in S$. Let $x, y \in h(R)$ such that $x y \in P \subseteq(P: s)$. Then $x \in(P: s)$ or $y \in \operatorname{Grad}((P: s))$. Therefore, either $s x \in P$ or $s y \in \operatorname{Grad}(P)$. This shows that P is a graded S-primary ideal of R.

Proposition 3. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that P is a graded primary ideal of R with $P \bigcap S=\varnothing$. Then for any $s \in S, s P$ is a graded S-primary ideal of R. Moreover, If $P \neq\{0\}$ and $\bigcap_{n=1}^{\infty} R^{n}=\{0\}$, then $s P$ is not a graded primary ideal of R.

Proof. Let $s \in S$ and $I=s P$. As $I \subseteq P$ and $P \bigcap S=\varnothing$, it follows that $I \cap S=\varnothing$. Since P is a graded primary ideal of R with $\operatorname{Grad}(P) \cap S=\varnothing$, we get that $(I: s)=P$. Consequently, $(I: s)$ is a graded primary ideal of R. Therefore, we obtain from Proposition 2 that $I=s P$ is a graded S-primary ideal of R. Moreover, assume that $P \neq\{0\}$ and $\bigcap_{n=1}^{\infty} R s^{n}=\{0\}$. if $P=s P$, then $P=s^{n} P$ for each $n \geq 1$. From $\bigcap_{n=1}^{\infty} R s^{n}=\{0\}$, it follows that $P=\{0\}$, which is a contradiction. In consequence, $P \neq s P$. So, there exists $x \in P-s P$, and then $x_{g} \notin s P$ for some $g \in G$. Note that $x_{g} \in P$ as P is a graded ideal. Hence, $s x_{g} \in s P=I$ with $x_{g} \notin I$ and $s \notin \operatorname{Grad}(I)$. Therefore, $I=s P$ is not a graded primary ideal of R.

Proposition 4. Allow R to be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that $n \geq 1, i \in\{1, \ldots, n\}$ and P_{i} is a graded ideal of R with $P_{i} \cap S=\varnothing$. If P_{i} is a graded S-primary ideal of R for each i with $\operatorname{Grad}\left(P_{i}\right)=\operatorname{Grad}\left(P_{j}\right)$ for all $i, j \in\{1, \ldots, n\}$, then $\bigcap_{i=1}^{n} P_{i}$ is a graded S-primary ideal of R.

Proof. Since P_{i} is a graded S-primary ideal of R, there exists $s_{i} \in S$ to this extent for all $x, y \in h(R)$ with $x y \in P_{i}$, we have either $s_{i} x \in P_{i}$ or $s_{i} y \in \operatorname{Grad}\left(P_{i}\right)$. Let $s=\prod_{i=1}^{n} s_{i}$. Then $s \in S$. Assume that $x, y \in h(R)$ in such a way $x y \in \bigcap_{i=1}^{n} P_{i}$ and $s x \notin \bigcap_{i=1}^{n} P_{i}$. Then $s x \notin P_{k}$ for some $1 \leq k \leq n$, and then $s_{k} x \notin P_{k}$. Seeing as $x y \in P_{k}, s_{k} y \in \operatorname{Grad}\left(P_{k}\right)$. Therefore, sy $\in \operatorname{Grad}\left(P_{k}\right)$. By assumption, $\operatorname{Grad}\left(P_{1}\right)=\operatorname{Grad}\left(P_{i}\right)$ for all $1 \leq i \leq n$. Thus $s y \in \operatorname{Grad}\left(P_{1}\right)=\bigcap_{i=1}^{n} \operatorname{Grad}\left(P_{i}\right)=\operatorname{Grad}\left(\bigcap_{i=1}^{n} P_{i}\right)$. Therefore, $\bigcap_{i=1}^{n} P_{i}$ is a graded S-primary ideal of R.

Recall that if R is a G-graded ring and $S \subseteq h(R)$ is a multiplicative set, then $S^{-1} R$ is a G-graded ring with $\left(S^{-1} R\right)_{g}=\left\{\frac{a}{s}, a \in R_{h}, s \in S \cap R_{h g^{-1}}\right\}$ for all $g \in G$. In addition, if I is a graded ideal of R, then $S^{-1} I$ is a graded ideal of $S^{-1} R$ [2].

Lemma 2. Let R be a graded ring and P be a graded ideal of R. If P is a graded prime ideal of R, then $S^{-1} P$ is a graded prime ideal of $S^{-1} R$.

Proof. Let $x, y \in h(R)$ and $s_{1}, s_{2} \in S$ in such wise $\frac{x}{s_{1}} \frac{y}{s_{2}} \in S^{-1} P$. Then there exists $s_{3} \in S$ such that $s_{3} x y \in P$, and $s_{3} x \in P$ or $y \in P$. If $s_{3} x \in P$, subsequently $\frac{x}{s_{1}}=\frac{s_{3} x}{s_{3} s_{1}} \in S^{-1} P$. If $y \in P$, then $\frac{y}{s_{2}} \in S^{-1} P$. Thereupon, $S^{-1} P$ is a graded prime ideal of $S^{-1} R$.

By ([4], Lemma 1.8), if P is a graded primary ideal of R, then $Q=\operatorname{Grad}(P)$ is a graded prime ideal of R, and we say that P is a graded Q-primary ideal of R.

Lemma 3. Allow R to be a graded ring and P be a graded ideal of R. If P is a graded Q-primary ideal of R, then $S^{-1} P$ is a graded $S^{-1} Q$-primary ideal of $S^{-1} R$.

Proof. Let $x, y \in h(R)$ and $s_{1}, s_{2} \in S$ such that $\frac{x}{s_{1}} \frac{y}{s_{2}} \in S^{-1} P$. Then there exists $s_{3} \in S$ such that $s_{3} x y \in P$, then $s_{3} x \in P$ or $y \in \operatorname{Grad}(P)$. If $s_{3} x \in P$, then $\frac{x}{s_{1}}=\frac{s_{3} x}{s_{3} s_{1}} \in S^{-1} P$. If $y \in \operatorname{Grad}(P)$, then $\frac{y}{s_{2}} \in S^{-1} \operatorname{Grad}(P)=\operatorname{Grad}\left(S^{-1} P\right)$ by ([8], Proposition 3.11 (v)). Therefore, $S^{-1} P$ is a graded primary ideal of $S^{-1} R$. Note that, $\operatorname{Grad}\left(S^{-1} P\right)=S^{-1} \operatorname{Grad}(P)=S^{-1} Q$ which is a graded prime ideal of $S^{-1} R$ by Lemma 2. Thereupon, $S^{-1} P$ is a graded $S^{-1} Q$ primary ideal of $S^{-1} R$.

Proposition 5. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that P is a graded ideal of R with $P \cap S=\varnothing$. Then P is a graded S-primary ideal of R if and only if $S^{-1} P$ is a graded primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$.

Proof. Suppose that P is a graded S-primary ideal of R. Then there exists $s \in S$ in such a manner for all $x, y \in h(R)$ with $x y \in P$, we have either $s x \in P$ or $s y \in \operatorname{Grad}(P)$. Considering $P \bigcap S=\varnothing, S^{-1} P \neq S^{-1} R$ by ([8], Proposition 3.11 (ii)). Allow $x, y \in h(R)$ and $s_{1}, s_{2} \in S$ such that $\frac{x}{s_{1}} \frac{y}{s_{2}} \in S^{-1} P$. Then there exists $s_{3} \in S$ such that $s_{3} x y \in P$, and then $s s_{3} x \in P$ or $s y \in \operatorname{Grad}(P)$. If $s s_{3} x \in P$, then $\frac{x}{s_{1}}=\frac{s s_{3} x}{s s_{3} s_{1}} \in S^{-1} P$. If $s y \in \operatorname{Grad}(P)$, then $\frac{y}{s_{2}}=\frac{s y}{s s_{2}} \in S^{-1} \operatorname{Grad}(P)=\operatorname{Grad}\left(S^{-1} P\right)$ by ([8], Proposition 3.11 (v)). Thus, $S^{-1} P$ is a graded primary ideal of $S^{-1} R$. Now, by Proposition $2,(P: s)$ is a graded primary ideal of R for some $s \in S$. Clearly, $(P: s) \cap S=\varnothing$. On that account, $S((P: s))=(P: s)$ by Lemma 3. Also, by ([8], Corollary 3.15), $S^{-1}(P: s)=\left(S^{-1} P:_{S^{-1} R} \frac{s}{1}\right)$. Since $\frac{s}{1} \in U\left(S^{-1} R\right)$, $S^{-1}(P: s)=S^{-1} P$, and $S((P: s))=S P$, accordingly $S P=(P: s)$. Contrarily, if $S^{-1} P$ is a graded $S^{-1} Q$-primary ideal of $S^{-1} R$, then $S P$ is a graded Q-primary ideal of R. Hence, we get that $(P: s)$ is a graded primary ideal of R for some $s \in S$. Thence, we obtain by Proposition 2 that P is a graded S-primary ideal of R.

Theorem 1. Let R be a graded ring, S be a multiplicative subset of $h(R)$ and P be a graded ideal of R such that $P \bigcap S=\varnothing$. Thus the following statements are equivalent:

1. P is a graded S-primary ideal of R.
2. $(P: s)$ is a graded primary ideal of R for some $s \in S$.
3. $\quad S^{-1} P$ is a graded primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$.

Proof. It follows from Propositions 2 and 5.
Proposition 6. Let R be a graded ring, S be a multiplicative subset of $h(R)$ and P be a graded ideal of R such that $P \cap S=\varnothing$. If P is a graded S-primary ideal of R, then the ascending sequence of graded ideals $(P: s r) \subseteq\left(P: s r^{2}\right) \subseteq\left(P: s r^{3}\right) \subseteq \ldots$ is stationary for some $s \in S$ and for all $r \in h(R)$.

Proof. By Proposition 2, $(P: s)$ is a graded primary ideal of R for some $s \in S$. Let $r \in h(R)$. Suppose that $r \notin \operatorname{Grad}((P: s))$. As $(P: s)$ is a graded primary ideal of R, it follows that for all positive integer $n,\left(P: s r^{n}\right)=(P: s)$. Assume that $r \in \operatorname{Grad}((P: s))$. Then $s r^{k} \in P$ for some positive integer k. Hence, for all $j \geq k,\left(P: s r^{j}\right)=R$.

Proposition 7. Let R be a graded ring, S be a multiplicative subset of $h(R)$ and P be a graded ideal of R such that $P \cap S=\varnothing$. If P is a graded S-primary ideal of R, then the ascending sequence of graded ideals $(P: r) \subseteq\left(P: r^{2}\right) \subseteq\left(P: r^{3}\right) \subseteq \ldots$ is S-stationary for all $r \in h(R)$.

Proof. Let $r \in h(R)$. Now, there exists positive integer n such that for all $j \geq n,(P$: $\left.s r^{j}\right)=\left(P: s r^{n}\right)$ for some $s \in S$ by Proposition 6. Let $j \geq n$ and $a \in\left(P: r^{j}\right)$. Then sar ${ }^{j} \in P$ so, $a \in\left(P: s r^{j}\right)=\left(P: s r^{n}\right)$. This implies that $s a \in\left(P: r^{n}\right)$. This proves that $s\left(P: r^{j}\right) \subseteq\left(P: r^{n}\right)$ for all $j \geq n$. Wherefore, the ascending sequence of graded ideals $(P: r) \subseteq\left(P: r^{2}\right) \subseteq\left(P: r^{3}\right) \subseteq \ldots$ is S-stationary for all $r \in h(R)$.

Remark 2. Let R be a graded ring that is not graded local, $S=U(R), X_{1}, X_{2}$ be two distinct graded maximal ideals of R and $P=X_{1} \cap X_{2}$. Presume $r \in h(R)$. Then for any positive integer n, $\left(P: r^{n}\right)=\left(X_{1}: r^{n}\right) \cap\left(X_{2}: r^{n}\right)$. For $i=1,2$, if $r \in X_{i}$, then $\left(X_{i}: r^{n}\right)=R$ for all positive integer n, and if $r \notin X_{i}$, then $\left(X_{i}: r^{n}\right)=X_{i}$ for all positive integer n. As a result, the ascending sequence of graded ideals $(P: r) \subseteq\left(P: r^{2}\right) \subseteq\left(P: r^{3}\right) \subseteq \ldots$ is stationary, but P is not a graded primary ideal of R.

Let R be a G-graded ring. Then R is said to be a graded von Neumann regular ring if for each $a \in R_{g}(g \in G)$, there exists $x \in R_{g^{-1}}$ such that $a=a^{2} x$ [9].

Proposition 8. Let R be a graded von Neumann regular ring and I be a graded ideal of R. Then $\operatorname{Grad}(I)=I$.

Proof. Clearly, $I \subseteq \operatorname{Grad}(I)$. Let $a \in \operatorname{Grad}(I)$. Then $a_{g} \in \operatorname{Grad}(I)$ for all $g \in G$ as $\operatorname{Grad}(I)$ is a graded ideal. Suppose that $g \in G$. Then $a_{g}^{n} \in I$ for some positive integer n. Since R is graded von Neumann regular, there exists $x \in R_{g^{-1}}$ such that $a_{g}=a_{g}^{2} x$. Hence, $R a_{g}=R a_{g}^{2}$. So, $R a_{g}=R a_{g}^{n} \subseteq I$ and so, $a_{g} \in I$ for all $g \in G$, and hence $a \in I$. This proves that $\operatorname{Grad}(I) \subseteq I$ and so, $I=\operatorname{Grad}(I)$.

Corollary 1. Let R be a graded von Neumann regular ring and I be a graded ideal of R. Then I is a graded prime ideal of R if and only if I is a graded primary ideal of R.

Proof. Apply Proposition 8.
Theorem 2. Let R be a graded ring, S be a multiplicative subset of $h(R)$ and P be a graded ideal of R such that $P \cap S=\varnothing$. Suppose that $S^{-1} R$ is graded von Neumann regular. Then P is a graded S-prime ideal of R if and only if P is a graded S-primary ideal of R.

Proof. Suppose that P is a graded S-primary ideal of R. By Proposition $5, S^{-1} P$ is a graded primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$. Since $S^{-1} R$ is graded von Neumann regular, we get that $S^{-1} P$ is a graded prime ideal of $S^{-1} R$ by Corollary 1. Thereupon, $S P$ is a graded prime ideal of R. As $S P=(P: s)$, we obtain that $(P: s)$ is a graded prime ideal of R for some $s \in S$. Therefore, it follows from ([7], Proposition 2.4) that P is a graded S-prime ideal of R. The converse is clear.

3. Graded Strongly S-Primary Ideals

In this section, we introduce and study the concept of graded strongly S-primary ideals. We examine some basic properties of graded strongly S-primary ideals.

Definition 2.

1. Let R be a graded ring and P be a graded primary ideal of R. Then P is said to be a graded strongly primary ideal of R if $(\operatorname{Grad}(P))^{n} \subseteq P$ for some $n \in \mathbb{N}$.
2. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded S-primary ideal of R. Then P is said to be a graded strongly S-primary ideal of R if there exist $s^{\prime} \in S$ and $n \in \mathbb{N}$ such that $s^{\prime}(\operatorname{Grad}(P))^{n} \subseteq P$.

Proposition 9. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. If P is a graded S-prime ideal of R, then P is a graded strongly S-primary ideal of R.

Proof. Since P is a graded S-prime ideal of $R,(P: s)$ is a graded prime ideal of R for some $s \in S$ by $([7]$, Proposition 2.4), and then $s(\operatorname{Grad}(P)) \subseteq s(\operatorname{Grad}((P: s)))=s(P: s) \subseteq P$. Therefore, P is a graded strongly S-primary ideal of R.

Proposition 10. Allow R to be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \cap S=\varnothing$. Then P is a graded strongly S-primary ideal of R if and only if $(P: s)$ is a graded strongly primary ideal of R for some $s \in S$.

Proof. Suppose that P is a graded strongly S-primary ideal of R. Then there exist $s, s^{\prime} \in S$ and $n \in \mathbb{N}$ such that for all $x, y \in h(R)$ with $x y \in P$, we have either $s x \in P$ or $s y \in \operatorname{Grad}(P)$ and $s^{\prime}(\operatorname{Grad}(P))^{n} \subseteq P$. Note that $s s^{\prime} \in S$, for all $x, y \in h(R)$ with $x y \in P$, we have either $s s^{\prime} x \in P$ or $s s^{\prime} y \in \operatorname{Grad}(P)$ and $s s^{\prime}(\operatorname{Grad}(P))^{n} \subseteq P$. Hence, on replacing s, s^{\prime} by $s s^{\prime}$, we can assume without loss of generality that $s=s^{\prime}$. Now, $(P: s)$ is a graded primary ideal
of R by Proposition 2. Let $r \in \operatorname{Grad}((P: s))$. Then $s r^{m} \in P$ for some $m \in \mathbb{N}$. Hence, $s r \in \operatorname{Grad}(P)$. This implies that $\operatorname{s.Grad}((P: s)) \subseteq \operatorname{Grad}(P)$. Take that $I=(P: s)$. Then $s^{n+1}(\operatorname{Grad}(I))^{n} \subseteq s(\operatorname{Grad}(P))^{n} \subseteq P \subseteq(P: s)$. As $s^{n+1} \notin \operatorname{Grad}((P: s))$ and $(P: s)$ is a graded primary ideal of R, we get that $(\operatorname{Grad}(I))^{n} \subseteq(P: s)=I$. This proves that $(P: s)$ is a graded strongly primary ideal of R. Contrariwise, take that $I=(P: s)$. Now, P is a graded S-primary ideal of R by Proposition 2 and there exists $n \in \mathbb{N}$ such that $(\operatorname{Grad}(I))^{n} \subseteq I=(P: s)$. As $P \subseteq I$, we get that $(\operatorname{Grad}(P))^{n} \subseteq(\operatorname{Grad}(I))^{n} \subseteq(P: s)$. This implies that $s(\operatorname{Grad}(P))^{n} \subseteq P$ and so, P is a graded strongly S-primary ideal of R.

Proposition 11. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that $n \geq 1$, $i \in\{1, \ldots, n\}$ and P_{i} is a graded ideal of R with $P_{i} \cap S=\varnothing$. If P_{i} is a graded strongly S-primary ideal of R for each i with $\operatorname{Grad}\left(P_{i}\right)=\operatorname{Grad}\left(P_{j}\right)$ for all $i, j \in\{1, \ldots, n\}$, then $\bigcap_{i=1}^{n} P_{i}$ is a graded strongly S-primary ideal of R.

Proof. It is already verified that $\bigcap_{i=1}^{n} P_{i}$ is a graded S-primary ideal of R by Proposition 4. Now, for each $i \in\{1, \ldots, n\}$, there exist $s_{i} \in S$ and a positive integer k_{i} such that $s_{i}\left(\operatorname{Grad}\left(P_{i}\right)\right)^{k_{i}} \subseteq P_{i}$. As $\operatorname{Grad}\left(\bigcap_{i=1}^{n} P_{i}\right)=\operatorname{Grad}\left(P_{j}\right)$ for all $j \in\{1, \ldots, n\}$, it follows that $s(\operatorname{Grad}(I))^{k} \subseteq I$, where $s=\prod_{i=1}^{n} s_{i}, I=\bigcap_{i=1}^{n} P_{i}$ and $k=\max \left\{t_{1}, \ldots, t_{n}\right\}$. This proves that $\bigcap_{i=1}^{n} P_{i}$ is a graded strongly S-primary ideal of R.

Proposition 12. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Intend that P is a graded ideal of R with $P \cap S=\varnothing$. Then P is a graded strongly S-primary ideal of R if and only if $S^{-1} P$ is a graded strongly primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$.

Proof. Suppose that P is a graded strongly S-primary ideal of R. Then there exist $s \in S$ and $n \in \mathbb{N}$ such that for all $x, y \in h(R)$ with $x y \in P$, we have either $s x \in P$ or $s y \in \operatorname{Grad}(P)$ and $s(\operatorname{Grad}(P))^{n} \subseteq P$. It is already verified that $S^{-1} P$ is a graded primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$ by Proposition 5. Now, as $\frac{s}{1} \in U\left(S^{-1} R\right)$, it follows from ([8], Proposition $3.11(\mathrm{v})$) that $\left(\operatorname{Grad}\left(S^{-1} P\right)\right)^{n}=S^{-1}\left(s(\operatorname{Grad}(P))^{n}\right) \subseteq S^{-1} P$. Hence, $S^{-1} P$ is a graded strongly primary ideal of $S^{-1} R$. Again, if $S^{-1} P$ is a graded strongly $S^{-1} Q$-primary ideal of $S^{-1} R$, then $S P$ is a graded strongly Q-primary ideal of R. Hence, we get that $(P: s)$ is a graded strongly primary ideal of R for some $s \in S$. Therefore, we obtain by Proposition 10 that P is a graded strongly S-primary ideal of R.

Theorem 3. Allow R to be a graded ring, S to be a multiplicative subset of $h(R)$ and P to be a graded ideal of R such that $P \cap S=\varnothing$. Then the following statements are equivalent:

1. $\quad P$ is a graded strongly S-primary ideal of R.
2. ($P: s)$ is a graded strongly primary ideal of R for some $s \in S$.
3. $S^{-1} P$ is a graded strongly primary ideal of $S^{-1} R$ and $S P=(P: s)$ for some $s \in S$.

Proof. It follows from Propositions 10 and 12.

4. Conclusions

In this study, we introduced the concept of graded S-primary ideals which is a generalization of graded primary ideals. Furthermore, we introduced the concept of graded strongly S-primary ideals. We investigated some basic properties of graded S-primary ideals and graded strongly S-primary ideals. As a proposal to further the work on the topic, we are going to study the concepts of graded S-absorbing and graded S-absorbing pri-
mary ideals as a generalization of the concepts of graded absorbing and graded absorbing primary ideals.

Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The author gratefully thank the referees for the constructive comments, corrections and suggestions which definitely help to improve the readability and quality of the article.

Conflicts of Interest: The author declares that there is no conflict of interest.

References

1. Hazrat, R. Graded Rings and Graded Grothendieck Groups; Cambridge University Press: Cambridge, UK, 2016.
2. Nastasescu, C.; Oystaeyen, F. Methods of Graded Rings, Lecture Notes in Mathematics, 1836; Springer: Berlin, Germany, 2004.
3. Refai, M.; Hailat, M.; Obiedat, S. Graded radicals and graded prime spectra. Far East J. Math. Sci. 2000, 59-73.
4. Refai, M.; Al-Zoubi, K. On graded primary ideals. Turk. J. Math. 2004, 28, 217-229.
5. Visweswaran, S. Some results on S-primary ideals of a commutative ring. Beiträge zur Algebra Und Geom. Algebra Geom. 2021. [CrossRef]
6. Saber, H.; Alraqad, T.; Abu-Dawwas, R. On graded s-prime submodules. Aims Math. 2020, 6, 2510-2524. [CrossRef]
7. Saber, H.; Alraqad, T.; Abu-Dawwas, R.; Shtayat, H.; Hamdan, M. On graded weakly S-Prime ideals. Preprints 2021, 2021080479, submitted. [CrossRef]
8. Atiyah, M.F.; Macdonald, I.G. Introduction to Commutative Algebra; Addison-Wesley: Reading, MA, USA, 1969.
9. Refai, M.; Abu-Dawwas, R.; Tekir, Ü.; Koç, S.; Awawdeh, R.; Yıldız, E. On graded ϕ-1-absorbing prime ideals. arXiv 2021, arXiv:2107.04659v2.
