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Abstract: Given a continuous map f : X → X on a metric space, it induces the maps f : K(X) →
K(X), on the hyperspace of nonempty compact subspaces of X, and f̂ : F (X)→ F (X), on the space
of normal fuzzy sets, consisting of the upper semicontinuous functions u : X → [0, 1] with compact
support. Each of these spaces can be endowed with a respective metric. In this work, we studied
the relationships among the dynamical systems (X, f ), (K(X), f ), and (F (X), f̂ ). In particular, we
considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li–Yorke
chaos, and distributional chaos, extending some results in work by Jardón, Sánchez and Sanchis
(Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory
2017, 88, 451–463). Especial attention is given to the dynamics of (continuous and linear) operators
on metrizable topological vector spaces (linear dynamics).

Keywords: chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy
sets; A-transitivity

1. Introduction and Basic Definitions

The interplay between individual dynamics (the action of the system on points of the
phase space) and collective dynamics (the action of the system on subsets of the phase
space) can be extended by including the dynamics of the fuzzy sets (the action of the system
on functions from the phase space to the interval [0, 1]).

Consider the action of a continuous map f : X → X on a metric space X. The most
usual context for collective dynamics is that of the induced map f on the hyperspace of
all nonempty compact subsets, endowed with the Vietoris topology. The first study about
the connection between the dynamical properties of the dynamical system generated by
the map f and the induced system generated by f on the hyperspace was given by Bauer
and Sigmund [1] in 1975. Since this work, the subject of hyperspace dynamical systems
has attracted the attention of many researchers (see for instance [2,3] and the references
therein).

Recently, another type of collective dynamics has been considered. Namely, the dynam-
ical system (X, f ) induces a dynamical system, (F (X), f̂ ), on the space F (X) of normal
fuzzy sets. The map f̂ : F (X)→ F (X) is called the Zadeh extension (or fuzzification) of
f . In this context, Jardón et al. studied in [4] the relationship between some dynamical
properties (mainly transitivity) of the systems (X, f ) and (F (X), f̂ ). In this same context,
we consider in this note several notions of chaos, such as the ones given by Devaney [5]
and Li and Yorke [6].

Given a topological space X and a continuous map f : X → X, we recall that f is said
to be topologically transitive (respectively, mixing) if, for any pair U, V ⊂ X of nonempty
open sets, there exists n ≥ 0 (respectively, n0 ≥ 0) such that f n(U) ∩V 6= ∅ (respectively,
for all n ≥ n0). Moreover, f is said to be weakly mixing if f × f is topologically transitive on
X× X.

There is no unified concept of chaos, and we study here three of the most usual
definitions of chaos. The map f is said to be Devaney chaotic if it is topologically transitive
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and has a dense set of periodic points [5]. The set of periodic points of f will be denoted by
Per( f ).

We say that a collection of sets of non-negative integers A ⊂ 2Z+ is a Furstenberg
family (or simply a family) if it is hereditarily upwards, that is when A ∈ A, B ⊂ Z+, and
A ⊂ B, then B ∈ A. A family A is a filter if, in addition, for every A, B ∈ A, we have that
A ∩ B ∈ A. A family A is proper if ∅ 6∈ A. Given a dynamical system (X, f ) and U, V ⊂ X,
we set:

N f (U, V) := {n ∈ Z+ : f n(U) ∩V 6= ∅},

Therefore, a relevant family for the dynamical system is:

N f := {A ⊂ Z+ : ∃U, V ⊂ X open and nonempty with N f (U, V) ⊂ A}.

Reformulating previously defined concepts, (X, f ) is topologically transitive if and
only ifN f is a proper family, and the weak mixing property is equivalent to the fact thatN f
is a proper filter by a classical result of Furstenberg [7]. Given a familyA, we say that (X, f )
is A-transitive if N f ⊂ A (that is, if N f (U, V) ∈ A for each pair of nonempty open sets
U, V ⊂ X). Within the framework of linear operators, A-transitivity was recently studied
for several families A in [8].

When f : (X, d)→ (X, d) is a continuous map on a metric space, the concept of chaos
introduced by Li and Yorke [6] is the following: a pair (x, y) ∈ X× X is called a Li–Yorke
pair for f if:

lim inf
n→∞

d( f nx, f ny) = 0 and lim sup
n→∞

d( f nx, f ny) > 0.

The map f is said to be Li–Yorke chaotic if there exists an uncountable set S (a scrambled
set for f ) such that (x, y) is a Li–Yorke pair for f whenever x and y are distinct points in S.

A step forward by taking into account the distribution of the orbits was introduced by
Schweizer and Smital in [9] as a natural extension of Li–Yorke chaos. We considered only
the definition of uniform distributional chaos, which is one of the strongest possibilities.
Recall that, if A ⊂ N, then its upper density is the number:

dens(A) = lim sup
n→∞

1
n
|{i < n; i ∈ A}|,

where |S| denotes the cardinality of the set S. If there exists an uncountable set D ⊂ X and
ε > 0 such that for every t > 0 and every distinct x, y ∈ D, the following conditions hold:

dens{i ∈ N; d( f i(x), f i(y)) ≥ ε} = 1,

dens{i ∈ N; d( f i(x), f i(y)) < t} = 1,

then we say that f exhibits uniform distributional chaos. The set D is called a distributionally
ε-scrambled set. Within the framework of linear dynamics, there is recent and intensive
research activity on Li–Yorke and distributional chaos (see, e.g., [10–12]). See the survey
articles [13,14] for more details and notions of chaos. There are still natural questions in
the topic, which will be a matter of future study, such as the comparison of the considered
notions of chaos for fuzzy dynamical systems with entropy-based notions of chaos (see,
e.g., [15]), as well as considering the possibilities of generalizing the notions of chaos based
on Lyapunov exponents and dimension (see, e.g., [16]) for the case of fuzzy dynamical
systems. We do not know yet if we will encounter examples in which chaos occurs for
some of the concepts considered here, but not for the ones to be studied in the future, or
vice versa, within the framework of fuzzy dynamics.

Let us now describe the framework for collective dynamics. We begin with the
dynamics on hyperspaces. Given a topological space X, we denote byK(X) the hyperspace
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of all nonempty compact subsets of X endowed with the Vietoris topology, that is the
topology whose basic open sets are the sets of the form:

V(U1, . . . , Ur) :=

{
K ∈ K(X) : K ⊂

r⋃
i=1

Ui and K ∩Ui 6= ∅ for all i = 1, . . . , r

}
,

where r ≥ 1 and U1, . . . , Ur are nonempty open subsets of X. When the topology of X is
induced by a metric d, the Vietoris topology of K(X) is induced by the Hausdorff metric
associated with d, namely:

dH(K1, K2) := max
{

max
x1∈K1

d(x1, K2), max
x2∈K2

d(x2, K1)

}
.

Given K ∈ K(X) and ε > 0, then BH(K, ε) denotes the open ball of radius ε centered
at K, with respect to dH . If f : X → X is a continuous map, then f : K(X)→ K(X) denotes
the induced map defined by:

f (K) := f (K) for K ∈ K(X),

where f (K) := { f (x) : x ∈ K} as usual. Note that f is also continuous. We refer the reader
to [17] for a detailed study of hyperspaces.

To set the more recent framework where the dynamics of the fuzzification of a map is
studied, we need some basic facts for fuzzy sets. A fuzzy set u on the space X is a function
u : X → [0, 1]. Given a fuzzy set u, let (uα) with α ∈ [0, 1] be the family of sets defined by:

uα = {x ∈ X : u(x) ≥ α}, α ∈]0, 1] and u0 = ∪{uα : α ∈]0, 1]}.

Let us denote byF (X) the family of all upper semicontinuous fuzzy sets with compact
support on X such that u1 is nonempty, which becomes a metric space with the metric:

d∞(u, v) = sup
α∈[0,1]

{dH(uα, vα)}.

The metric space (F (X), d∞) is denoted by F∞(X).
Another natural metric can be considered on F (X). Let ξ : [0, 1]→ [0, 1] be a strictly

increasing homeomorphism; the function d0 : F (X)→ F (X) given by:

d0(u, v) = inf{ε : sup
α∈[0,1]

|ξ(α)− α| ≤ ε and d∞(u, ξv) ≤ ε}

defines a metric on F (X) called Skorokhod’s metric. In general, it is fulfilled that d0 ≤ d∞,
which means that the topology induced in F (X) by d0 is weaker than the one induced
by d∞, i.e., τ0 ⊂ τ∞, where τ0 and τ∞ denote the respective topologies. The metric space
(F (X), d0) is denoted by F0(X). Given u ∈ F (X) and ε > 0, then B∞(u, ε) and B0(u, ε)
denote, respectively, the open ball of radius ε centered at u, with respect to d∞ and d0.

A continuous map f : X → X induces a function f̂ : F (X) → F (X) called Zadeh’s
extension (fuzzification) defined as:

f̂ (u)(x) =
{

sup{u(z) : z ∈ f−1(x)} if f−1(x) 6= ∅
0 if f−1(x) = ∅

We also recall that the hyperspace K(X) is a natural subspace of F (X) under the
injection K 7→ χK, where χK denotes the characteristic function of K.

Some dynamical properties of f̂ on the metric spaces F∞(X) and F0(X) were studied
by Jardón et al. in [4] in connection with the dynamics of f on the space X, and it is our
aim to extend this study to some notions of chaos.
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In the next section, we use the following properties of fuzzy sets on the spaces F∞(X)
and F0(X) (see [4,18,19] for the details).

Proposition 1. Let f : (X, d)→ (X, d) be a continuous function on a metric space, u ∈ F (X),
α ∈ [0, 1], n ∈ N, and K ∈ K(X). The following properties hold:

1.
[

f̂ (u)
]

α
= f (uα);

2. ( f̂ )n = f̂ n;
3. f̂ (χK) = χ f (K);
4. d0(u, χK) = d∞(u, χK).

2. Periodic Points and Devaney Chaos

The main results in this section are the equivalence between the Devaney chaos of f
in K(X) and of f̂ in F (X) and, as a consequence, the equivalence of Devaney chaos for a
continuous linear operator T on a metrizable and complete locally convex space X, for its
Zadeh extension T̂ defined on the space of normal fuzzy sets F (X) and for the induced
hyperspace map T on K(X). This extends previous results of D. Jardón, I. Sánchez, and M.
Sanchis about the transitivity in fuzzy metric spaces [4] (see also [20]) and another result
of N. Bernardes, A. Peris, and F. Rodenas [2] about the linear Devaney chaos of locally
convex spaces.

We recall that Banks [21], Liao, Wang, and Zhang [22], and Peris [23] independently
characterized the topological transitivity for (K(X), f ) in terms of the weak mixing property
for (X, f ). Concerning the space of fuzzy sets, in [4], the authors showed (Theorem 3) the
equivalences of the weak mixing property of f on X with the transitivity of f̂ on F∞(X)
or on F0(X). They also considered the fuzzy space F (X) endowed with the sendograph
metric and the endograph metric. Here, our attention is focused on the interplay between
the dynamical systems (X, f ), (K(X), f ) and (F (X), f̂ ), where F (X) is equipped with the
supremum metric d∞ or Skorokhod’s metric d0. On the other hand, it is a well-known fact
that the topologies induced by the endograph and the sendographs metrics, respectively,
are included in the topology induced by d∞, then some results can be extended as direct
consequence of this fact.

On the other hand, it was shown in [2] (Theorem 2.2), in the setting of the dynamics of
a continuous linear operator T on a complete locally convex space X, the equivalence of
Devaney’s chaos of T on X and of T on K(X).

Let us recall a couple of well-known properties of the Hausdorff metric, which will be
useful in the sequel. Given any A, B, C, and D in K(X):

dH(A ∪ B, C ∪ D) ≤ max{dH(A, C) , dH(B, D)} , (1)

If A ⊆ B ⊆ C , then dH(A, B) ≤ dH(A, C) and dH(B, C) ≤ dH(A, C) . (2)

Lemma 1. Let f be a continuous map on a topological space X. A nonempty compact set K ∈ K(X)
is a periodic point of f if and only if its characteristic function χK ∈ F (X) is f̂ -periodic. The
periods of K and χK are the same.

Proof. Let us assume that K ∈ K(X) is a periodic point such that ( f )n(K) = f n(K) = K,
then:

( f̂ )n(χK) = f̂ n(χK) = χ f n(K) = χK ⇒ χK ∈ Per( f ).

Now, we assume that χK is periodic, ( f̂ )n(χK) = χK. Since, f̂ n(χK) = χ f n(K) is
fulfilled for every n ∈ N+, we obtain that:

χ f
n
(K) = f̂ n(χK) = χK ⇒ f

n
(K) = K ⇒ K ∈ Per( f ) .

Finally, it is obvious that periods of K and χK must be the same.
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The following lemma was extracted from [4], and we included its proof for the sake of
completeness.

Lemma 2. Let (X, d) be a metric space. For any u ∈ F (X) and ε > 0, there exist numbers
0 = α0 < α1 < α2 < ... < αm = 1 such that:

dH(uα, uαi+1) < ε , for each α ∈]αi, αi+1] and i = 0, 1, 2..., m− 1 . (3)

Proof. From Lemma 1 in [4], there exists a partition of the interval [0, 1] given by numbers
0 = α0 < α1 < α2 < ... < αm = 1, which satisfies:

dH(uα+i
, uαi+1) < ε for each i = 0, 1, 2..., m− 1 (4)

where uα+ := limλ→α+ L(λ), L : [0, 1]→ K(X) being defined by L(α) = uα.
Since uαi+1 ⊆ uα ⊆ uα+i

, for each α ∈]αi, αi+1], i = 0, 1, 2..., m − 1, Equation (3) is
obtained as a direct consequence of the property (2) of Hausdorff’s metric.

The equivalence of (i) and (ii) in the following result was obtained by Kupka ([24],
Theorem 1), with a slightly different notation. We included the proof for the sake of
completeness and following the notation of the present paper.

Proposition 2. Let f be a continuous map on a metric space X. The following assertions are equiv-
alent:

(i) The set of periodic points Per( f ) is dense in K(X);
(ii) The set of periodic points Per( f̂ ) is dense in F∞(X);
(iii) The set of periodic points Per( f̂ ) is dense in F0(X).

Proof. (i)⇒ (ii): Given a fuzzy set u ∈ F∞(X) and ε > 0, let us consider the compact sets:

uα = {x ∈ X : u(x) ≥ α} , α ∈]0, 1] and u0 =
⋃

α∈]0,1]

uα .

By Lemma 2, there exist numbers 0 = α0 < α1 < α2 < ... < αm = 1 such that:

dH(uα, uαi+1) < ε/2 , α ∈]αi, αi+1] , i = 0, 1, 2..., m− 1 . (5)

By the hypothesis, the set Per( f ) is dense on K(X), then there exist m compact sets
K1, K2,...,Km in Per( f ) such that:

dH(uαi , Ki) < ε/2 , i = 1, 2, ..., m . (6)

There exist n1, n2, ..., nm in N+ satisfying f
ni (Ki) = Ki, i = 1, 2, ..., m. Let n be the least

common multiple of n1, n2, ..., nm, then f
n
(Ki) = Ki, for every i = 1, 2, ..., m.

We define the compact sets:

ωαi :=
⋃
j≥i

Kj , i = 1, 2, ..., m .

They satisfy that ωαi+1 ⊆ ωαi , i = 1, 2, ..., m− 1, and:

f
n
(ωαi ) = f

n
(
⋃
j≥i

Kj) =
⋃
j≥i

f
n
(Kj) =

⋃
j≥i

Kj = ωαi .

Therefore, ωαi ∈ Per( f ) for every i = 1, 2, ..., m.
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Notice that uαi+1 ⊆ uαi , i = 1, 2, ..., m− 1, implies that uαi =
⋃

j≥i uαj . Then, Equation (6)
and the property (1) of Hausdorff’s metric imply:

dH(uαi , ωαi ) = dH(
⋃
j≥i

uαj ,
⋃
j≥i

Kj) ≤ max
j≥i
{dH(uαj , Kj)} < ε/2 , i = 1, 2, ..., m . (7)

We define the family ωα for each α ∈ [0, 1] as follows:

ωα =

{
ωα1 , 0 ≤ α ≤ α1
ωαi , αi−1 < α ≤ αi , 2 ≤ i ≤ m .

The family {ωα : α ∈ [0, 1]} ⊂ K(X) is a decreasing family satisfying the conditions
of Proposition 4.9 in [18]; therefore, there exists a unique ω ∈ F∞(X) such that ωα = ωα

for each α ∈ [0, 1]. Notice that f n(ωα) = ωα, for each α ∈ [0, 1].
Let us show that this ω ∈ F∞(X) is periodic and the distance between u and ω is less

than ε:
We recall that ωαi ∈ Per( f ) for each i = 1, 2, ..., m and the definition of the family ωα,

α ∈ [0, 1], yield: [
f̂ n(ω)

]
α
= f

n
(ωα) = f

n
(ωα) = ωα = ωα , α ∈ [0, 1] .

Since u = v if and only if uα = vα for each α ∈ [0, 1], we conclude that:

f̂ n(ω) = ω . → ω ∈ Per( f̂ ) .

Finally, by using the triangular inequality for dH , Relation (5), and the definition of
ωα = ωα in each subinterval, it holds that:

dH(uα, ωα) < dH(uα, uαi ) + dH(uαi , ωαi ) <
ε

2
+

ε

2
= ε , for α ∈]αi, αi+1] , 0 ≤ i ≤ m− 1 .

Since α0 = 0 and u0+ = u0, the last expression is also fulfilled for α = 0. Hence, we
conclude that:

dH(uα, ωα) < ε , for each α ∈ [0, 1] .

which implies that:
d∞(u, ω) < ε ,

and therefore, the set Per( f̂ ) is dense in F∞(X).
(ii)⇒ (iii): This is obvious from the fact that, in general, d0(u, v) ≤ d∞(u, v) for every

u, v ∈ F (X), i.e., the topology induced in F (X) by d0 is weaker than the topology induced
by d∞.

(iii)⇒ (i): Let K be a nonempty compact set in K(X) and ε > 0. Let us consider the
characteristic function of K:

u := χK ∈ F0(X)

Notice that,

uα = {x ∈ X : u(x) ≥ α} = K , α ∈]0, 1] and u0 =
⋃

α∈]0,1]

uα = K .

By the hypothesis, there exists v ∈ Per( f̂ ) such that:

f̂ n(v) = v , for some n ∈ N+ and d0(u, v) < ε .

Consider the family of compact sets {vα , α ∈ [0, 1]} ⊂ K(X) defined as usual. Since
by definition u = χK, Proposition 1 tells us that d∞(u, v) = d0(u, v) < ε for each v ∈ F (X),
which implies that dH(uα, vα) < ε for each α ∈ [0, 1].
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Take a fixed α̃ ∈ [0, 1], and define M := vα̃ ∈ K(X). It is easy to check that M is a
periodic point of the map f ,

f
n
(M) = f

n
(vα̃) =

[
f̂ n(v)

]
α̃
= vα̃ = M,

and the distance between K and M is less than ε,

dH(K, M) = dH(K, vα̃) = dH(uα̃, vα̃) ≤ d∞(u, v) = d0(u, v) < ε .

Therefore, the set of periodic points Per( f ) is dense in K(X).

A direct consequence of the previous result and Theorem 3 in [4] is the following:

Corollary 1. Let f be a continuous map on a metric space X. The following assertions are
equivalent:

(i) f is Devaney chaotic on K(X);
(ii) f̂ is Devaney chaotic on F∞(X);
(iii) f̂ is Devaney chaotic on F0(X).

The equivalence of Devaney’s chaos for a continuous map f on a metric space and
the induced map f on the hyperspace K(X) does not hold in general in the context of the
dynamics of continuous maps on compact metric spaces. It is a well-known fact that both
implications:

f Devaney chaotic � f Devaney chaotic

are false (in general) for the nonlinear setting. See Remark 13 and Theorem 14 in [3].
However, this equivalence holds (see Theorem 2.2 in [2]) for continuous linear operators
on a complete locally convex space X. Although, traditionally, the concept of chaos was
associated with the behavior of certain nonlinear dynamical systems, it has been well
known since more than 100 y ago that chaos can also occur in linear systems, provided
they are infinite-dimensional. The dynamics of linear operators in infinite-dimensional
spaces has become a very active research area and has been extensively studied for more
than twenty years, especially for operators on Fréchet spaces (i.e., metrizable and complete
locally convex spaces). An overview of the state-of-the-art in the area of linear chaos can be
found in the monographs [25,26].

In the linear framework, the Devaney chaotic behavior of a continuous linear operator
T on a space X and that of the associated dynamical systems (K(X), T) and (F (X), T̂) are
equivalent.

Theorem 1. Let T be a continuous linear operator on Fréchet space X. The following assertions
are equivalent:

(i) T is Devaney chaotic on X;
(ii) T is Devaney chaotic on K(X);
(iii) T̂ is Devaney chaotic on F∞(X);
(iv) T̂ is Devaney chaotic on F0(X).

Proof. The equivalence between (i) and (ii) was proven in [2] (see Theorem 2.2) and the
equivalences among (ii), (iii), and (iv) are given in the previous Corollary 1.

3. Other Dynamical Properties Related to Chaos

The purpose of this section is to deal with the concepts of A-transitivity, Li–Yorke
chaos, and distributional chaos. Since the weak mixing property is required to have at least
topological transitivity on the hyperspace or on the space of fuzzy sets, we concentrate on
A-transitivity for a proper filter A. Typical examples of proper filters are the family Ac f of
cofinite subsets of Z+, so that Ac f -transitivity is exactly the mixing property, and the family
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Ats of thickly syndetic sets. We recall that a strictly increasing sequence (nj)j∈N ∈ ZN
+ is

syndetic if:
sup
j∈N

(nj+1 − nj) < ∞.

A subset A ⊂ Z+ is thickly syndetic if, for each N ∈ N, the set {j ∈ Z+ : {j, j + 1, . . . , j +
N} ⊂ A} is syndetic.

We are now in conditions to establish the equivalence of A-transitivity in our different
frameworks (the original system and its associated hyperspace and space of fuzzy sets).
We recall that the equivalence of Properties (i) and (ii) in the following theorem was given
in [27]. For the equivalence with (iii) and (iv), we essentially followed the arguments taken
from [4].

Theorem 2. If A is a proper filter and (X, f ) is a dynamical system on a metric space X, then the
following assertions are equivalent:

(i) (X, f ) is A-transitive;
(ii) (K(X), f ) is A-transitive;
(iii) (F∞(X), f̂ ) is A-transitive;
(iv) (F0(X), f̂ ) is A-transitive.

Proof. (ii)⇒ (iii): Given arbitrary u, v ∈ F (X) and ε > 0, we have to show that N f̂ (U, V) ∈
A, where U = B∞(u, ε) and V = B∞(v, ε). By Lemma 2, there exist numbers 0 = α0 <
α1 < α2 < ... < αm = 1 such that:

dH(uα, uαi+1) < ε/3 , for each α ∈]αi, αi+1] and i = 0, 1, 2..., m− 1;

dH(vα, vαi+1) < ε/3 , for each α ∈]αi, αi+1] and i = 0, 1, 2..., m− 1.

Since (K(X), f ) is A-transitive and A is a proper filter, we have that:

A :=
m⋂

i=1

N f (Ui, Vi) ∈ A,

where Ui = BH(uαi , ε/3) and Vi = BH(vαi , ε/3), i = 1, . . . , m. Given n ∈ A, we find Ki ∈ Ui
such that Li := f n(Ki) ∈ Vi, i = 1, . . . , m.

As before, we consider the increasing family of compact sets:

ωαi :=
⋃
j≥i

Kj , i = 1, 2, ..., m ,

and we have dH(uαi , ωαi ) < ε/3, i = 1, . . . , m. We also set:

ωα =

{
ωα1 , 0 ≤ α ≤ α1
ωαi , αi−1 < α ≤ αi , 2 ≤ i ≤ m .

for each α ∈ [0, 1], which determines ω ∈ F (X) with d∞(ω, u) < 2ε/3, thus ω ∈ U.
Analogously, by setting:

ηαi :=
⋃
j≥i

Lj , i = 1, 2, ..., m ,

we have dH(vαi , ηαi ) < ε/3, i = 1, . . . , m, and:

ηα =

{
ηα1 , 0 ≤ α ≤ α1
ηαi , αi−1 < α ≤ αi , 2 ≤ i ≤ m .

for each α ∈ [0, 1], determines η ∈ F (X) with d∞(η, v) < 2ε/3, and we obtain η ∈ V.
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By construction, we have that f n(ωαi ) = ηαi , i = 1, . . . , m, so f̂ n(ω) = η. That is,
n ∈ N f̂ (U, V). Since n ∈ A was arbitrary, we obtain that A 3 A ⊂ N f̂ (U, V), which yields
N f̂ (U, V) ∈ A, as desired.

(iii)⇒ (iv) is trivial, since τ0 ⊂ τ∞.
(iv)⇒ (i): We suppose that (F0(X), f̂ ) is A-transitive, and we pick arbitrary x, y ∈ X

and ε > 0. We need to show that N f (U, V) ∈ A, where U = B(x, ε) and V = B(y, ε). To
do this, we set u = χ{x}, v = χ{y}, Û = B0(u, ε), and V̂ = B0(v, ε). By the hypothesis,
A := N f̂ (Û, V̂) ∈ A. If n ∈ A, we find u′ ∈ Û and v′ ∈ V̂ such that f̂ n(u′) = v′. This
implies that, by selecting any x′ ∈ u′0, then y′ := f n(x′) ∈ v′0 and:

d(x′, x) ≤ dH(u′0, {x}) = dH(u′0, u0) ≤ d0(u′, u) < ε.

Analogously, d(y′, y) ≤ d0(v′, v) < ε, and we obtain that n ∈ N f (U, V). We conclude
that A ⊂ N f (U, V) and (X, f ) is A-transitive.

As mentioned before, sinceAc f is a proper filter andAc f -transitivity is the topological
mixing property, one immediately has the equivalence of the four properties above in the
case of topological mixing.

The previous theorem has also some consequences for linear dynamics. We recall
that a dynamical system (X, f ) is said to be topologically ergodic if for any pair U, V ⊂ X
of nonempty open sets, there is a syndetic sequence (nj) in N such that f nj(U) ∩V 6= ∅
for all j ∈ N. Actually, topologically ergodic operators are Ats-transitive (see the exercises
in [26] (Chapter 2)), and Ats is a proper filter. The following is then an easy consequence
of the previous theorem.

Corollary 2. If T is a continuous linear operator on a metrizable topological vector space X, then
the following assertions are equivalent:

(i) T is topologically ergodic;
(ii) T is topologically ergodic;
(iii) T̂ is topologically ergodic.

We recall that irrational rotations of the circle are not weakly mixing, but they are
topologically ergodic, so the above corollary cannot be extended to the nonlinear setting.

We finally turn our attention to Li–Yorke chaos. The first result is essentially easy, but
there are still some natural questions that remain open.

Proposition 3. Let f be a continuous map on a metric space X. Then:

(i) If there exists a (ε-distributionally) scrambled set S for f , then there exist (ε-distributionally)
scrambled sets S and Ŝ for f and f̂ , respectively, with the same cardinality as S;

(ii) If there exists a (ε-distributionally) scrambled set S for f , then there exists a (ε-distributionally)
scrambled set Ŝ for f̂ with the same cardinality as S;

(iii) If f is Li–Yorke (distributionally) chaotic on X, then f is Li–Yorke (distributionally) chaotic
on K(X);

(iv) If f is Li–Yorke (distributionally) chaotic on K(X), then f̂ is Li–Yorke (distributionally)
chaotic on F∞(X) and in F0(X).

Proof. Everything is a consequence of the fact that the dynamical system (X, f ) can be
regarded as a subsystem of the dynamical system (K(X), f ), and in turn, (K(X), f ) is a
subsystem of (F (X), f̂ ) by means of the isometric embeddings:

x ∈ X 7→ {x} ∈ K(X)

K ∈ K 7→ χK ∈ F (X)

both for F∞(X) and F0(X).
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Remark 1. In Theorem 10 of [3], an example was provided of a dynamical system (X, f ) that admits
no Li–Yorke pairs, but (K(X), f ) (and therefore, (F∞(X), f̂ ) or (F0(X), f̂ )) is distributionally
chaotic. However, we do not know if there are examples of dynamical systems (X, f ) for which
(F∞(X), f̂ ) or (F0(X), f̂ ) is (distributionally) Li–Yorke chaotic and (K(X), f ) is not.

Within the framework of linear dynamics, we can obtain a characterization under very
general conditions, in the line of Theorem 3.2 in [2].

Theorem 3. Let T be a continuous linear operator on a Fréchet space X, and define:

NS(T) := {x ∈ X : (Tnx)n∈Z+
has a subsequence converging to 0}.

If span(NS(T)) is dense in X, then the following assertions are equivalent:

(i) T is Li–Yorke chaotic;
(ii) T is Li–Yorke chaotic;
(iii) (F∞(X), T̂) or (F0(X), T̂) is Li–Yorke chaotic.

Proof. The equivalence of (i) and (ii) was shown in [2] (Theorem 3.2), and we already to
know the implication of (ii)⇒ (iii).

(iii)⇒ (ii): Again, by [2] (Theorem 3.2), we just need to show that T admits a Li–Yorke
pair. Since the fuzzy system admits a Li–Yorke pair, say (u, v), by compactness and by the
fact that (u, v) is a Li–Yorke pair, we obtain K, L ∈ K(X) with K ⊂ u0, L ⊂ v0 such that:

lim inf
n→∞

dH(Tn(K), Tn(L)) = 0 and lim sup
n→∞

dH(Tn(K), Tn(L)) > 0.

That is, (K, L) is a Li–Yorke pair for (K(X), T), and we conclude the result.

4. Conclusions

For a discrete dynamical system (X, f ) on a metric space (X, d), we studied the
interplay with the dynamics of its induced maps f : K(X)→ K(X) on the hyperspace of
nonempty compact subspaces of X and f̂ : F (X)→ F (X) on the space of normal fuzzy sets.
We concentrated on dynamical properties related to chaotic notions. Devaney chaos was
shown to be equivalent in the hyperspace or in the spaces of fuzzy sets and also equivalent
to Devaney chaos in the original system when X is a complete and metrizable locally
convex space and f is a continuous and linear operator. We also studied A-transitivity
for Furstenberg families A, which are proper filters, and showed the equivalence of this
property, in general, in all the systems (original, hyperspace, and spaces of fuzzy sets)
considered here. Finally, with Li–Yorke and distributional chaos, we observed that from
the smaller to the bigger space, the implications are fine, left open the intriguing question
of whether we can go from the space of fuzzy sets to the hyperspace, and obtained a
characterization, under very general assumptions, of Li–Yorke chaos in the four systems
considered here within the framework of linear dynamics.
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