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Abstract: We define soft ωp-openness as a strong form of soft pre-openness. We prove that the class of
soft ωp-open sets is closed under soft union and do not form a soft topology, in general. We prove that
soft ωp-open sets which are countable are soft open sets, and we prove that soft pre-open sets which
are soft ω-open sets are soft ωp-open sets. In addition, we give a decomposition of soft ωp-open sets
in terms of soft open sets and soft ω-dense sets. Moreover, we study the correspondence between
the soft topology soft ωp-open sets in a soft topological space and its generated topological spaces,
and vice versa. In addition to these, we define soft ωp-continuous functions as a new class of soft
mappings which lies strictly between the classes of soft continuous functions and soft pre-continuous
functions. We introduce several characterizations for soft pre-continuity and soft ωp-continuity.
Finally, we study several relationships related to soft ωp-continuity.

Keywords: soft ω-open; soft pre-open sets; soft pre-continuity; generated soft topology; soft induced
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1. Introduction and Preliminaries

In this work, we follow the notions and terminologies of [1,2]. TS and STS will
denote topological space and soft topological space, respectively. A soft set defined by
Molodtsov [3] in 1999 is a generic mathematical tool for dealing with uncertainty. The no-
tion of STSs was initiated by Shabir and Naz [4] in 2011. Then, many topological concepts
were modified to include soft topology. The concepts of soft topology and their applications
is still a hot area of research (see for example [1,2,5–19]).

The generalizations of soft open sets play an effective role in the structure of soft topol-
ogy by using them to redefine and investigate some soft topological concepts such as soft
continuity, soft compactness, soft separation axioms, etc. As an important generalization
of open sets, ω-open sets in TSs have been defined in [20]. Then, via ω-open sets, many
research papers have appeared. In particular, via ω-open sets, the author in [21] introduced
the notions of ωp-open sets in TSs and ωp-continuous functions between TSs. Authors
in [2], defined soft ω-open sets in STSs as follows: Let (X, τ, A) be a STS and F be a soft
set in (X, A), then F is called a soft ω-open set if for every soft point ax∈̃F, there exists
G ∈ τ and a countable soft set K in (X, A) such that ax∈̃G and G− K is a countable soft
set. In this work, we define soft ωp-openness as a strong form of soft pre-openness. We
prove that the class of soft ωp-open sets is closed under soft union and does not form a
soft topology, in general. We prove that soft ωp-open sets which are countable are soft
open sets, and we prove that soft pre-open sets which are soft ω-open sets are soft ωp-open
sets. We also give a decomposition of soft ωp-open sets in terms of soft open sets and
soft ω-dense sets. Moreover, we study the correspondence between the soft topology soft
ωp-open sets in a soft topological space and its generated topological spaces, and vise
versa. In addition to these, we define soft ωp-continuous functions as a new class of soft
mappings which lies strictly between the classes of soft continuous functions and soft
pre-continuous functions. We introduce several characterizations for soft pre-continuity
and soft ωp-continuity. Finally, we study several relationships related to soft ωp-continuity.
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Authors in [22,23] showed that soft sets are a class of special information systems.
This constitutes a motivation to study the structures of soft sets for information systems.
In addition, authors in [24] applied soft sets to a decision making problem. So, this paper
not only can form the theoretical basis for further applications of soft topology such as
soft continuity, soft ωs-compactness, soft connectedness, soft separation axioms, and so on,
but it also leads to the development of information systems and decision making problems.

Let (X, τ, A) be a STS, (X,=) be a TS, H ∈ SS(X, A), and D ⊆ X. Throughout this
paper, Clτ(H), intτ(H), and Cl=(D) will denote the soft closure of H in (X, τ, A), the soft
interior of H in (X, τ, A), and the closure of D in (X,=), respectively.

The following definitions and results will be used in the sequel:

Definition 1. Let (X,=) be a TS and let D ⊆ X. The D is said to be
(a) [22] pre-open if there is U ∈ = such that U ⊆ D ⊆ Cl=(U). The family of all pre-open

sets in (X,=) will be denoted by PO(X,=).
(b) [21] ωp-open if there is U ∈ = such that U ⊆ D ⊆ Cl=ω

(U). The family of all ωp-open
sets in (X,=) will be denoted by ωp(X,=).

Definition 2 ([25]). Let (X, τ, A) be a STS and let K ∈ SS(X, A). Then K is called a soft
pre-open set if there exists G ∈ τ such that K ⊆̃ G ⊆̃ Clτ(K). The family of all soft pre-open sets in
(X, τ, A) will be denoted by PO(X, τ, A).

Definition 3. Let X be a universal set and A be a set of parameters, and K ∈ SS(X, A).

(a) [1] If K(b) =
{

Z if b = e
∅ if b 6= e

, then we will denote K by eZ.

(b) [1] If K(b) = Z for all b ∈ A, then we will denote K by CZ.

(c) [26] If K(b) =

{
{x} if b = e
∅ if b 6= e

, then we will denote K by ex and we will call K a

soft point.
We will denote the set of all soft points in SS(X, A) by SP(X, A).

Definition 4 ([26]). Let G ∈ SS(X, A) and ax ∈ SP(X, A). Then ax is said to belong to F
(notation: ax∈̃G) if ax⊆̃G or equivalently: ax∈̃G if and only if x ∈ G(a).

Definition 5. A STS (X, τ, A) is called
(a) [2] soft locally countable if for every bx ∈ SP(X, A), we find K ∈ τ such that ax∈̃K and

K is countable.
(b) [2] soft anti-locally countable for every F ∈ τ − {0A}, F is not a countable soft set.
(c) [5] soft ω-regular whenever S is soft closed and ax∈̃1A − S, then we find K ∈ τ and

N ∈ τω such that ax∈̃K, S⊆̃N, and K∩̃N = 0A.

Theorem 1 ([4]). Let (X, τ, A) be a STS. Then the collection {F(a) : F ∈ τ} defines a topology
on X for every a ∈ A. This topology will be denoted by τa .

Theorem 2 ([27]). For any TS (Y,ℵ) and any set of parameters B, the family

{G ∈ SS(Y, B) : G(b) ∈ ℵ for every b ∈ B}

is a soft topology on Y relative to B. We will denote this soft topology by τ(ℵ).

Definition 6 ([28]). A function p : (X,=) −→ (Y,ℵ) between the TSs (X,=) and (Y,ℵ) is said
to be pre-continuous if p−1(V) ∈ PO(X,=) for every V ∈ ℵ.

Definition 7 ([21]). A function p : (X,=) −→ (Y,ℵ) between the TSs (X,=) and (Y,ℵ) is said
to be ωp-continuous if p−1(V) ∈ ωp(X,=) for every V ∈ ℵ.
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Authors in [21] called in ωp-continuous in Definition 1.10 as ω-almost continuous.

Lemma 1. Let {(X,=a) : a ∈ A} be an indexed family of TSs and let τ = ⊕
a∈A
=a. Let H ∈

SS(X, A), then for every a ∈ A, Clτa(H(a)) = (Clτ(H))(a).

Proof. Straightforward.

Theorem 3. Let {(X,=a) : a ∈ A} be an indexed family of TSs and let τ = ⊕
a∈A
=a and let

F ∈ SS(X, A). Then F ∈ PO(X, τ, A) if and only if F(a) ∈ PO(X, τa) for every a ∈ A.

Proof.

1. Necessity. Suppose that F ∈ PO(X, τ, A) and let a ∈ A. Then there there exists G ∈ τ

such that F ⊆̃ G ⊆̃ Clτ(F). So, F(a) ⊆ G(a) ⊆ (Clτ(F))(a). Since G(a) ∈ τa and by
Lemma 1 we have (Clτ(F))(a) = Clτa(F(a)), then F(a) ∈ PO(X, τa).

2. Sufficiency. Suppose that G(a) ∈ PO(X, τa) for every a ∈ A. Then for every a ∈ A,
there exists Va ∈ τa = =a such that F(a) ⊆ Va ⊆ Clτa(F(a)). Let G ∈ SS(X, A)
with G(a) = Va ∈ =a for every a ∈ A. Then G ∈ ⊕

a∈A
=a = τ. Also, by Lemma

1, (Clτ(F))(a) = Clτa(F(a)) for all a ∈ A. Therefore, then F ⊆̃ G ⊆̃ Clτ(F). Hence,
F ∈ PO(X, τ, A).

2. Soft ωp-Open Sets

Definition 8. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then F is said to be a soft ωp-open
set in (X, τ, A) if there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F). The family of all soft ωp-open
sets in (X, τ, A) will be denoted by ωp(X, τ, A).

Theorem 4. Let (X, τ, A) be a STS. Then τ ⊆ ωp(X, τ, A) ⊆ PO(X, τ, A).

Proof. To see that τ ⊆ ωp(X, τ, A), let F ∈ τ. Take G = F. Then G ∈ τ and F ⊆̃
G ⊆̃ Clτω (F). Therefore, F ∈ ωp(X, τ, A). To see that ωp(X, τ, A) ⊆ PO(X, τ, A), let
F ∈ ωp(X, τ, A), then there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F) ⊆̃ Clτ(F) which shows
that F ∈ PO(X, τ, A). Therefore, ωp(X, τ, A) ⊆ PO(X, τ, A).

The following example shows that neither of the two inclusions in Theorem 4 is equal
in general:

Example 1. Let X = R and A = Z. Let = be the usual topology on R and
τ = {F ∈ SS(X, A) : F(a) ∈ = for all a ∈ A}. Let M, N ∈ SS(X, A) such that for every
a ∈ A, M(a) = Q and N(a) = Qc. It is easy to see that Clτω (M) = M, Clτ(M) = 1A,
and Clτω (N) = 1A. Therefore, M ∈ PO(X, τ, A)−ωp(X, τ, A) and N ∈ ωp(X, τ, A)− τ.

Theorem 5. For any STS (X, τ, A), CSS(X, A) ∩ωp(X, τ, A) ⊆ τ.

Proof. Let F ∈ CSS(X, A) ∩ωp(X, τ, A). Since F ∈ CSS(X, A), then by Corollary 5 of [2],
Clτω (F) = F. Since F ∈ ωp(X, τ, A), then there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F) = F.
Therefore, F = G and hence F ∈ τ.

Theorem 6. If (X, τ, A) is soft locally countable, then ωp(X, τ, A) = τ.

Proof. Suppose that (X, τ, A) is soft locally countable. To see that ωp(X, τ, A) ⊆ τ, let
F ∈ ωp(X, τ, A), then there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F). Since (X, τ, A) is soft
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locally countable, then by by Corollary 5 of [2] , Clτω (F) = F. Hence, F = G, and so F ∈ τ.
On the other hand, by Theorem 4, τ ⊆ ωp(X, τ, A).

Corollary 1. If (X, τ, A) is soft locally countable, then
(
X, A, ωp(X, τ, A)

)
is a STS.

Remark 1. In Corollary 1, the condition ’soft locally countable’ cannot be dropped:

Example 2. Let X = R, A = Z, and
τ = {F ∈ SS(X, A) : F(a) ∈ {∅, X} for all a ∈ A}.
Let M, N ∈ SS(X, A) defined by M(a) = (−∞,−1) ∪ {1} and N(a) = (2, ∞) ∪ {1}

for all a ∈ A. Then
(

M∩̃N
)
(a) = {1} for all a ∈ A, Clτω (M) = Clτω (N) = 1A. So,

M, N ∈ ωp(X, τ, A). On the other hand, since M∩̃N is a countable soft set and M∩̃N /∈ τ, then
by Theorem 6, M∩̃N /∈ ωp(X, τ, A).

Theorem 7. Let (X, τ, A) be a STS. If {Fλ : λ ∈ Γ} ⊆ ωp(X, τ, A), then
⋃̃

λ∈Γ
Fλ ∈ ωp(X, τ, A).

Proof. Let {Fλ : λ ∈ Γ} ⊆ ωp(X, τ, A), then for every λ ∈ Γ, there exists Gλ ∈ τ such that

Fλ ⊆̃ Gλ ⊆̃ Clτω (Fλ). So,
⋃̃

λ∈Γ
Gλ ∈ ∈ τ and

⋃̃
λ∈Γ

Fλ ⊆̃
⋃̃

λ∈Γ
Gλ ⊆̃

⋃̃
α∈∆

Clτω (Fλ) ⊆̃ Clτω

( ⋃̃
λ∈Γ

Fλ

)
.

Hence,
⋃̃

λ∈Γ
Fλ ∈ ωp(X, τ, A).

Theorem 8. For any STS (X, τ, A), PO(X, τω, A) = ωp(X, τω, A).

Proof. Let (X, τ, A) be STS. By Theorem 4, we have ωp(X, τω, A) ⊆ PO(X, τω, A). To see
that PO(X, τω, A) ⊆ ωp(X, τω, A), let F ∈ PO(X, τω, A), then there is G ∈ τω such that
F ⊆̃ G ⊆̃ Cl(τω)ω

(F). By Theorem 5 of [2] , (τω)ω = τω, and so Cl(τω)ω
(F) = Clτω (F). It

follows that F ∈ ωp(X, τω, A).

Theorem 9. For any soft anti-locally countable STS (X, τ, A), τω ∩ PO(X, τ, A) ⊆ ωp(X, τ, A).

Proof. Let (X, τ, A) be soft anti-locally countable. Let F ∈ τω ∩ PO(X, τ, A). Since (X, τ, A)
is soft anti-locally countable and F ∈ τω, then by Theorem 14 of [2], Clτω (F) = Clτ(F).
Since F ∈ PO(X, τ, A), then there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτ(F) = Clτω (F). Hence,
F ∈ ωp(X, τ, A).

Remark 2. The concepts soft ω-open sets and soft ωp-open sets are independent of each other:

Example 3. Let X = Q and A = N. Let = = {X} ∪ {U ⊆ X : 0 /∈ U} and let τ =
{F ∈ SS(X, A) : F(a) ∈ = for all a ∈ A}. Let F ∈ SS(X, A) defined by F(a) = {0} for all
a ∈ A. Then F is soft ω-open but not soft ωp-open.

Example 4. Let (X, τ, A) be as in Example 2. Let F ∈ SS(X, A) defined by F(a) = (5, 7) for all
a ∈ A. Then F is soft ωp-open but not soft ω-open.

Theorem 10. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then F ∈ ωp(X, τ, A) if and only if
F ⊆̃ intτ(Clτω (F)).

Proof.

1. Necessity. Suppose that F ∈ ωp(X, τ, A). Then there exists G ∈ τ such that F ⊆̃ G ⊆̃
Clτω (F). Therefore, F ⊆̃ intτ(Clτω (F)).
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2. Sufficiency. Suppose that F ⊆̃ intτ(Clτω (F)). Let G = intτ(Clτω (F)). Then G ∈ τ with
F ⊆̃ G ⊆̃ intτ(Clτω (F))⊆̃ Clτω (F). Hence, F ∈ ωp(X, τ, A).

Definition 9. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then F is said to be soft ω-dense if
Clτω (F) = 1A.

Proposition 1. Every soft ω-dense set in a STS is soft dense.

Proof. Straightforward.

Remark 3. The converse of Proposition 1 is not true in general:

Example 5. Let X = R and A = N. Let = be the usual topology on R and let
τ = {F ∈ SS(X, A) : F(a) ∈ = for all a ∈ A}. Let F ∈ SS(X, A) defined by F(a) = Q for
all a ∈ A. Then F is soft dense but not soft ω-dense.

Theorem 11. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then F ∈ ωp(X, τ, A) if and only if
F is a soft intersection of a soft open set and a soft ω-dense set.

Proof.

1. Necessity. Suppose that F ∈ ωp(X, τ, A), then by Theorem 10, F ⊆̃ intτ(Clτω (F)).
Put G = intτ(Clτω (F)) and H = (1A − G)∪̃F. Then G is soft open and F = G∩̃H.
In addition,

Clτω (H) = Clτω ((1A − intτ(Clτω (F)))∪̃F)

= Clτω (1A − intτ(Clτω (F)))∪̃Clτω (F)

= Clτω (Clτ(1A − Clτω (F)))∪̃Clτω (F)

= Clτω (Clτ(intτω (1A − F)))∪̃Clτω (F)

⊇̃intτω (1A − F)∪̃Clτω (F)

= 1A.

and so, H soft ω-dense.
2. Sufficiency. Suppose that F = G∩̃H with G ∈ τ and H is soft ω-dense. To show

that G⊆̃Clτω (F), suppose to the contrary that there exists ax∈̃G − Clτω (F). Since
ax∈̃1A − Clτω (F), then there exists M ∈ τω such that ax∈̃M and M∩̃F = 0A. Since
ax∈̃M∩̃G ∈ τω and H is soft ω-dense, then M∩̃G∩̃H = M∩̃F 6= 0A, a contradiction.
Therefore, F ∈ ωp(X, τ, A).

Proposition 2. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then for every G ∈ τ, Clτ(G∩̃F) =
Clτ(G∩̃Clτ(F)).

Proof. Let F ∈ SS(X, A) and G ∈ τ. Since F ⊆̃ Clτ(F), then G∩̃F⊆̃G∩̃Clτ(F) and so
Clτ(G∩̃F)⊆̃Clτ(G∩̃Clτ(F)). To see that

Clτ(G∩̃Clτ(F))⊆̃Clτ(G∩̃F), let ax∈̃Clτ(G∩̃Clτ(F)) and let H ∈ τ such that ax∈̃H,
then

(
G∩̃Clτ(F)

)
∩̃H 6= 0A. Choose by∈̃

(
G∩̃Clτ(F)

)
∩̃H, then by∈̃Clτ(F) with by∈̃G∩̃H ∈

τ, and hence
(
G∩̃H

)
∩̃F =

(
G∩̃F

)
∩̃H 6= 0A. It follows that ax∈̃Clτ(G∩̃F).

Theorem 12. Let (X, τ, A) be a STS and let F ∈ SS(X, A). Then F ∈ ωp(X, τ, A) if and only if
F∩̃G ∈ ωp(X, τ, A) for every G ∈ τ.
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Proof.

1. Necessity. Suppose that F ∈ ωp(X, τ, A) and let G ∈ τ. Since F ∈ ωp(X, τ, A),
then there exists H ∈ τ such that F ⊆̃ H ⊆̃ Clτω (F). So, F∩̃G⊆̃ H∩̃G⊆̃ G∩̃Clτω (F).
Since, G ∈ τ ⊆ τω, then by Proposition 2.18, Clτω (G∩̃Clτω (F)) = Clτω (G∩̃F)
and so G∩̃Clτω (F)⊆̃Clτω (G∩̃F). Thus, we have H∩̃G ∈ τ with F∩̃G⊆̃ H∩̃G⊆̃
G∩̃Clτω (F)⊆̃Clτω

(G∩̃F). Hence, F∩̃G ∈ ωp(X, τ, A).
2. Sufficiency. Suppose that F∩̃G ∈ ωp(X, τ, A) for every G ∈ τ. Since 1A ∈ τ, then

F∩̃1A = F ∈ ωp(X, τ, A).

Corollary 2. In any STS, then soft intersection of a soft open set and a soft ωp-open set is soft
ωp-open.

Theorem 13. Let (X, τ, A) and let F, H ∈ SS(X, A). If F ∈ ωp(X, τ, A) and H ⊆̃ F ⊆̃
Clτω (H), then H ∈ ωp(X, τ, A).

Proof. Suppose that F ∈ ωp(X, τ, A) and H ⊆̃ F ⊆̃ Clτω (H). Since F ∈ ωp(X, τ, A), then
there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F). This implies that, H ⊆̃ G⊆̃ Clτω (H). Hence,
H ∈ ωp(X, τ, A).

Theorem 14. Let (X, τ, A) be a soft locally countable and let F ∈ ωp(X, τ, A). Then F(a) ∈
ωp(X, τa) for every a ∈ A.

Proof. Let a ∈ A. Since (X, τ, A) is soft locally countable and F ∈ ωp(X, τ, A), then by
Theorem 6, F ∈ τ and so F(a) ∈ τa ⊆ ωp(X, τa).

Corollary 3. Let (X,=) be a TS and A be a set of parameters. Then F ∈ PO(X, τ(=), A) if and
only if F(a) ∈ PO(X,=) for all a ∈ A.

Proof. For each a ∈ A, put =a = =. Then τ(=) = ⊕
a∈A
=a. So by Theorem 3, we get the

result.

Lemma 2. Let {(X,=a) : a ∈ A} be an indexed family of topological spaces and let τ = ⊕
a∈A
=a.

Let H ∈ SS(X, A), then for every a ∈ A, Cl(τa)ω
(H(a)) = (Clτω (H))(a).

Proof. Straightforward.

Theorem 15. Let {(X,=a) : a ∈ A} be an indexed family of TSs and let τ = ⊕
a∈A
=a. Let F ∈

SS(X, A). Then F ∈ ωp(X, τ, A) if and only if F(a) ∈ ωp(X, τa) for every a ∈ A.

Proof.

1. Necessity. Suppose that F ∈ ωp(X, τ, A) and let a ∈ A. Then there exists G ∈ τ

such that F ⊆̃ G ⊆̃ Clτω (F). So, F(a) ⊆ G(a) ⊆ (Clτω (F))(a). Since G(a) ∈ τa and by
Lemma 2 we have (Clτω (F))(a) = Cl(τa)ω

(F(a)), then F(a) ∈ ωp(X, τa).
2. Sufficiency. Suppose that F(a) ∈ ωp(X, τa) for every a ∈ A. Then for every a ∈ A,

there exists Va ∈ τa = =a such that F(a) ⊆ Va ⊆ Cl(τa)ω
(F(a)). Let G ∈ SS(X, A)

with G(a) = Va ∈ =a for every a ∈ A. Then G ∈ ⊕
a∈A
=a = τ. In addition, by Lemma

2, (Clτω (F))(a) = Cl(τa)ω
(F(a)) for all a ∈ A. Thus, we have F ⊆̃ G ⊆̃ Clτω (F).

Therefore, F ∈ ωp(X, τ, A).
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Corollary 4. Let (X,=) be a TS and A be a set of parameters. Then F ∈ ωp(X, τ(=), A) if and
only if F(a) ∈ ωp(X,=) for all a ∈ A.

Proof. For each a ∈ A, put =a = =. Then τ(=) = ⊕
a∈A
=a. So by Theorem 15, we get the

result.

Theorem 16. For any STS (X, τ, A), τ =
{

intτ(F) : F ∈ ωp(X, τ, A)
}

.

Proof. Since intτ(F) ∈ τ for every F ∈ ωp(X, τ, A), then
{

intτ(F) : F ∈ ωp(X, τ, A)
}
⊆ τ.

Conversely, let F ∈ τ, then by Theorem 4, F ∈ ωp(X, τ, A). On the other hand, since
F ∈ τ, then intτ(F) = F. Therefore, F ∈

{
intτ(F) : F ∈ ωp(X, τ, A)

}
. It follows that

τ ⊆
{

intτ(F) : F ∈ ωp(X, τ, A)
}

.

Theorem 17. Let fpu : (X, τ, A) −→ (Y , σ, B) be a soft open function such that fpu :
(X, τω, A) −→ (Y , σω , B) is soft continuous, then fpu(F) ∈ ωp(Y, σ, B) for all F ∈ ωp(X, τ, A).

Proof. Let F ∈ ωp(X, τ, A), then there exists G ∈ τ such that F ⊆̃ G ⊆̃ Clτω (F). Thus we
have fpu(F) ⊆̃ fpu(G) ⊆̃ fpu(Clτω (F)). Since fpu : (X, τ, A) −→ (Y , σ, B) is soft open, then
fpu(G) ∈ σ. Since fpu : (X, τω, A) −→ (Y , σω, B) is soft continuous, then fpu(Clτω (F)) ⊆̃
Clσω ( fpu(F)). Therefore, fpu(F) ∈ ωp(Y, σ, B).

3. Soft ωp-Continuity

Definition 10 ([29]). A soft function fpu : (X, τ, A) −→ (Y, σ, B) is said to be soft pre-
continuous if f−1

pu (G) ∈ PO(X, τ, A) for every G ∈ σ.

Theorem 18. The following statements are equivalent for a soft function fpu : (X, τ, A) −→
(Y, σ, B).

(a) fpu is soft pre-continuous.
(b) fpu(Clτ(intτ(M)))⊆̃Clσ( fpu(M)) for each M ∈ SS(X, A).
(c) fpu(Clτ(N)))⊆̃Clσ( fpu(N)) for each N ∈ SO(X, τ, A).
(d) fpu(Clτ(G)))⊆̃Clσ( fpu(G)) for each G ∈ τ.

Proof.

1. (a) =⇒ (b): Suppose that fpu is soft pre-continuous and let M ∈ SS(X, A). Let
by∈̃ fpu(Clτ(intτ(M))) and let K ∈ σ such that by∈̃K. We are going to show that
fpu(M)∩̃K 6= 0B. Choose ax∈̃Clτ(intτ(M)) such that by = fpu(ax). Since fpu is
soft pre-continuous, then f−1

pu (K) ∈ PO(X, τ, A) and so f−1
pu (K)⊆̃intτ(Clτ( f−1

pu (K))).
Since ax∈̃ f−1

pu (K), then ax∈̃intτ(Clτ( f−1
pu (K))) ∈ τ. Since ax∈̃Clτ(intτ(M)), then

intτ(M)∩̃intτ(Clτ( f−1
pu (K))) 6= 0A. Consequently, intτ(M)∩̃Clτ( f−1

pu (K)) 6= 0A and
M∩̃ f−1

pu (K) 6= 0A. Choose cz∈̃M such that fpu(cz)∈̃K. Therefore, fpu(cz)∈̃ fpu(M)∩̃K
and hence fpu(M)∩̃K 6= 0B.

2. (b) =⇒ (c): Suppose that fpu(Clτ(intτ(M)))⊆̃Clσ( fpu(M)) for each M ∈ SS(X, A)

and let N ∈ SO(X, τ, A). Then N⊆̃Clτ(intτ(N)) and so Clτ(N)⊆̃Clτ(intτ(N)). Thus
by assumption, fpu(Clτ(N)))⊆̃ fpu((Clτ(intτ(N))))⊆̃Clσ( fpu(N)).

3. (c) =⇒ (d): Obvious.
4. (d) =⇒ (a): Suppose that fpu(Clτ(G)))⊆̃Clσ( fpu(G)) for each G ∈ τ and let K ∈ σ.

To show that f−1
pu (K)⊆̃intτ(Clτ( f−1

pu (K))), let ax∈̃ f−1
pu (K). Since 1A − Clτ( f−1

pu (K)) ∈
τ, then by assumption, fpu(Clτ(1A − Clτ( f−1

pu (K)))))⊆̃Clσ( fpu(1A − Clτ( f−1
pu (K))))

and thus, Clτ(1A − Clτ( f−1
pu (K)))⊆̃ f−1

pu

(
Clσ( fpu(1A − Clτ( f−1

pu (K))))
)

. Hence, 1A −
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f−1
pu(
Clσ( fpu(1A − Clτ( f−1

pu (K))))
)
⊆̃1A − Clτ(1A − Clτ( f−1

pu (K))) = intτ(Clτ( f−1
pu (K))).

We shall show that ax∈̃1A − f−1
pu

(
Clσ( fpu(1A − Clτ( f−1

pu (K))))
)

. To do this suppose

on the contrary that ax∈̃ f−1
pu

(
Clσ( fpu(1A − Clτ( f−1

pu (K))))
)

. Then fpu(ax)∈̃Clσ( fpu(1A−
Clτ( f−1

pu (K)))). Since fpu(ax)∈̃K ∈ σ, then fpu(1A − Clτ( f−1
pu (K)))∩̃K 6= 0B. Choose

cz∈̃1A − Clτ( f−1
pu (K)) such that fpu(cz) ∈ K. Since cz∈̃1A − Clτ( f−1

pu (K)), then there
exists H ∈ τ such that cz∈̃H and f−1

pu (K)∩̃H = 0A. But cz∈̃ f−1
pu (K)∩̃H, a contradic-

tion.

Theorem 19. Let p : (X,=) −→ (Y,ℵ) be a function between two TSs and let u : A −→ B
be a function between two sets of parameters. Then fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft
pre-continuous if and only if p : (X,=) −→ (Y,ℵ) is pre-continuous.

Proof.

1. Necessity. Suppose that fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft pre-continuous. Let
V ∈ ℵ. Choose a ∈ A, then u(a)V ∈ τ(ℵ). Since fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B)
is soft pre-continuous, then f−1

pu (u(a)V) ∈ PO(X, τ(=), A). So, by Corollary 3,(
f−1
pu (u(a)V)

)
(a) ∈ PO(X,=). But

(
f−1
pu (u(a)V)

)
(a) = p−1((u(a)V)(u(a))) = p−1(V).

Therefore, p : (X,=) −→ (Y,ℵ) is pre-continuous.
2. Sufficiency. Suppose that p : (X,=) −→ (Y,ℵ) is pre-continuous. Let G ∈ τ(ℵ).

By Corollary 4 it is sufficient to show that
(

f−1
pu (G)

)
(a) ∈ PO(X,=) for all a ∈ A.

Let a ∈ A, then G(u(a)) ∈ ℵ. Since p : (X,=) −→ (Y,ℵ) is pre-continuous, then
p−1(G(u(a))) ∈ PO(X,=). But p−1(G(u(a))) =

(
f−1
pu (G)

)
(a).

Definition 11. A soft function fpu : (X, τ, A) −→ (Y, σ, B) is said to be soft ωp-continuous if
f−1
pu (G) ∈ ωp(X, τ, A) for every G ∈ σ.

Theorem 20. The following statements are equivalent for a soft function fpu : (X, τ, A) −→
(Y, σ, B).

(a) fpu is soft ωp-continuous.
(b) fpu(Clτ(G)))⊆̃Clσ( fpu(G)) for each G ∈ τω.

Proof.

1. (a) =⇒ (b): Suppose that fpu is soft ωp-continuous and let G ∈ τω. To see that
fpu(Clτ(G)))⊆̃Clσ( fpu(G)), let by∈̃ fpu(Clτ(G))) and let K ∈ σ such that by∈̃K. We
are going to show that fpu(G)∩̃K 6= 0B. Choose ax∈̃Clτ(G) such that by = fpu(ax).
Since fpu is soft ωp-continuous, then f−1

pu (K) ∈ ωp(X, τ, A) and so f−1
pu (K)

⊆̃intτ(Clτω ( f−1
pu (K))). Since ax∈̃ f−1

pu (K), then ax∈̃intτ(Clτω ( f−1
pu (K))) ∈ τ. Since

ax∈̃Clτ(G), then G∩̃intτ(Clτω ( f−1
pu (K))) 6= 0A and so G∩̃Clτω ( f−1

pu (K)) 6= 0A. Choose
dw∈̃G∩̃Clτω ( f−1

pu (K)). Since we have dw∈̃G ∈ τω and dw∈̃Clτω ( f−1
pu (K)), then

G∩̃ f−1
pu (K) 6= 0A. Choose cz∈̃G such that fpu(cz)∈̃K. Then, fpu(cz)∈̃ fpu(G)∩̃K,

and hence fpu(G)∩̃K 6= 0B.
2. (b) =⇒ (a): Suppose that fpu(Clτ(G)))⊆̃Clσ( fpu(G)) for each G ∈ τω and let K ∈ σ.

To show that f−1
pu (K)⊆̃intτ(Clτω ( f−1

pu (K))), let ax∈̃ f−1
pu (K). Since 1A−Clτω ( f−1

pu (K)) ∈
τω , then by assumption, fpu(Clτ(1A−Clτω ( f−1

pu (K)))))⊆̃Clσ( fpu(1A−Clτω ( f−1
pu (K))))
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and thus, Clτ(1A − Clτω ( f−1
pu (K)))⊆̃ f−1

pu

(
Clσ( fpu(1A − Clτω ( f−1

pu (K))))
)

. Hence,

1A − f−1
pu

(
Clσ( fpu(1A − Clτω ( f−1

pu (K))))
)
⊆̃1A − Clτ(1A − Clτω ( f−1

pu (K))) =

intτ(Clτω ( f−1
pu (K))). We shall show that ax∈̃1A− f−1

pu

(
Clσ( fpu(1A − Clτω ( f−1

pu (K))))
)

.

To do this suppose on the contrary that ax∈̃ f−1
pu

(
Clσ( fpu(1A − Clτω ( f−1

pu (K))))
)

. Then

fpu(ax)∈̃Clσ( fpu(1A − Clτω ( f−1
pu (K)))). Since fpu(ax)∈̃K ∈ σ, then fpu(1A

− Clτω ( f−1
pu (K)))∩̃K 6= 0B. Choose cz∈̃1A − Clτω ( f−1

pu (K)) such that fpu(cz) ∈ K.
Since cz∈̃1A−Clτω ( f−1

pu (K)), then there exists H ∈ τω such that cz∈̃H and f−1
pu (K)∩̃H =

0A. But cz∈̃ f−1
pu (K)∩̃H, a contradiction.

Theorem 21. Let p : (X,=) −→ (Y,ℵ) be a function between two TSs and let u : A −→ B
be a function between two sets of parameters. Then fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft
ωp-continuous if and only if p : (X,=) −→ (Y,ℵ) is ωp-continuous.

Proof. Necessity. Suppose that fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft ωp-continuous.
Let V ∈ ℵ. Choose a ∈ A, then u(a)V ∈ τ(ℵ). Since fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is

soft ωp-continuous, then f−1
pu (u(a)V) ∈ ωp(X, τ(=), A). So, by Corollary 4 ,

(
f−1
pu (u(a)V)

)
(a) ∈ ωp(X,=). However,

(
f−1
pu (u(a)V)

)
(a) = p−1((u(a)V)(u(a))) = p−1(V). Therefore,

p : (X,=) −→ (Y,ℵ) is ωp-continuous.
Sufficiency. Suppose that p : (X,=) −→ (Y,ℵ) is ωp-continuous. Let G ∈ τ(ℵ).

By Corollary 4 it is sufficient to show that
(

f−1
pu (G)

)
(a) ∈ ωp(X,=) for all a ∈ A. Let a ∈ A,

then G(u(a)) ∈ ℵ. Since p : (X,=) −→ (Y,ℵ) is ωp-continuous, then p−1(G(u(a))) ∈
ωp(X,=). But p−1(G(u(a))) =

(
f−1
pu (G)

)
(a).

Theorem 22. Every soft continuous function is soft ωp-continuous.

Proof. Follows from the definitions and Theorem 4.

Remark 4. The converse of Theorem 22 is not true, in general:

Example 6. Let X = Y = R, and A = B = Z. Let = be the indiscrete topology on R and ℵ
be the usual topology on R. Define p : (X,=) −→ (Y,ℵ) and u : A −→ B by f (x) = x and
u(a) = a for all x ∈ X and a ∈ A. Then p is ωp-continuous but not continuous. So, by Theorem
21 and Theorem 5.31 of [1], fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft ωp-continuous but not
soft continuous.

Theorem 23. Every soft ωp-continuous function is soft pre-continuous.

Proof. Follows from the definitions and Theorem 4.

Remark 5. The converse of Theorem 23 is not true, in general:

Example 7. Let X = Y = R, and A = B = Z. Let = be the indiscrete topology on R and ℵ be the
discrete topology on R. Define p : (X,=) −→ (Y,ℵ) and u : A −→ B by f (x) = x and u(a) = a
for all x ∈ X and a ∈ A. Then p is pre-continuous but not ωp-continuous. So, by Theorems 19
and 21, fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft ωp-continuous but not soft continuous.

Theorem 24. If fpu : (X, τ, A) −→ (Y, σ, B) is soft ωp-continuous, then fpu : (X, τω, A) −→
(Y, σ, B) is soft ωp-continuous.
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Proof. Suppose that fpu : (X, τ, A) −→ (Y, σ, B) is soft ωp-continuous. To show that
fpu : (X, τω, A) −→ (Y, σ, B) is soft ωp-continuous, we apply Theorem 18(b). Let G ∈
(τω)ω. By Theorem 5 of [2], (τω)ω = τω and so G ∈ τω. Since fpu : (X, τ, A) −→
(Y, σ, B) is soft ωp-continuous, then fpu(Clτ(G))⊆̃Clσ( fpu(G)). Since Clτω (G)⊆̃Clτ(G),
then fpu(Clτω (G))⊆̃ fpu(Clτ(G))⊆̃Clσ( fpu(G)). Therefore, fpu : (X, τω, A) −→ (Y, σ, B) is
soft ωp-continuous.

Remark 6. The converse of Theorem 24 is not true, in general:

Example 8. Let X = Y = N, and A = B = R. Let = = {N} ∪ {U ⊆ N : 1 /∈ N} and let ℵ
be the discrete topology on N. Define p : (X,=) −→ (Y,ℵ) and u : A −→ B by f (x) = x
and u(a) = a for all x ∈ X and a ∈ A. Then p : (X,=ω) −→ (Y,ℵ) is ωp-continuous
but p : (X,=) −→ (Y,ℵ) is not ωp-continuous. So by Theorem 21, fpu : (X, τ(=ω), A) −→
(Y, τ(ℵ), B) is soft ωp-continuous but fpu : (X, τ(=), A) −→ (Y, τ(ℵ), B) is soft ωp-continuous.
Since τ(=ω) = (τ(=))ω, then fpu : (X, (τ(=))ω, A) −→ (Y, τ(ℵ), B) is soft ωp-continuous.

Theorem 25. Let fpu : (X, τ, A) −→ (Y, σ, B) be a soft function with (X, τ, A) is soft anti-
locally countable. Then fpu : (X, τ, A) −→ (Y, σ, B) is soft ωp-continuous if and only if fpu :
(X, τω, A) −→ (Y, σ, B) is soft ωp-continuous.

Proof.

1. Necessity. Follows from Theorem 24.
2. Sufficiency. Suppose that fpu : (X, τω, A) −→ (Y, σ, B) is soft ωp-continuous. Let G ∈ τω,

then by Theorem 20, fpu(Clτω (G))⊆̃Clσ( fpu(G)). Since (X, τ, A) is soft anti-locally count-
able, then by Theorem 14 of [2], Clτω (G) = Clτ(G). Thus, fpu(Clτ(G))⊆̃Clσ( fpu(G)).
Hence, by Theorem 18, fpu : (X, τ, A) −→ (Y, σ, B) is soft ωp-continuous.

Theorem 26. Let fpu : (X, τ, A) −→ (Y, σ, B) be a soft function with (Y, σ, B) is soft ω-regular.
Then fpu is soft continuous if and only if fpu is soft ωp-continuous.

Proof.

1. Necessity. Follows from Theorem 22.
2. Sufficiency. Suppose that fpu is soft ωp-continuous. Let ax ∈ SP(X, A) and let H ∈ σ

such that fpu(ax)∈̃H. Since (Y, σ, B) is soft ω-regular, then there exists M ∈ σ such
that fpu(ax)∈̃M⊆̃Clσω (M)⊆̃ H. Since fpu is soft ωp-continuous, then f−1

pu (M) ∈
ωp(X, τ, A) and so there exists N ∈ τ such that f−1

pu (M)⊆̃intτ

(
Clτω ( f−1

pu (M))
)

⊆̃intτ( f−1
pu (Clτω (M)))⊆̃ f−1

pu (Clτω (M)). Thus, we have ax∈̃intτ

(
Clτω ( f−1

pu (M))
)
∈ τ

and fpu(intτ

(
Clτω ( f−1

pu (M))
)
)⊆̃ fpu

(
f−1
pu (Clτω (M))

)
⊆̃Clτω (M)⊆̃ H.

4. Conclusions

The class of soft ωp-open sets as a new class of soft sets which lies strictly between
the classes of soft open sets and soft pre-open sets is introduced. It is proved that the
family of soft ωp-open sets form a supra soft topology. In addition, it is proved that a
countable soft ωp-open set is a soft set. Moreover, the correspondence between the soft
topology soft ωp-open sets in a STS and its generated topological spaces and vice versa
are studied. In addition to these, via soft ωp-open sets, the class of soft ωp-continuous
functions as a new class of soft functions which lies strictly between the classes of soft
continuous functions and soft pre-continuous functions is defined and investigated. Several
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characterizations, relationships, and examples are given. The following topics could be
considered in future studies: (1) define soft ωp-open functions; (2) define soft separation
axioms via soft ωp-open sets; (3) define soft ωp-compactness; (4) improve some known soft
topological results.
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