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Abstract: In this paper, two new families of non-stationary subdivision schemes are introduced. The
schemes are constructed from uniform generalized B-splines with multiple knots of orders 3 and 4,
respectively. Then, we construct a third-order reverse subdivision framework. For that, we derive a
generalized multi-resolution mask based on their third-order subdivision filters. For the reverse of the
fourth-order scheme, two methods are used; the first one is based on least-squares formulation and
the second one is based on solving a linear optimization problem. Numerical examples are given to
show the performance of the new schemes in reproducing different shapes of initial control polygons.

Keywords: generalized B-splines; non-stationary subdivision schemes; reverse subdivision scheme;
wavelets; tension parameter

1. Introduction

In recent years, the usage of subdivision schemes played a crucial role in develop-
ing computer graphics and creating smooth curves and surfaces. The starting point of
this theory was Rahm’s article (see [1]); a few years later several schemes were devel-
oped to extend the field of application to more complicated curves and surfaces. This
theory has found huge success in many fields of application such as curve and surface
reconstruction (see [2–5]), computer animation and graphics (see [6–8]), robotics (see [9]),
medical science processing (see [10–12]), wavelet and frame construction (see [13–16]),
etc. Subdivision schemes have a very strong link with splines, so they are widely used to
describe various properties of splines such as shape reproduction and approximation order
calculation [17–19]. In the numerical domain, different subdivision schemes to approxi-
mate numerically various curves and surfaces have been proposed. For example, in [20]
Romani has presented non-stationary approximating subdivision schemes to reproduce
exponential functions based on algebraic and exponential polynomials. In Sunita and
Shunmugaraj [4], an interpolating non-stationary subdivision schemes was introduced to
generate circles, ellipses and all functions spanned by {1, cos(x), sin(x)}. Recent proposals
of efficient non-stationary subdivision schemes have been presented by Ghaffar et al. [21],
Fakhar et al. [22,23], Siddiqi et al. [24,25], where the authors have built elegant methods
capable of reproducing complex curves or surfaces.

The reverse subdivision is a very important topic in CAGD that is often used in the
removal of noise from curves and surfaces. For example, In [26], Foster et al. gave an idea
of how the reverse subdivision can be used to remove and filter artifacts and noises from
silhouettes extracted from polygonal meshes. To reduce the number of vertices in the raw
data of a digitized leaf, Mundermann et al. [27] used the same idea as Foster et al. [26].

However, few works discuss the construction of wavelets based on the reverse sub-
division technique. For example, Samavati and Bartels [15] are the first researchers who
used the notion of reverse subdivision method for constructing multiresolution represen-
tation and studied its application to derive local reverse subdivision filters using local
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linear conditions (see [16]). Reference [28], Sadeghi et al. developed a full multiresolution
representation based on reverse subdivision to create a good and smooth approximation of
the original control points. In [29], Mohamed F. Hassan and Neil A. Dodgson presented
a reverse Chaikin algorithm that generates a multiresolution representation of any line
chain. For the non-interpolating transforms construction relies on the recently-introduced
decimation operators, see [30] which are employed as subsampling operators. Recently,
M. Ajeddar and A. Lamnii (see [31]) construct the inverse subdivision scheme associated
with the quadratic uniform algebraic hyperbolic (UAH) B-spline by following the method
introduced in [29].

In this paper, we introduce generalized B-splines of order 3 and 4 with multiple knots.
From these B-splines, we have constructed two non-stationary subdivision schemes called
generalized subdivision schemes of order 3 and 4. These subdivision schemes can exactly
reproduce trigonometric and hyperbolic limit curves. As the matrix corresponding to the
generalized subdivision scheme of order 3 is a square matrix, we compute the inverse of
this matrix to finally obtain the expression of the reverse scheme of order 3. Using the
multiresolution theory we propose the wavelets corresponding to the generalized scheme
of order 3. To calculate the reverse generalized scheme of order 4 we use two methods:
the first is similar to the one presented by Olsen in [32] which is based on multiresolution.
It starts by finding the approximate reverse scheme and then finding the error between the
control polygonal and the one constructed by using this approximate reverse scheme. The
calculation of this error is based on the solution of least-squares formulations. Precisely the
second method differs from the first one in this part of the error calculation. It is based on
the matrix solution of a linear optimization problem such that the error is minimized. The
great advantage of this method is that the error depends on the generalized subdivision of
order 4 matrix which is already known. The corresponding algorithm is also presented.

The main novelty of this paper is that our reverse subdivision scheme is a non-
stationary reverse scheme that is characterized by a tension parameter that allows us to
exactly reproduce the initial control polygonal of the trigonometric and hyperbolic form.
The performance of the proposed schemes compared to those in the literature is illustrated
by numerical examples.

The paper is organized as follows. We first introduce the definition and some interest-
ing properties of the generalized B-splines of degree 3 and 4 of the proposed subdivision
scheme in Section 2. In Section 3, we present the subdivision scheme associated with the
generalized B-spline. Section 4, presents the reverse subdivision scheme for generalized
B-splines of degree 3. Moreover, a related multiresolution technique is discussed. In
Section 5, based on two methods, we give the reverse subdivision scheme for generalized
B-splines of degree 4. The last section is devoted to the conclusion.

2. Definitions of Generalized B-Spline Basis Functions

This section aims to present explicit formulas of the uniform generalized B-splines of
order k where k ∈ {3, 4} and gave their interesting properties, for more details see [5,33].
To do this, we need the following notations:

For a given positive integer ` > 0, let h` = b−a
2`

and ω ∈ R+ ∪ iR+ such that
0 < |w|h < π. Let,

τ` = {t−k = · · · = t0, t1, · · · , t2`−1, t2` = · · · = t2`+k}
= { a, . . . , a︸ ︷︷ ︸

(k+1) equal knots

, a + h`, · · · , a + (2` − 1)h`︸ ︷︷ ︸
(2`−1) internal knots

, b, . . . , b︸ ︷︷ ︸
(k+1) equal knots

}

the uniform partition of I = [a, b], with meshlength h` and Sk(I, τ`) the space of generalized
splines of order k defined by:

Sk(I, τ`) =
{

s ∈ Ck−2([a, b]), s|[ti ,ti+1 ]
∈ Γk

}
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where Γk = span{1, tk−3, cos(ωt), sin(ωt)}.
The dimension of Sk(I, τ`) is (2` + k− 1) and the k-order generalized B-splines are

given by:

• For k = 3:

N1,3(t) :=

{
cos(ω(t1−x))−1

cos(h`ω)−1 , t ∈ [t0, t1]

0, otherwise

N2,3(t) :=


−2 cos(ω(t1−t))+2 cos(h`ω)−cos(ωt)+1

2 cos(h`ω)−2 , t ∈ [t0, t1]

1
2 csc2

(
h`ω

2

)
sin2(ω(t1 − t

2 )
)
, t ∈ [t1, t2]

0, otherwise

N2`+1,3(t) :=


− cos(ω(t−tm`−2)−1)

2(cosh(ωh)−1) , t ∈ [t2`−2, t2`−1]
− cos(ω(t`−t))−2 cos(ω(t−t2`−1))+2 cos(h`ω)+1

2 cos(h`ω)−2 , t ∈ [t2`−1, t2` ]

0, otherwise

N2`+2,3(t) :=

{
cos(ω(t−t2`−1))−1

cos(h`ω)−1 , t ∈ [t2`−1, t2` ]

0, otherwise

and
Ni,3(t) := N3(t− ti−2), 3 ≤ i ≤ 2`

where

N3(t) :=



cos(w(t−t0))−1
2(cos(h`w)−1) , t ∈ [t0, t1]
− cos(w(t2−x))−cos(w(x−t1))+2 cos(h`w)

2(cos(h`w)−1) , t ∈ [t1, t2]
cos(w(t3−t))−1
2(cos(h`w)−1) , t ∈ [t2, t3]

0, otherwise

• For k = 4:

N1,4(t) :=

{
ω(t−t1)+sin(ω(t1−t))

sin(h`ω)−h`ω
, t ∈ [t0, t1]

0, otherwise

N2`+3,4(t) :=

{
sin(ω(t−t2`−1))+ω(−t+t2`−1)

sin(h`ω)−h`ω
, t ∈ [t2`−1, t2` ]

0, otherwise

N2,4(t) :=



sin(ω(t1−t))−sin(h`ω)+ω(t−t0)
h`ω−sin(h`ω)

+
−2 sin(ω(t1−t))−2ω(t−t0) cos(h`ω)+2 sin(h`ω)−ω(t−t0)+sin(ω(t−t0))

2h`ω cos(h`ω)−2 sin(h`ω)
, t ∈ [t0, t1]

ω(t−t2)+sin(ω(t2−t))
2h`ω cos(h`ω)−2 sin(h`ω)

, t ∈ [t1, t2]

0, otherwise.

N2`+2,4(t) :=



sin(ω(t−t2`−2)+ω(t2`−2−t)
2h`ω cos(h`ω)−2 sin(h`ω)

, t ∈ [t2`−2, t2`−1]

−ω((t2`−1−t) sin(2h`ω)+h`(−2 sin(ω(t−t2`−1))+sin(ω(t−t2`−2))

2(sin(h`ω)−h`ωw)(h`ω cos(h`ω)−sin(h`ω))

−ω(t−t2` )−sin(h`ω)(sin(ω(t2`−t))+ω(t2`−2−t)
2(sin(h`ω)−h`ωw)(h`ω cos(h`ω)−sin(h`ω))

, t ∈ [t2`−1, t2` ]

0, otherwise.

N3,4(t) :=



ω(t−t0)−sin(ω(t−t0))
2h`ω cos(h`ω)−2h`ω

+
2 sin(ω(t1−t))+2ω(t−t0) cos(h`ω)−2 sin(h`ω)+ω(t−t0)−sin(ω(t−t0))

2h`ω cos(h`ω)−2 sin(h`ω)
, t ∈ [t0, t1]

2h`ω2(t2−t) cos2(h`ω)−ω(t2−t)(h`ω+sin(2h`ω))+h`ω sin(ω(t2−t))+sin(h`ω)(sin(ω(t1−t))
2h`ω(cos(h`ω)−1)(h`ω cos(h`ω)−sin(h`ω))

+
sin(ω(t2−t))+h`ω)−h`ω cos(h`ω)(sin(ω(t1−t))+2 sin(ω(t2−t))+ω(t−t1))

2h`ω(cos(h`ω)−1)(h`ω cos(h`ω)−sin(h`ω))
, t ∈ [t1, t2]

sin(ω(t3−t))+ω(t−t3)
2h`ω cos(h`ω)−2h`w

t ∈ [t2, t3]

0, otherwise.
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N2`+1,4(t) :=



−ω(t−t2`−3)+sin(ω(t2`−3−t))
2h`ω(cos(h`ω)−1) , t ∈ [t2`−3, t2`−2]

ω(t−t2`−2)+sin(ω(t2`−2−t))
2h`ω cos(h`ω)−2 sin(h`ω)

+ sin(h`ω)−h`ω
2h`ω cos(h`ω)−2h`ω

sin(ω(t−t2`−1))+sin(ω(t−t2`−2))+2ω(t2`−2−t) cos(h`ω)+sin(h`ω)

2h`ω(cos(h`ω)−1) , t ∈ [t2`−2, t2`−1]
h`ω2(t2`−t) cos(2h`ω)−h`ω(sin(ω(t2`−1−t))+sin(ω(t−t2`−1))−sin(ω(t−t2`−2))

2h`ω(cos(h`ω)−1)(h`ω cos(h`ω)−sin(h`ω))
+

sin(2h`ω))+sin(h`ω)(ω(t−t2`−2)+sin(ω(t2`−t)))
2h`ω(cos(h`ω)−1)(h`ω cos(h`ω)−sin(h`ω))

, t ∈ [t2`−1, t2` ]

0, otherwise.

and
Ni,4(t) := N4(t− ti−2), 4 ≤ i ≤ 2`

where

N4(t) =



sin(ω(t−t0))−ω(t−t0)
2h`ω cos(h`ω)−2h`ω

, t ∈ [t0, t1]
2 sin(ω(t1−t))+sin(ω(t2−t))+2ω(t−t1) cos(h`ω)+ω(t−t2)

2h`ω(cos(h`ω)−1) , t ∈ [t1, t2]
− sin(ω(t2−t))−2 sin(ω(t3−t))−2ω(t−t0) cos(h`ω)+2h`ω+6h`ω cos(h`ω)−ωx

2h`ω(cos(h`ω)−1) , t ∈ [t2, t3]
sin(ω(t4−t))+ω(t−t4)
2h`ω cos(h`ω)−2h`ω

, t ∈ [t3, t4]

0, otherwise

In [5], M.-E. Fang et al. proved that all the desirable properties of classical polynomial
B-splines carry over to the generalized B-splines of order k. In this section, we mention
only the most remarkable ones such as:

• Local support: Ni,k(t) = 0 for t /∈ [ti, ti+k].
• Positivity: Ni,k(t) > 0 for t ∈]ti, ti+k[.

• Partition of unity:
2`+k−1

∑
i=1

Ni,k(t) = 1, for all t ∈ [a, b].

• Linear independence: N1,k, · · · , N2`+k−1,k are linearly independent.

3. Generalized Subdivision Scheme

This section presents the explicit matrix form of the generalized subdivision scheme
corresponding to the B-spline proposed in the previous Section, afterwards illustrating
some numerical examples of the application of this scheme in generating limit curves.

3.1. Generalized Subdivision Rules

By using the same method described in [5], we can also propose a generalized subdi-
vision scheme from the refinement equation associated with the generalized B-spline with
multiple knots of order k.

Let C0 =
{

c0
−2, . . . , c0

n
}T be the vector of initial data and u0 be a tension parameter

satisfying u0 > 0. The generalized subdivision scheme of order k at level ` can be written
in matrix form:

C`+1 = P`
k C`, ` ≥ 0. (1)

where P`
k is the matrix of the generalized subdivision scheme of order k at level `, its

expression for k = 3 is
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P`
3 =



1 0 0 0 · · · 0 0 0
1

1+u`
u`

1+u` 0 0 · · · 0 0 0

0 1+2u`

2(1+u`)
1

2(1+u`)
0 · · · 0 0 0

0 1
2(1+u`)

1+2u`

2(1+u`)
0 · · · 0 0 0

0 0 1+2u`

2(1+u`)
1

2(1+u`)
· · · 0 0 0

0 0 1
2(1+u`)

1+2u`

2(1+u`)
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1+2u`

2(1+u`)
1

2(1+u`)
0

0 0 0 0 · · · 1
2(1+u`)

1+2u`

2(1+u`)
0

0 0 0 0 · · · 0 u`

1+u`
1

1+u`

0 0 0 0 · · · 0 · · · 1



, (2)

and for k = 4 it is

P`
4 =



1 0 0 0 0 · · · 0 0 0
1

1+u`
u`

1+u` 0 0 0 · · · 0 0 0

0 1+2u`

2(1+u`)
1

2(1+u`)
0 0 · · · 0 0 0

0 1+2u`

8(1+u`)
5+6u`

8(1+u`)
1

4(1+u`)
0 · · · 0 0 0

0 0 1
2

1
2 0 · · · 0 0 0

0 0 1
4(1+u`)

1+2u`

2(1+u`)
1

4(1+u`)
· · · 0 0 0

0 0 0 1
2

1
2 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1
2

1
2 0 0

0 0 0 0 · · · 1
4(1+u`)

5+6u`

8(1+u`)
1+2u`

8(1+u`)
0

0 0 0 0 · · · 0 1
2(1+u`)

1+2u`

2(1+u`)
0

0 0 0 0 · · · 0 0 u`

1+u`
1

1+u`

0 0 0 0 · · · 0 0 · · · 1



. (3)

u` is the tension parameter at level `, it was updated from one level to another by the
following expression:

u` =

√
1 + u`−1

2
, ` > 0

and as proved in [5] when `→ +∞ then u` → 1.

Remark 1. As described in [5]:

• When 0 < u0 < 1 the scheme (1) is called an Algebraic trigonometric scheme and it can
generate a trigonometric limit curve like a circle. . .

• When u0 = 1 the scheme (1) is called a Polynomial scheme.
• When 1 < u0 the scheme (1) called a hyperbolic scheme and it can generate a hyperbolic limit

curve like a helix.

Theorem 1. The generalized subdivision scheme of order k generates Ck−2-continuous limit curves
for any choice of the initial tension parameter u0.

Proof. The proof is omitted as it is similar to the proof of Theorem 7 in [5]. (see also
references [34,35]).

3.2. Numerical Examples

Figure 1, illustrates the performance of a generalized subdivision scheme of order 3 in
generating a different kind of limit curve like the circle in Figure 1a and helix in Figure 1b
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by using initial tension parameter u0 = cos(π/4), respectively, u0 = cosh(π/4). Figure 2
illustrates two different limit forms generated by application of the generalized subdivision
scheme of order 3 (black) and 4 (red) on the initial control polygonal (blue) choosing
u0 = cosh(π/4).

(a) (b)

Figure 1. An example of analytic curves produced by application of a generalized subdivision scheme
of order 3; (a) circle, (b) helix.

(a) Initial Mesh (b) 1st step (c) 2nd step (d) 3th step

(e) Initial Mesh (f) 1st step (g) 2nd step (h) 3th step

Figure 2. Tree steps of subdivision curves by application of a generalized subdivision scheme of
order 3 (black) and 4 (red).

4. Reverse Generalized Subdivision Scheme of Order 3 and Wavelets

In this section we will determine the reverse of the generalized scheme of order 3,
then we will give the wavelets corresponding to this scheme.

4.1. Reverse Generalized Subdivision Scheme

Inverse subdivision is the process of finding the coarsest possible representation of a
given object by a finer control polygon. In other words, it is a tool that allows us to return to
the approximate control polygon of fine data that was obtained by the same direct scheme
whose reverse we are looking for or by another scheme. The advantage of the reverse
scheme is that it helps us a lot to return to the initial polygon of a fine data easily without
losing a lot of time and also without taking a up lot of space because creating a control
polygon corresponding to fine data which are very large takes a lot of memory space and
this does not happen in the case where the reverse scheme is used. The method for finding
the reverse scheme is to take the direct scheme at level ` and try to calculate the reverse of
that scheme in such a way that we can return to the control polygon C` from C`+1. When
we find this reverse scheme, we can apply it ` times to easily return to the first control
polygon C0. In this subsection, we will use the technique used by Hassan et al. in [29] to
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extract the reverse scheme corresponding to the generalized scheme of order 3.
By using (2), we have,

c`+1
−2 = c`−2

c`+1
−1 =

1
1 + u`

c`−2 +
u`

1 + u`
c`−1

c`+1
2i =

1 + 2u`

2(1 + u`)
c`i−1 +

1
2(1 + u`)

c`i , i = 0, . . . , 2` − 2

c`+1
2i+1 =

1
2(1 + u`)

c`i−1 +
1 + 2u`

2(1 + u`)
c`i , i = 0, . . . , 2` − 2

c`+1
2`+1−2

=
u`

1 + u`
c`2`−2 +

1
1 + u`

c`2`−1

c`+1
2`+1−1

= c`2`−1

(4)

The components of vector C` are determined from the system (4), as follows:

c`−2 = c`+1
−2

c`−1 =
−1
u`

c`+1
−2 +

1 + u`

u`
c`+1
−1

c`2`−2 =
1 + u`

u`
c`+1

2`+1−2
− 1

u`
c`+1

2`+1−1

c`2`−1 = c`+1
2`+1−1

(5)

and for i = 0, · · · , 2`−1 − 2 we have{
c`i−1 = 1+2u`

2u` c`+1
2i −

1
2u` c`+1

2i+1

c`i = −
1

2u` c`+1
2i + 1+2u`

2u` c`+1
2i+1.

In order to determine the stages of the forward–backward subdivision patterns, it is
sufficient to take the average of the two positions and to store the error vectors (see [29]).

Consequently, for i = 0, · · · , 2`−1 − 3,
c`i = −

1
4u`

c`+1
2i +

1 + 2u`

4u`
c`+1

2i+1 +
1 + 2u`

4u`
c`+1

2i+2 −
1

4u`
c`+1

2i+3

d`i =
1

4u`
c`+1

2i −
1 + 2u`

4u`
c`+1

2i+1 +
1 + 2u`

4u`
c`+1

2i+2 −
1

4u`
c`+1

2i+3

(6)

where d`i is the detail values that can be used to reconstruct the data c`+1. The vector that
gathers these values denoted by D` and is called the detail vector.
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Moreover,

c`−2 = c`+1
−2

d`−2 = 0

c`−1 =
−1
2u`

c`+1
−2 +

1 + u`

2u`
c`+1
−1 +

1 + 2u`

4u`
c`+1

0 − 1
4u`

c`+1
1

d`−1 =
1

2u`
c`+1
−2 −

1 + u`

2u`
c`+1
−1 +

1 + 2u`

4u`
c`+1

0 − 1
4u`

c`+1
1

c`2`−2 = − 1
4u`

c`+1
2`+1−4

+
1 + 2u`

4u`
c`+1

2`+1−3
+

1 + u`

2u`
c`+1

2`+1−2
− 1

2u`
c`+1

2`+1−1

d`2`−2 = − 1
4u`

c`+1
2`+1−4

+
1 + 2u`

4u`
c`+1

2`+1−3
− 1 + u`

2u`
c`+1

2`+1−2
+

1
2u`

c`+1
2`+1−1

c`2`−1 = c`+1
2`+1−1

d`2`−1 = 0,

(7)

Consequently, for i = 0, . . . , 2` − 3

c`+1
−2 = c`−2

c`+1
−1 =

1
1 + u`

c`−2 +
u`

1 + u`
(c`−1 − d−1)

c`+1
2i =

1 + 2u`

2(1 + u`)

(
c`i−1 − d`i−1

)
+

1
2(1 + u`)

(
c`i + d`i

)
c`+1

2i+1 =
1

2(1 + u`)

(
c`i−1 − d`i−1

)
+

1 + 2u`

2(1 + u`)

(
c`i + d`i

)
c`+1

2`+1−2
=

u`

1 + u`
(c2`−2 − d2`−2) +

1
1 + u`

c`2`−1

c`+1
2`+1−1

= c`2`−1.

(8)

Remark 2.

• When u` = 1 this reverse generalized scheme becomes the reverse of the Chaikin scheme
proposed in [29].

• In the reverse step from level `+ 1 to level `, the tension parameter is updated as follows:

u` = 2(u`+1)2 − 1.

4.2. Numerical Example

To show the added value of our inverse generalized subdivision scheme, we propose
in this section some examples related to trigonometric and hyperbolic curves. Indeed, In
Figure 3 we apply three levels step of reverse generalized subdivision scheme of order 3 to
limit form (blue) with values of the tension parameter equal to 1.2. In Figure 4 we show
the advantage of the generalized reverse scheme of order 3 in the reconstruction of original
initial control polygonal trigonometric form and hyperbolic form. The tension parameters
applied are 0.9 and 1.12.
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(a) Initial limit form (b) 1st Reverse step (c) 2nd Reverse step (d) Last Reverse step

Figure 3. An open curve and their three levels of generalized B-spline reverse subdivision of order 3.

(a) Initial limit form (b) Our reverse scheme

(c) Initial limit form (d) Our reverse scheme

(e) Initial limit form (f) Our reverse scheme

Figure 4. The generalized reverse scheme of order 3.

It is well known that the multi-resolution process of a subdivision model allows
increase or decrease in the resolution of a given mesh. For example, in animated films, we
use meshes that are too smooth when the images are close together and coarse meshes in
the opposite case (see [31]).

4.3. Multiresolution and Reverse Subdivision Scheme

The objective of this section is to construct generalized spline wavelets associated with
generalized splines of order 3 with multiple nodes at the edges of the interval [a,b].
Let F` be a set of fine points. The multi-resolution decomposition of F` and given by:

C` = A`
3F` and D` = B`

3F`,
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where

• C` is a set of coarse points;
• D` is a set of detailed points;

• A`
3 and B`

3 are the filters matrix of size
(

2` + 2
)
×
(

2`+1 + 2
)

.

According to (6) it is easy to find that:

A`
3 =



1 0 0 0 0 0 · · · 0 0 0
− 1

2u`
1+u`

2u`
1+2u`

4u` − 1
4u` 0 0 · · · 0 0 0

0 0 − 1
4u`

1+2u`

2u`
1+2u`

2u` − 1
4u` 0 · · · 0 0

...
... 0

. . . . . . . . . . . .
...

...
...

...
...

... 0 − 1
4u`

1+2u`

2u`
1+2u`

2u` − 1
4u` 0 0

...
...

...
... 0 0 − 1

4u`
1+2u`

4u`
1+u`

2u` − 1
2u`

0 0 0 0 0 0 0 0 0 1


,

B`
3 =



0 0 0 0 0 0 · · · 0 0 0
1

2u` − 1+u`

2u`
1+2u`

4u` − 1
4u` 0 0 · · · 0 0 0

0 0 1
4u` − 1+2u`

2u`
1+2u`

2u` − 1
4u` 0 · · · 0 0

...
... 0

. . . . . . . . . . . .
...

...
...

...
...

... 0 1
4u` − 1+2u`

2u`
1+2u`

2u` − 1
4u` 0 0

...
...

...
... 0 0 − 1

4u`
1+2u`

4u` − 1+u`

2u`
1

2u`

0 0 0 0 0 0 0 0 0 0


,

The reconstruction can be obtained by using the synthesis filters P`
3 and Q`

3 such that
F` = P `

3 C` + Q`
3D`. From the Formula (8), the matrix Q`

3 is defined as follow

Q`
3 =



1 0 0 0 · · · 0 0 0
1

1+u`
u`

1+u` 0 0 0 0

0 1+2u`

2(1+u`)
1

2(1+u`)
0 · · · 0 0 0

0 1
2(1+u`)

1+2u`

2(1+u`)
0 · · · 0 0 0

0 0 1+2u`

2(1+u`)
1

2(1+u`)
· · · 0 0 0

0 0 1
2(1+u`)

1+2u`

2(1+u`)
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1+2u`

2(1+u`)
1

2(1+u`)
0

0 0 0 0 · · · 1
2(1+u`)

1+2u`

2(1+u`)
0

0 0 0 0 · · · 0 u`

1+u`
1

1+u`

0 0 0 0 · · · · · · 0 1



,

where dim
(

Q`
3

)
=
(

2`+1 + 2
)
×
(

2` + 2
)

.

Consequently, using the matrix Q`
3, the generalized B-wavelets ψi,`−1 are given by:

ψ−2,`−1 = N−2,3(φ),

ψ−1,`−1 =
1

1 + u`
N−2,3(φ)−

u`

1 + u`
N−1,3(φ) +

u`

1 + u`
N0,3(φ),
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ψi,`−1 = 1
2(1+u`)

(
N2i,3(φ)− N2i+3,3(φ)

)
+ 1+2u`

2(1+u`)

(
N2i+2,3(φ)− N2i+1,3(φ)

)
, i = 0, . . . , 2`−1 − 3,

ψ2`−1−2,`−1 =
u`

1 + u`
N2`−3,3(φ)−

u`

1 + u`
N2`−2,3(φ) +

1
1 + u`

N2`−1,3(φ)

ψ2`−1−1,`−1 = N2`−1,3(φ).

In Figure 5, we give an example of the generalized B-wavelettes ψi,`−1 of order 3, for
u0 = 0.7 (Blue line), u0 = 1 (Magenta line), u0 = 1.32 (Red line).

0.2 0.4 0.6 0.8

-0.5

0.5

1.0

(a) ψ−2,`−1.

4.3 4.4 4.5 4.6 4.7 4.8

-0.5

0.5

1.0

(b) ψ2`−1−1,`−1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

(c) ψ−1,`−1.

3.2 3.4 3.6 3.8 4.0 4.2 4.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

(d) ψ2`−1−2,`−1.

0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

(e) ψi,`−1, i = 0, . . . , 2`−1 − 3.

Figure 5. Graphs of Generalized B-spline wavelets for u0 = 0.7 (Blue line), u0 = 1 (Magenta line)
and u0 = 1.32 (Red line).

5. Reverse Generalized Subdivision Scheme of Order 4

The method used to reverse the subdivision scheme of order 3 cannot be applied to
find the reverse of the generalized subdivision of order 4. For this reason, in this Section,
we present two methods: the first one is based on the least-squares formulation that is
presented in [32] while the second one is based on solving the minimization of linear
optimization problems.

5.1. Least-Squares Formulation

Since P`
4 is not a square matrix then (P`

4 )
−1 does not exist. However, using the same

technique presented in [32], we will find a reverse scheme of order 4. Indeed, to compute
the different components of the multiresolution structure we adopt the constrained wavelet
approach proposed by L. Olsen et al. (see [32]). The described approach uses the link
between the even and odd rules of the subdivision filters. It starts by determining the
decomposition and reconstruction matrices tests which are equal in our case
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Ã`
4 =



1 0 0 0 0 · · · 0 0 0
−1
u`

1+u`

u` 0 0 0 · · · 0 0 0

0 −1
2u`

1+u`

u`
−1
2u` · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · −1

2u`
1+u`

u`
−1
2u` 0

0 0 0 0 · · · 0 0 1+u`

u`
−1
u`

0 0 0 0 · · · 0 0 · · · 1


,

Q̃`
4 =



0 0 · · · 0 0
0 0 · · · 0 0
1 0 · · · 0 0
1

2(1+u`)
1

2(1+u`)
· · · 0 0

...
...

. . .
...

...
0 · · · 0 1

2(1+u`)
1

2(1+u`)

0 · · · 0 0 1
0 · · · 0 0 0
0 · · · 0 · · · 0


,

B̃`
4 =



1+2u`

4u` − 1+2u`

2u`
1+8u`

8u`
−1
2u`

1
8u` 0 · · · 0 0 0

0 1
4u` − 1+u`

u`
1+2u`

u` − 1+u`

u`
1

4u` · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 1

4u` − 1+u`

u`
1+2u`

u` − 1+u`

u`
1

4u` 0
0 0 0 · · · 0 1

8u`
−1
2u`

1+8u`

8u` − 1+2u`

2u`
1+2u`

4u`


.

Secondly, as described in [32], these three matrices cannot allow us to return to the
original mesh C`, and the error denoted by ∆`

4 between the original point C` and what
is given by application of these matrices denoted by C̃` is very large. To this end, the
authors solved this problem by minimizing the least-squares error metric and they showed
in the proof that the values of ∆`

4 can be calculated by determination of matrix L`
4 such that

∆` = L`
4D̃`. The values of the matrix L`

4 is

L`
4 =



0 0 · · · 0 0
0 0 · · · 0 0
µ` µ` · · · 0 0
0 µ` µ` · · · 0
...

...
. . .

...
...

0 · · · µ` µ` 0
0 · · · 0 µ` µ`

0 · · · 0 · · · 0
0 · · · 0 · · · 0


with µ` = (1+2u`)(1+6u`+2(u`)2)

2(1+u`)(3+8u`+6(u`)2)
.

Remark 3.

• The matrices Ã`
4, Q̃`

4, B̃`
4 and L`

4 above are calculated by using the same steps for calculating
matrices Ã, Q̃, B̃ and L in [32].

• When u` = 1 this reverse generalized scheme becomes the reverse of cubic scheme that is
proposed in [32].
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5.2. Linear Optimization Problem

In this subsection, we present another method to calculate the same error ∆`
4 but this

time as a function of P`
4 . In fact, this method starts from a subdivision matrix P`

4 . The
concept is to use the given subdivision scheme P`

4 to obtain the better A`
4 that produces

coarse points with minimal subdivision error. The coefficients of the weak resolution C`

are obtained by minimizing the distance between P`
4 C` and F`. This leads to:

E(C`) = ‖P`
4 C` − F`‖2

2. (9)

Thus,
E(C`) = (P`

4 C` − F`)T(P`
4 C` − F`)

= (F`)T F` − 2(C`)T(P`
4 )

T F` + (C`)T(P`
4 )

T P`
4 C`.

(10)

The first derivative of Equation (10) is

∇E(C`) = −2(P`
4 )

T F` + 2(P`
4 )

T P`
4 C`

and the second derivative is
∇2E(C`) = 2(P`

4 )
T P`

4 .

As the 2nd derivative is symmetrically positive definite, the solution of Equation (9) is
a local minimum. Thus, for ∇E(C`) = 0, we obtain

(P`
4 )

T P`
4 C` = (P`

4 )
T F`, (11)

since C` = A`
4F`, solving normal Equation (11) for C` provides

A`
4 =

(
(P`

4 )
T P`

4

)−1
(P`

4 )
T ,

E(C̃` + ∆`
4) = ‖F` − P`

4 (C̃
` + ∆`

4)‖2
2.

It yields with (11), (
(P`

4 )
T P`

4

)
(C̃` + ∆`

4) = (P`
4 )

T F`. (12)

Replacing F` by P`
4 C̃` + Q̃`

4D̃` and simplifying shows that equality (12) is equivalent to(
(P`

4 )
T P`

4

)
∆`

4 = (P`
4 )

TQ̃`
4D̃`. (13)

Then ∆`
4 can be computed from the above linear system.

5.3. Numerical Example

In this subsection, we give examples of using our approach in synthesizing applications.
Figure 6 presents the powerful generalized reverse subdivision scheme of order 4 to

reproduce a different initial control polygonal. The tension parameter for the dog is 0.9
where the one chosen for the head is 1.1.
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(a) Limit forme (b) Last Reverse step by our scheme. (c) Original intial control polygonal.

(d) Limit forme. (e) Last Reverse step by our scheme. (f) Original intial control polygonal.

Figure 6. The generalized reverse scheme of order 4.

The Algorithm 1 summarizes the decomposition process of F`.

Algorithm 1: Decomposition

Data: F`, P`
4

Result: C`, D̃`

begin
C̃` = Ã`

4F`;
D̃` = B̃`

4F`;
∆`

4 = Solution of the banded system (13);
C` = C̃` + ∆`

4;
end

6. Conclusions

In this paper, we have constructed a reverse generalized subdivision scheme of order
3 and 4 by two different methods. In comparison with other existing methods in the
literature, our proposed reverse scheme can reproduce exactly the initial control polygonal
of trigonometric and hyperbolic forms. A multiresolution representation based on a reverse
subdivision approach which has interesting applications is also studied in this paper.
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