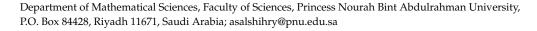


Article On Graded S-Primary Ideals

Azzh Saad Alshehry



Abstract: Let *R* be a commutative graded ring with unity, *S* be a multiplicative subset of homogeneous elements of *R* and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. In this article, we introduce the concept of graded *S*-primary ideals which is a generalization of graded primary ideals. We say that *P* is a graded *S*-primary ideal of *R* if there exists $s \in S$ such that for all $x, y \in h(R)$, if $xy \in P$, then $sx \in P$ or $sy \in Grad(P)$ (the graded radical of *P*). We investigate some basic properties of graded *S*-primary ideals.

Keywords: graded prime ideals; graded primary ideals; graded *S*-prime ideals; graded *S*-primary ideals

1. Introduction

Throughout this article, *G* will be a group with the identity of *e* and *R* will be a commutative ring with a nonzero unity of 1. Then *R* is called *G*-graded if $R = \bigoplus_{g \in G} R_g$ with $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$ where R_g is an additive subgroup of *R*. The elements of R_g are called homogeneous of degree *g*. If $a \in R$, then *a* can be written uniquely as $\sum_{g \in G} a_g$, where *a* is the component of *a* in *R*. The component *R* is a subring of *R* and $1 \in R$.

 a_g is the component of a in R_g . The component R_e is a subring of R and $1 \in R_e$. The set of all homogeneous elements of R is $h(R) = \bigcup_{g \in G} R_g$. Let P be an ideal of a graded ring R.

Then *P* is called a graded ideal if $P = \bigoplus_{g \in G} (P \cap R_g)$, i.e., for $a \in P$, $a = \sum_{g \in G} a_g$ where $a_g \in P$ for all $a \in G$. It is not required that $a \in P$ is the last of th

for all $g \in G$. It is not necessary that every ideal of a graded ring is a graded ideal. For more details and terminology, look at [1,2].

Let *P* be a proper graded ideal of *R*. Then the graded radical of *P* is denoted by Grad(P) and it is defined as written below:

$$Grad(P) = \left\{ x = \sum_{g \in G} x_g \in R : \text{ for all } g \in G, \text{ there exists } n_g \in \mathbb{N} \text{ such that } x_g^{n_g} \in P \right\}.$$

Note that Grad(P) is always a graded ideal of *R* (check [3]).

A proper graded ideal *P* of *R* is said to be a graded prime if $xy \in P$ implies that $x \in P$ or $y \in P$ where $x, y \in h(R)$ [3]. Graded prime ideals play a very important role in the Commutative Graded Rings Theory. There are several ways to generalize the concept of a graded prime ideal, for example, Refai and Al-Zoubi in [4] introduced the concept of graded primary ideals, a proper graded ideal *P* of *R* is said to be a graded primary ideal whenever $ab \in P$ where $a, b \in h(R)$, then either $a \in P$ or $b \in Grad(P)$.

Let $S \subseteq R$ be a multiplicative set and P be an ideal of R such that $P \cap S = \emptyset$. In [5], P is said to be a S-primary ideal of R if $s \in S$ exists such that for all $x, y \in R$, if $xy \in P$, then $sx \in P$ or sy is in the radical of P.

Let *R* be a graded ring, $S \subseteq h(R)$ be a multiplicative set and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. In [6], *P* is said to be a graded *S*-prime ideal of *R* if $s \in S$ exists such that if $xy \in P$, then $sx \in P$ or $sy \in P$ where $x, y \in h(R)$. Also, several properties of graded *S*-prime ideals have been examined and investigated in [7]. In this article, motivated

Citation: Alshehry, A.S. On Graded S-Primary Ideals. *Mathematics* 2021, 9, 2637. https://doi.org/10.3390/ math9202637

Academic Editor: Takayuki Hibi

Received: 13 September 2021 Accepted: 17 October 2021 Published: 19 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). by [5], we introduce the concept of graded *S*-primary ideals. We say that *P* is a graded *S*-primary ideal of *R* if there exists $s \in S$ such that for all $x, y \in h(R)$, if $xy \in P$, then $sx \in P$ or $sy \in Grad(P)$. Clearly, every *S*-primary ideal is graded *S*-primary, we prove that the converse is not necessarily true (Example 1). It is also evident that every graded primary ideal that is disjoint with *S* is graded *S*-primary, we prove that the converse is not necessarily true (Example 2). Note that if *S* consists of units of h(R), then the notions of graded *S*-primary and graded primary ideal coincide. We investigate some basic properties of graded *S*-primary ideals. Indeed, our results are motivated by the interesting results proved in [5–7].

2. Graded S-Primary Ideals

In this section, we introduce the concept of graded *S*-primary ideals. We investigate some basic properties of graded *S*-primary ideals.

Definition 1. Let *R* be a graded ring, $S \subseteq h(R)$ be a multiplicative set and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. We say that *P* is a graded *S*-primary ideal of *R* if there exists $s \in S$ such that for all $x, y \in h(R)$, if $xy \in P$, then $sx \in P$ or $sy \in Grad(P)$.

Clearly, every *S*-primary ideal is graded *S*-primary, but the converse is not necessarily true, check the following example that is raised from ([7], Example 2.2):

Example 1. Consider $R = \mathbb{Z}[i]$ and $G = \mathbb{Z}_2$. Then R is G-graded by $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Consider the graded ideal I = 5R of R. We show that I is a graded prime ideal of R. Let $xy \in I$ for some $x, y \in h(R)$.

Case (1): $x, y \in R_0$. In this case, $x, y \in \mathbb{Z}$ such that 5 divides xy, and then either 5 divides x or 5 divides y as 5 is a prime, which implies that either $x \in I$ or $y \in I$.

Case (2): $x, y \in R_1$. In this case, x = ia and y = ib for some $a, b \in \mathbb{Z}$ such that 5 divides xy = -ab, and then 5 divides ab in \mathbb{Z} , and again either 5 divides a or 5 divides b, which implies that either 5 divides x = ia or 5 divides y = ib, and hence either $x \in I$ or $y \in I$.

Case (3): $x \in R_0$ and $y \in R_1$. In this case, $x \in \mathbb{Z}$ and y = ib for some $b \in \mathbb{Z}$ such that 5 divides xy = ixb in R, that is $ixb = 5(\alpha + i\beta)$ for some $\alpha, \beta \in \mathbb{Z}$, which gives that $xb = 5\beta$, that is 5 divides xb in \mathbb{Z} , and again either 5 divides x or 5 divides b, and then either 5 divides x or 5 divides y = ib in R, and hence either $x \in I$ or $y \in I$.

So, I is a graded prime ideal of R. Consider the graded ideal P = 10R of R and the multiplicative subset $S = \{2^n : n \text{ is a non-negative integer}\}$ of h(R). We show that P is a graded S-prime ideal of R. Note that $P \cap S = \emptyset$. Let $xy \in P$ for some $x, y \in h(R)$. Then 10 divides xy in R. Then $xy \in I$, and then $x \in I$ or $y \in I$ as I is graded prime, which implies that $2x \in P$ or $2y \in P$. Therefore, P is a graded S-prime ideal of R, and hence P is a graded S-primary ideal of R.

On the other hand, P is not an S-primary ideal of R since $3 - i, 3 + i \in R$ with $(3 - i)(3 + i) \in P$, $(s(3 - i))^n \notin P$ and $(s(3 + i))^n \notin P$ for each $s \in S$ and positive integer n.

It is obvious that every graded primary ideal that is disjoint with *S* is graded *S*-primary, but the converse is not necessarily true, check the next example. In fact, if *S* consists of units of h(R), then the notions of graded primary and graded *S*-primary ideals coincide. The next example is motivated by ([7], Example 2.3).

Example 2. Consider $R = \mathbb{Z}[X]$ and $G = \mathbb{Z}$. Then R is G-graded by $R_j = \mathbb{Z}X^j$ for $j \ge 0$ and $R_j = \{0\}$ otherwise. Consider the graded ideal P = 9XR of R and the multiplicative subset $S = \{9^n : n \text{ is a non-negative integer}\}$ of h(R). We show that P is a graded S-prime ideal of R. Note that $P \cap S = \emptyset$. Let $f(X)g(X) \in P$ for some $f(X), g(X) \in h(R)$. Then X divides f(X)g(X), and X divides f(X) or X divides g(X), which implies that $9f(X) \in P$ or $9g(X) \in P$. Therefore, P is a graded S-prime ideal of R, hence that P is a graded S-primary ideal of R. On the other hand, P is not a graded primary ideal of R since $9, X \in h(R)$ with $9.X \in P$, $9^n \notin P$ and $X^n \notin P$ for each positive integer n.

Proposition 1. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. If P is a graded S-primary ideal of R, then Grad(P) is a graded S-prime ideal of R.

Proof. Since $P \cap S = \emptyset$, $Grad(P) \cap S = \emptyset$. Let $x, y \in h(R)$ such that $xy \in Grad(P)$. Then $(xy)^n = x^n y^n \in P$ for some positive integer n, and then there exists $s \in S$ such that $sx^n \in P$ or $sy^n \in Grad(P)$, which implies that $sx \in Grad(P)$ or $sy \in Grad(Grad(P)) = Grad(P)$. Therefore, Grad(P) is a graded *S*-prime ideal of *R*. \Box

The next lemma is inspired by Example 2.

Lemma 1. Let *R* be an integral domain. Suppose that *R* is a graded ring, $a, b \in h(R)$ such that *Ra* is a nonzero graded prime ideal of *R* and *Rb* is a graded primary ideal of *R*. If $Rb \nsubseteq Ra$ and $S = \{b^n : n \text{ is a non-negative integer}\}$. Then P = Rab is a graded S-prime ideal of *R* which is not graded primary.

Proof. Firstly, we show that $a \notin P$. If $a \in P$, then a = rab for some $r \in R$, and then a(1 - rb) = 0, which implies that a = 0 or 1 = rb, and then $Ra = \{0\}$ or b is a unit, which is a contradiction in both cases. Secondly, we show that $P \cap S = \emptyset$. If $x \in P \cap S$, then $x = b^n \in Ra$ for some non-negative integer n, and then $b \in Ra$ as Ra is graded prime, and so $Rb \subseteq Ra$, which is a contradiction. Now, let $x, y \in h(R)$ such that $xy \in P$. Then $xy \in Ra$, and then $x \in Ra$ or $y \in Ra$, so $s = b \in S$ such that $sx \in P$ or $sy \in P$. Therefore, P is a graded S-prime ideal of R. On the other hand, $a, b \in h(R)$ such that $ab \in P$ and $a \notin P$. If $b \in Grad(P)$, then $b^n \in P$ for some positive integer n, which yields that $b^n \in P \cap S$, which is a contradiction. Therefore, P is not a graded primary ideal of R. \Box

Remark 1. In Example 2, $\langle X \rangle$ is a nonzero graded prime ideal of R and $\langle 9 \rangle$ is a graded primary ideal of R with $\langle 9 \rangle \notin \langle X \rangle$. So, by Lemma 1, $P = \langle 9X \rangle = 9XR$ is a graded S-prime ideal of R which is not graded primary, where $S = \{9^n : n \text{ is a non-negative integer}\}$.

Proposition 2. Let *R* be a graded ring, $S \subseteq h(R)$ be a multiplicative set and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. Then *P* is a graded *S*-primary ideal of *R* if and only if (P : s) is a graded primary ideal of *R* for some $s \in S$.

Proof. Suppose that *P* is a graded *S*-primary ideal of *R*. Then there exists $s \in S$ such that whenever $x, y \in h(R)$ with $xy \in P$, then either $sx \in P$ or $sy \in Grad(P)$. We show that $Grad((P:s)) = Grad((P:s^n))$ for all positive integer *n*. Let *n* be a positive integer. Then $(P:s) \subseteq (P:s^n)$, and then $Grad((P:s)) \subseteq Grad((P:s^n))$. Let $x \in Grad((P:s^n))$. Then $x_g \in Grad((P:s^n))$ for all $g \in G$ as the graded radical is a graded ideal, and then there exists a positive integer *k* such that $x_g^k s^n \in P$ for all $g \in G$. If $s^{n+1} \in Grad(P)$, then $s^{(n+1)m} \in P \cap S$ for some positive integer *m*, which is a contradiction. So, $sx_g^k \in P$ for all $g \in G$, and hence $x_g \in Grad((P:s))$ for all $g \in G$, so $x \in Grad((P:s))$. Therefore, $Grad((P:s)) = Grad((P:s^n))$. Now, let $x, y \in h(R)$ such that $xy \in (P:s)$. Then $sxy \in P$, and then $s^2x \in P$ or $sy \in Grad(P)$. If $s^2x \in P$, then as $s^3 \notin Grad(P)$, we have $sx \in P$, which means that $x \in (P:s)$. If $sy \in Grad(P)$, then $(sy)^n = s^n y^n \in P$ for some positive integer *n*, and then $y \in Grad((P:s^n)) = Grad((P:s))$. Hence, (P:s) is a graded primary ideal of *R*. Conversely, assume that (P:s) is a graded primary ideal of *R* for some $s \in S$. Let $x, y \in h(R)$ such that $xy \in P \subseteq (P:s)$. Then $x \in P \cap sy \in Grad(P)$. This shows that *P* is a graded *S*-primary ideal of *R*. \Box

Proposition 3. Let *R* be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that *P* is a graded primary ideal of *R* with $P \cap S = \emptyset$. Then for any $s \in S$, s*P* is a graded *S*-primary ideal of

R. Moreover, If $P \neq \{0\}$ and $\bigcap_{n=1}^{\infty} Rs^n = \{0\}$, then sP is not a graded primary ideal of R.

Proof. Let $s \in S$ and I = sP. As $I \subseteq P$ and $P \cap S = \emptyset$, it follows that $I \cap S = \emptyset$. Since *P* is a graded primary ideal of *R* with $Grad(P) \cap S = \emptyset$, we get that (I : s) = P. Consequently, (I : s) is a graded primary ideal of *R*. Therefore, we obtain from Proposition 2 that I = sP

is a graded *S*-primary ideal of *R*. Moreover, assume that $P \neq \{0\}$ and $\bigcap_{n=1}^{\infty} Rs^n = \{0\}$. if

P = sP, then $P = s^n P$ for each $n \ge 1$. From $\bigcap_{n=1}^{\infty} Rs^n = \{0\}$, it follows that $P = \{0\}$, which is a contradiction. In consequence, $P \ne sP$. So, there exists $x \in P - sP$, and then $x_g \notin sP$ for some $g \in G$. Note that $x_g \in P$ as P is a graded ideal. Hence, $sx_g \in sP = I$ with $x_g \notin I$ and $s \notin Grad(I)$. Therefore, I = sP is not a graded primary ideal of R. \Box

Proposition 4. Allow *R* to be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that $n \ge 1, i \in \{1, ..., n\}$ and P_i is a graded ideal of *R* with $P_i \cap S = \emptyset$. If P_i is a graded *S*-primary ideal of *R* for each *i* with $Grad(P_i) = Grad(P_j)$ for all $i, j \in \{1, ..., n\}$, then $\bigcap_{i=1}^{n} P_i$ is a graded *S*-primary ideal of *R*.

Proof. Since P_i is a graded S-primary ideal of R, there exists $s_i \in S$ to this extent for all $x, y \in h(R)$ with $xy \in P_i$, we have either $s_i x \in P_i$ or $s_i y \in Grad(P_i)$. Let $s = \prod_{i=1}^n s_i$. Then $s \in S$. Assume that $x, y \in h(R)$ in such a way $xy \in \bigcap_{i=1}^n P_i$ and $sx \notin \bigcap_{i=1}^n P_i$. Then $sx \notin P_k$ for some $1 \le k \le n$, and then $s_k x \notin P_k$. Seeing as $xy \in P_k$, $s_k y \in Grad(P_k)$. Therefore, $sy \in Grad(P_k)$. By assumption, $Grad(P_1) = Grad(P_i)$ for all $1 \le i \le n$. Thus $sy \in Grad(P_1) = \bigcap_{i=1}^n Grad(P_i) = Grad\left(\bigcap_{i=1}^n P_i\right)$. Therefore, $\bigcap_{i=1}^n P_i$ is a graded S-primary ideal of R. \Box

Recall that if *R* is a *G*-graded ring and $S \subseteq h(R)$ is a multiplicative set, then $S^{-1}R$ is a *G*-graded ring with $(S^{-1}R)_g = \left\{\frac{a}{s}, a \in R_h, s \in S \cap R_{hg^{-1}}\right\}$ for all $g \in G$. In addition, if *I* is a graded ideal of *R*, then $S^{-1}I$ is a graded ideal of $S^{-1}R$ [2].

Lemma 2. Let R be a graded ring and P be a graded ideal of R. If P is a graded prime ideal of R, then $S^{-1}P$ is a graded prime ideal of $S^{-1}R$.

Proof. Let $x, y \in h(R)$ and $s_1, s_2 \in S$ in such wise $\frac{x}{s_1} \frac{y}{s_2} \in S^{-1}P$. Then there exists $s_3 \in S$ such that $s_3xy \in P$, and $s_3x \in P$ or $y \in P$. If $s_3x \in P$, subsequently $\frac{x}{s_1} = \frac{s_3x}{s_3s_1} \in S^{-1}P$. If $y \in P$, then $\frac{y}{s_2} \in S^{-1}P$. Thereupon, $S^{-1}P$ is a graded prime ideal of $S^{-1}R$. \Box

By ([4], Lemma 1.8), if *P* is a graded primary ideal of *R*, then Q = Grad(P) is a graded prime ideal of *R*, and we say that *P* is a graded *Q*-primary ideal of *R*.

Lemma 3. Allow *R* to be a graded ring and *P* be a graded ideal of *R*. If *P* is a graded *Q*-primary ideal of *R*, then $S^{-1}P$ is a graded $S^{-1}Q$ -primary ideal of $S^{-1}R$.

Proof. Let $x, y \in h(R)$ and $s_1, s_2 \in S$ such that $\frac{x}{s_1} \frac{y}{s_2} \in S^{-1}P$. Then there exists $s_3 \in S$ such that $s_3xy \in P$, then $s_3x \in P$ or $y \in Grad(P)$. If $s_3x \in P$, then $\frac{x}{s_1} = \frac{s_3x}{s_3s_1} \in S^{-1}P$. If $y \in Grad(P)$, then $\frac{y}{s_2} \in S^{-1}Grad(P) = Grad(S^{-1}P)$ by ([8], Proposition 3.11 (v)). Therefore, $S^{-1}P$ is a graded primary ideal of $S^{-1}R$. Note that, $Grad(S^{-1}P) = S^{-1}Grad(P) = S^{-1}Q$ which is a graded prime ideal of $S^{-1}R$ by Lemma 2. Thereupon, $S^{-1}P$ is a graded $S^{-1}Q$ -primary ideal of $S^{-1}R$.

Proposition 5. Let *R* be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that *P* is a graded ideal of *R* with $P \cap S = \emptyset$. Then *P* is a graded *S*-primary ideal of *R* if and only if $S^{-1}P$ is a graded primary ideal of $S^{-1}R$ and SP = (P : s) for some $s \in S$.

Proof. Suppose that *P* is a graded *S*-primary ideal of *R*. Then there exists *s* ∈ *S* in such a manner for all *x*, *y* ∈ *h*(*R*) with *xy* ∈ *P*, we have either *sx* ∈ *P* or *sy* ∈ *Grad*(*P*). Considering $P \cap S = \emptyset$, $S^{-1}P \neq S^{-1}R$ by ([8], Proposition 3.11 (ii)). Allow *x*, *y* ∈ *h*(*R*) and *s*₁, *s*₂ ∈ *S* such that $\frac{x}{s_1} \frac{y}{s_2} \in S^{-1}P$. Then there exists *s*₃ ∈ *S* such that *s*₃*xy* ∈ *P*, and then *ss*₃*x* ∈ *P* or *sy* ∈ *Grad*(*P*). If *ss*₃*x* ∈ *P*, then $\frac{x}{s_1} = \frac{ss_3x}{ss_3s_1} \in S^{-1}P$. If *sy* ∈ *Grad*(*P*), then $\frac{y}{s_2} = \frac{sy}{ss_2} \in S^{-1}Grad(P) = Grad(S^{-1}P)$ by ([8], Proposition 3.11 (v)). Thus, *S*⁻¹*P* is a graded primary ideal of *S*⁻¹*R*. Now, by Proposition 2, (*P* : *s*) is a graded primary ideal of *S*⁻¹*R*. Now, by Proposition 2, (*P* : *s*) is a graded primary ideal of *S*⁻¹*R*, *S*⁻¹(*P* : *s*) = (*S*⁻¹*P* : $\frac{s}{s_1} = \frac{s}{s_1} \in U(S^{-1}R)$, *S*⁻¹(*P* : *s*) = *S*⁻¹*P*, and *S*((*P* : *s*)) = *SP*, accordingly *SP* = (*P* : *s*). Contrarily, if *S*⁻¹*P* is a graded *S*⁻¹*Q*-primary ideal of *S*⁻¹*R*, then *SP* is a graded *Q*-primary ideal of *R*. Hence, we get that (*P* : *s*) is a graded primary ideal of *R* for some *s* ∈ *S*. Thence, we obtain by Proposition 2 that *P* is a graded *S*-primary ideal of *R*. \Box

Theorem 1. Let *R* be a graded ring, *S* be a multiplicative subset of h(R) and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. Thus the following statements are equivalent:

- 1. *P* is a graded S-primary ideal of *R*.
- 2. (P:s) is a graded primary ideal of R for some $s \in S$.
- 3. $S^{-1}P$ is a graded primary ideal of $S^{-1}R$ and SP = (P:s) for some $s \in S$.

Proof. It follows from Propositions 2 and 5. \Box

Proposition 6. Let *R* be a graded ring, *S* be a multiplicative subset of h(R) and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. If *P* is a graded *S*-primary ideal of *R*, then the ascending sequence of graded ideals $(P : sr) \subseteq (P : sr^2) \subseteq (P : sr^3) \subseteq ...$ is stationary for some $s \in S$ and for all $r \in h(R)$.

Proof. By Proposition 2, (P:s) is a graded primary ideal of R for some $s \in S$. Let $r \in h(R)$. Suppose that $r \notin Grad((P:s))$. As (P:s) is a graded primary ideal of R, it follows that for all positive integer n, $(P:sr^n) = (P:s)$. Assume that $r \in Grad((P:s))$. Then $sr^k \in P$ for some positive integer k. Hence, for all $j \ge k$, $(P:sr^j) = R$. \Box

Proposition 7. Let *R* be a graded ring, *S* be a multiplicative subset of h(R) and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. If *P* is a graded *S*-primary ideal of *R*, then the ascending sequence of graded ideals $(P : r) \subseteq (P : r^2) \subseteq (P : r^3) \subseteq ...$ is *S*-stationary for all $r \in h(R)$.

Proof. Let $r \in h(R)$. Now, there exists positive integer *n* such that for all $j \ge n$, $(P : sr^j) = (P : sr^n)$ for some $s \in S$ by Proposition 6. Let $j \ge n$ and $a \in (P : r^j)$. Then $sar^j \in P$ so, $a \in (P : sr^j) = (P : sr^n)$. This implies that $sa \in (P : r^n)$. This proves that $s(P : r^j) \subseteq (P : r^n)$ for all $j \ge n$. Wherefore, the ascending sequence of graded ideals $(P : r) \subseteq (P : r^2) \subseteq (P : r^3) \subseteq ...$ is *S*-stationary for all $r \in h(R)$. \Box

Remark 2. Let *R* be a graded ring that is not graded local, S = U(R), X_1, X_2 be two distinct graded maximal ideals of *R* and $P = X_1 \cap X_2$. Presume $r \in h(R)$. Then for any positive integer *n*, $(P : r^n) = (X_1 : r^n) \cap (X_2 : r^n)$. For i = 1, 2, if $r \in X_i$, then $(X_i : r^n) = R$ for all positive integer *n*, and if $r \notin X_i$, then $(X_i : r^n) = X_i$ for all positive integer *n*. As a result, the ascending sequence of graded ideals $(P : r) \subseteq (P : r^2) \subseteq (P : r^3) \subseteq ...$ is stationary, but *P* is not a graded primary ideal of *R*.

Let *R* be a *G*-graded ring. Then *R* is said to be a graded von Neumann regular ring if for each $a \in R_g$ ($g \in G$), there exists $x \in R_{g^{-1}}$ such that $a = a^2 x$ [9].

Proposition 8. Let *R* be a graded von Neumann regular ring and I be a graded ideal of *R*. Then Grad(I) = I.

Proof. Clearly, $I \subseteq Grad(I)$. Let $a \in Grad(I)$. Then $a_g \in Grad(I)$ for all $g \in G$ as Grad(I) is a graded ideal. Suppose that $g \in G$. Then $a_g^n \in I$ for some positive integer n. Since R is graded von Neumann regular, there exists $x \in R_{g^{-1}}$ such that $a_g = a_g^2 x$. Hence, $Ra_g = Ra_g^2$. So, $Ra_g = Ra_g^n \subseteq I$ and so, $a_g \in I$ for all $g \in G$, and hence $a \in I$. This proves that $Grad(I) \subseteq I$ and so, I = Grad(I). \Box

Corollary 1. Let *R* be a graded von Neumann regular ring and *I* be a graded ideal of *R*. Then *I* is a graded prime ideal of *R* if and only if *I* is a graded primary ideal of *R*.

Proof. Apply Proposition 8. \Box

Theorem 2. Let *R* be a graded ring, *S* be a multiplicative subset of h(R) and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. Suppose that $S^{-1}R$ is graded von Neumann regular. Then *P* is a graded *S*-prime ideal of *R* if and only if *P* is a graded *S*-primary ideal of *R*.

Proof. Suppose that *P* is a graded *S*-primary ideal of *R*. By Proposition 5, $S^{-1}P$ is a graded primary ideal of $S^{-1}R$ and SP = (P : s) for some $s \in S$. Since $S^{-1}R$ is graded von Neumann regular, we get that $S^{-1}P$ is a graded prime ideal of $S^{-1}R$ by Corollary 1. Thereupon, *SP* is a graded prime ideal of *R*. As SP = (P : s), we obtain that (P : s) is a graded prime ideal of *R* for some $s \in S$. Therefore, it follows from ([7], Proposition 2.4) that *P* is a graded *S*-prime ideal of *R*. The converse is clear. \Box

3. Graded Strongly S-Primary Ideals

In this section, we introduce and study the concept of graded strongly *S*-primary ideals. We examine some basic properties of graded strongly *S*-primary ideals.

Definition 2.

- 1. Let R be a graded ring and P be a graded primary ideal of R. Then P is said to be a graded strongly primary ideal of R if $(Grad(P))^n \subseteq P$ for some $n \in \mathbb{N}$.
- 2. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded S-primary ideal of R. Then P is said to be a graded strongly S-primary ideal of R if there exist $s' \in S$ and $n \in \mathbb{N}$ such that $s'(Grad(P))^n \subseteq P$.

Proposition 9. Let *R* be a graded ring and $S \subseteq h(R)$ be a multiplicative set. If *P* is a graded *S*-prime ideal of *R*, then *P* is a graded strongly *S*-primary ideal of *R*.

Proof. Since *P* is a graded *S*-prime ideal of *R*, (P : s) is a graded prime ideal of *R* for some $s \in S$ by ([7], Proposition 2.4), and then $s(Grad(P)) \subseteq s(Grad((P : s))) = s(P : s) \subseteq P$. Therefore, *P* is a graded strongly *S*-primary ideal of *R*. \Box

Proposition 10. Allow *R* to be a graded ring, $S \subseteq h(R)$ be a multiplicative set and *P* be a graded ideal of *R* such that $P \cap S = \emptyset$. Then *P* is a graded strongly *S*-primary ideal of *R* if and only if (P:s) is a graded strongly primary ideal of *R* for some $s \in S$.

Proof. Suppose that *P* is a graded strongly *S*-primary ideal of *R*. Then there exist $s, s' \in S$ and $n \in \mathbb{N}$ such that for all $x, y \in h(R)$ with $xy \in P$, we have either $sx \in P$ or $sy \in Grad(P)$ and $s'(Grad(P))^n \subseteq P$. Note that $ss' \in S$, for all $x, y \in h(R)$ with $xy \in P$, we have either $ss'x \in P$ or $ss'y \in Grad(P)$ and $ss'(Grad(P))^n \subseteq P$. Hence, on replacing s, s' by ss', we can assume without loss of generality that s = s'. Now, (P : s) is a graded primary ideal

of *R* by Proposition 2. Let $r \in Grad((P : s))$. Then $sr^m \in P$ for some $m \in \mathbb{N}$. Hence, $sr \in Grad(P)$. This implies that $s.Grad((P : s)) \subseteq Grad(P)$. Take that I = (P : s). Then $s^{n+1}(Grad(I))^n \subseteq s(Grad(P))^n \subseteq P \subseteq (P : s)$. As $s^{n+1} \notin Grad((P : s))$ and (P : s) is a graded primary ideal of *R*, we get that $(Grad(I))^n \subseteq (P : s) = I$. This proves that (P : s) is a graded strongly primary ideal of *R*. Contrariwise, take that I = (P : s). Now, *P* is a graded *S*-primary ideal of *R* by Proposition 2 and there exists $n \in \mathbb{N}$ such that $(Grad(I))^n \subseteq I = (P : s)$. As $P \subseteq I$, we get that $(Grad(P))^n \subseteq (Grad(I))^n \subseteq (P : s)$. This implies that $s(Grad(P))^n \subseteq P$ and so, *P* is a graded strongly *S*-primary ideal of *R*. \Box

Proposition 11. Let *R* be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that $n \ge 1$, $i \in \{1, ..., n\}$ and P_i is a graded ideal of *R* with $P_i \cap S = \emptyset$. If P_i is a graded strongly *S*-primary ideal of *R* for each *i* with $Grad(P_i) = Grad(P_j)$ for all $i, j \in \{1, ..., n\}$, then $\bigcap_{i=1}^{n} P_i$ is a graded strongly *S*-primary ideal of *R*.

Proof. It is already verified that $\bigcap_{i=1}^{n} P_i$ is a graded *S*-primary ideal of *R* by Proposition 4. Now, for each $i \in \{1, ..., n\}$, there exist $s_i \in S$ and a positive integer k_i such that $s_i(Grad(P_i))^{k_i} \subseteq P_i$. As $Grad\left(\bigcap_{i=1}^{n} P_i\right) = Grad(P_j)$ for all $j \in \{1, ..., n\}$, it follows that $s(Grad(I))^k \subseteq I$, where $s = \prod_{i=1}^{n} s_i$, $I = \bigcap_{i=1}^{n} P_i$ and $k = max\{t_1, ..., t_n\}$. This proves that $\bigcap_{i=1}^{n} P_i$ is a graded strongly *S*-primary ideal of *R*. \Box

Proposition 12. Let *R* be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Intend that *P* is a graded ideal of *R* with $P \cap S = \emptyset$. Then *P* is a graded strongly *S*-primary ideal of *R* if and only if $S^{-1}P$ is a graded strongly primary ideal of $S^{-1}R$ and SP = (P:s) for some $s \in S$.

Proof. Suppose that *P* is a graded strongly *S*-primary ideal of *R*. Then there exist $s \in S$ and $n \in \mathbb{N}$ such that for all $x, y \in h(R)$ with $xy \in P$, we have either $sx \in P$ or $sy \in Grad(P)$ and $s(Grad(P))^n \subseteq P$. It is already verified that $S^{-1}P$ is a graded primary ideal of $S^{-1}R$ and SP = (P:s) for some $s \in S$ by Proposition 5. Now, as $\frac{s}{1} \in U(S^{-1}R)$, it follows from ([8], Proposition 3.11 (v)) that $(Grad(S^{-1}P))^n = S^{-1}(s(Grad(P))^n) \subseteq S^{-1}P$. Hence, $S^{-1}P$ is a graded strongly primary ideal of $S^{-1}R$. Again, if $S^{-1}P$ is a graded strongly $S^{-1}Q$ -primary ideal of $S^{-1}R$, then *SP* is a graded strongly *Q*-primary ideal of *R*. Hence, we get that (P:s) is a graded strongly primary ideal of *R* for some $s \in S$. Therefore, we obtain by Proposition 10 that *P* is a graded strongly *S*-primary ideal of *R*. \Box

Theorem 3. Allow *R* to be a graded ring, *S* to be a multiplicative subset of h(R) and *P* to be a graded ideal of *R* such that $P \cap S = \emptyset$. Then the following statements are equivalent:

- 1. *P is a graded strongly S-primary ideal of R.*
- 2. (P:s) is a graded strongly primary ideal of R for some $s \in S$.
- 3. $S^{-1}P$ is a graded strongly primary ideal of $S^{-1}R$ and SP = (P:s) for some $s \in S$.

Proof. It follows from Propositions 10 and 12. \Box

4. Conclusions

In this study, we introduced the concept of graded *S*-primary ideals which is a generalization of graded primary ideals. Furthermore, we introduced the concept of graded strongly *S*-primary ideals. We investigated some basic properties of graded *S*-primary ideals and graded strongly *S*-primary ideals. As a proposal to further the work on the topic, we are going to study the concepts of graded *S*-absorbing and graded *S*-absorbing pri**Funding:** This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author gratefully thank the referees for the constructive comments, corrections and suggestions which definitely help to improve the readability and quality of the article.

Conflicts of Interest: The author declares that there is no conflict of interest.

References

- 1. Hazrat, R. Graded Rings and Graded Grothendieck Groups; Cambridge University Press: Cambridge, UK, 2016.
- 2. Nastasescu, C.; Oystaeyen, F. Methods of Graded Rings, Lecture Notes in Mathematics, 1836; Springer: Berlin, Germany, 2004.
- 3. Refai, M.; Hailat, M.; Obiedat, S. Graded radicals and graded prime spectra. Far East J. Math. Sci. 2000, 59–73.
- 4. Refai, M.; Al-Zoubi, K. On graded primary ideals. Turk. J. Math. 2004, 28, 217–229.
- 5. Visweswaran, S. Some results on *S*-primary ideals of a commutative ring. *Beiträge zur Algebra Und Geom. Algebra Geom.* **2021**. [CrossRef]
- 6. Saber, H.; Alraqad, T.; Abu-Dawwas, R. On graded s-prime submodules. Aims Math. 2020, 6, 2510–2524. [CrossRef]
- 7. Saber, H.; Alraqad, T.; Abu-Dawwas, R.; Shtayat, H.; Hamdan, M. On graded weakly *S*-Prime ideals. *Preprints* **2021**, 2021080479, submitted. [CrossRef]
- 8. Atiyah, M.F.; Macdonald, I.G. Introduction to Commutative Algebra; Addison-Wesley: Reading, MA, USA, 1969.
- 9. Refai, M.; Abu-Dawwas, R.; Tekir, Ü.; Koç, S.; Awawdeh, R.; Yıldız, E. On graded *φ*-1-absorbing prime ideals. *arXiv* **2021**, arXiv:2107.04659v2.