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Abstract: The paper deals with a finite-source queueing system serving one class of customers and
consisting of heterogeneous servers with unequal service intensities and of one common queue.
The main model has a non-preemptive service when the customer can not change the server during
its service time. The optimal allocation problem is formulated as a Markov-decision one. We show
numerically that the optimal policy which minimizes the long-run average number of customers in
the system has a threshold structure. We derive the matrix expressions for performance measures
of the system and compare the main model with alternative simplified queuing systems which are
analysed for the arbitrary number of servers. We observe that the preemptive heterogeneous model
operating under a threshold policy is a good approximation for the main model by calculating the
mean number of customers in the system. Moreover,using the preemptive and non-preemptive
queueing models with the faster server first policy the lower and upper bounds are calculated for
this mean value.

Keywords: finite-source queueing system; preemptive and non-preemptive service; Markov-decision
process; policy-iteration algorithm; performance analysis

1. Introduction

The finite-source or finite-population queueing systems comparing to the ordinary
markovian queues have no longer a Poisson arrival stream as in systems with an infinite
source of customers, but rather have a finite source capacity N of possible customers. In
such systems a customer can be inside the system, consisting in our case of one common
queue with capacity N and K heterogeneous servers or outside the system in so-called
arriving state. It is assumed that each customer outside arrives to the system in exponen-
tially distributed time. After receiving the service a customer returns to the arriving area.
Much attention by the study of finite-source queueing systems has been paid in terms of the
machine repairman problem, see e.g., [1,2]. The customers outside the queueing system can
be interpreted as unreliable machines with independent exponentially distributed life times.
The queueing system represents then the repair facility where the failed machines must be
recovered. Such systems are also used in various dispatching problems, they are appropriate
queueing models for telephone registration systems, call centers, Ethernet systems, local-area
networks, mobile communications, magnetic disk memory systems and so on.

The primary objective of this paper is to analyze optimal control and to evaluate
performance metrics under fixed control policy for a non-preemptive finite-source queueing
system with one class of customers and heterogeneous servers. In such a system, a customer
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that receives service on a slower server cannot change it if a faster server becomes available
in the course of service. Unfortunately, performance analysis of this system in analytical
form is limited firstly by the need to have a known allocation mechanism between the
servers or control policy and secondly by the dimensionality of the corresponding Markov
process, which is affected by the number of servers. To calculate the optimal allocation
policy with the aim to minimize the long-run average number of customers in the system
we formulate the Markov decision process (MDP) and apply the policy-iteration algorithm.
This algorithm can be used not only for the optimal allocation policy calculation but also to
obtain the mean number of customers in the system operating under that policy. Numerical
experiments confirm our expectations that the optimal policy is of threshold type as in the
models with an infinite source capacity [3]. According to this policy the fastest server must
be activated whenever there is a customer in the system while the slower servers must be
used only if the number of customers in the queue reaches some prespecified threshold
level. The model of the non-preemptive queue operating under the optimal threshold
policy (OTP) will referred to in the paper as the OTP-model.

The task of calculating other system performance characteristics for a given control
policy remains unresolved. Furthermore, it should be taken into account that despite of
advantages the policy-iteration algorithm has a limitation on the dimensionality of the
random process for an arbitrary number of servers. In case of a threshold control policy for
a particular states’ ordering the corresponding Markov chain is a quasi-birth-and-death
(QBD) process with a three-diagonal block infinitesimal matrix, where the blocks depend
on the values of thresholds as it was shown in [4] for the infinite population system. In this
case, matrix-analytic solution methods can be applied, but for a limited number of servers.
This led us to discuss here in addition some simplified variants of the main model. The
non-preemptive queueing system operating under a Fastest Server First (FSF) policy which
prescribes for service the usage of the fastest idle server in each state and the preemptive
queueing system (PS), where the service in a slower server can be interrupted if during
the service time the faster server becomes idle. This system will operates according to
a threshold policy, when the slower servers are activated or deactivated if the number
of customers in the queue respectively exceeds or falls below a certain threshold level.
Although these systems are simpler than the main model and have a low dimensions of
the state-space, there are very few publications on such specific systems, especially those
with analytical results.

Description of standard finite-source models with classical results, motivation exam-
ples and literature overview can be found in [5]. In [6] the author obtained the product
form solution for the stationary state distribution for the finite population queueing model
with a queue-dependent servers. A non-preemptive finite-population queueing system
with heterogeneous classes of customers and a single server was studied in [7]. The
problem of the throughput maximizing in a finite-source system with parallel queues
was analyzed in [8], where some structural properties of the optimal control policy was
proved. Heterogeneous multi-server finite-source queues with a FSF-policy and retrial
phenomenon have been studied in [9], where numerical results were carried out by the help
of the MOSEL tool. The model with machines having non-identical exponential service
times was analysed in [10], where the repair policies which minimize the mean processing
cost were considered. As for finite-source systems operating under a threshold policy,
we know only research papers dedicated to single server systems with a unit threshold
N-policy, see e.g., [11]. Here the threshold policy states that the server in a repair facility must be
switched on only when the number of failed machines reaches to predefined threshold level N.
In [12], the authors generalized the model to the case of two heterogeneous unreliable servers
operating under policies N1 and N2. Although there is a considerable amount of results on
finite-source queues, the controlled systems with heterogeneous servers operating without pre-
emption have not been investigated before. Therefore, the models presented in this paper and
the corresponding results of the system analysis differ from those previously discussed.
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The main contributions of paper are as follows. The structural or threshold properties
of an optimal control policy are numerically established. We derive for the main model
the matrix expressions used further by calculating different performance measures such
as the mean number of waiting customers, the mean number of busy servers, the mean
length of a busy period. The matrix-analytic solution for the stationary state distribution
and performance measures are obtained for the FSF-model. Here we used the recursive
definition of some blocks in the infinitesimal matrix. For the PS-models we obtain analytical
product-form result for an arbitrary number of servers. Moreover, it is shown that perfor-
mance characteristics of these systems in certain operation modes are the same or very close
to those of the main system functioning under the optimal policy. Thus, these simplified
models can be used under certain conditions to calculate upper and lower bounds for some
performance characteristics and also as approximating models. We develop also the first
step analysis to study the mean number of customers served in the system or by the kth
server in a busy period and the probability of the maximum queue length observed during
this period.

The rest of the paper is organized as follows. In Section 2, we describe the Markov-
decision process of the main model and show that the system has a threshold-based optimal
allocation policy. In this section we develop also the computational analysis for the mean
values of performance measures including those characterizing the behaviour of the system
in a busy period. The FSF-Model is presented and analysed in Section 3. Section 4 is
devoted to the PS-model. Comparison analysis of the proposed models and illustrative
examples are summarized in Section 5.

The following notations will be used throughout this paper: e(n), ej(n) and In stand
respectively for the unit vector of dimension n, for the basis vector of dimension n in Rn

with 0 ≤ j ≤ n− 1 or 1 ≤ j ≤ n depending on the context, and for the identity matrix
of dimension n. If it is not necessary to specify a vector dimension, we will omit the
corresponding argument. For example, e denotes a column unit vector of an appropriate
dimension. The notation ′ is used for the transpose. The notation⊗ stands for the Kronecker
product of two matrices, 1{A} – for the indicator function, where 1{A} = 1 if the condition
A holds, and 0 otherwise. The notation |A| is used for the magnitude of a finite set A.

2. OTP-Model

Here we discuss the main model of the non-preemptive finite-source controlled queue-
ing system of the type M/M/K/N//N illustrated in Figure 1. The system has K het-
erogeneous servers with different rates µ1 ≥ µ2 ≥ · · · ≥ µK > 0 and N customers in a
source. It operates under the optimal allocation policy which minimizes the mean number
of customers in the system. It will be shown that this policy is defined through a sequence
of threshold levels 1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞ for the queue lengths which prescribe
the activation of slower servers. The analysed system can be treated as a model for the
machine-repairman problem, where N unreliable machines in a working area with expo-
nential distributed life times and equal rates λ > 0 must be repaired by K heterogeneous
repair stations. The machines fail independently of each other. The stream of failed ma-
chines can be treated as an arrival stream of customers to the queueing system. Hereafter,
we will refer to the customer as a failed machine which enters the repair system and gets
there a repair service. After the repair the machine becomes as good as a new one and
it returns to the working area. The aim is to dynamically allocate the customers to the
servers in order to minimize the long-run average number of customers in the system and
to calculate the corresponding mean performance measures.
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2.1. MDP Formulation

We formulate the optimal allocation problem in this machine-repairman system as
a Markov Decision Process (MDP) in the following way. The behaviour of the system is
described by a multi-dimensional continuous-time Markov-chain

{X(t)}t≥0 = {Q(t), D1(t), . . . , DK(t)}t≥0, (1)

where Q(t) stands for the number of customers waiting in the queue at time t and Dj(t)
specifies the state of the jth server at time t, where

Figure 1. The schema of the finite-source queueing system.

Dj(t) =

{
0 if the server j is idle
1 if the server j is busy.

State space: The set EX consists of K + 1 dimensional row vectors,

EX ={x = (q(x), d1(x), . . . , dK(x)) :

q(x) ∈ {0, 1, 2, . . . , N −
K

∑
j=1

dj(x)}, dj(x) ∈ {0, 1}, j = 1, . . . , K},

where q(x) denotes the number of customers in the queue and dj(x) – the status of the jth
server in state x. The total number of states in the set EX is equal to |EX | = ∑K

j=0 (
K
j )(N− j+ 1).

Decision epochs: The arrival and service completion epochs in the system with waiting customers.
Action space: A = {0, 1, . . . , K}. To identify the group of idle and busy servers, the following
sets are defined,

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}.

With this notations the set of admissible control actions A(x) ⊆ A in state x ∈ EX can
be defined as A(x) = J0(x) ∪ {0}. The action a ∈ J0(x) means that in state x a customer
must be allocated to an idle server, while a = 0 means that the customer must be routed to
the queue. At an arrival epoch, which occurs only if the number of customers in the system
is less than N, the arrived customer joins the queue and simultaneously another one from
the head of the queue must be routed to some idle server or returned back to the queue.
At a service completion epoch the same happens, i.e. the customer from the head of the
queue is routed either to one of idle servers or to the queue again. By service completion in
a system without waiting customers no actions have to be performed.



Mathematics 2021, 9, 2624 5 of 24

Immediate cost: The function l(x) specifies the number of customers in a state x ∈ EX ,
i.e.,

l(x) = q(x) +
K

∑
j=1

dj(x),

which is in fact independent of a control action a.
Transition rates: The policy-dependent infinitesimal matrix Λ f = [λxy(a)]x,y∈EX of the

Markov-chain (1) includes the rates to go from state x to state y given the control action is a
defined as

λxy(a) =



(N − l(x))λ y = Sax, 0 ≤ l(x) ≤ N, a ∈ A(x),
µj y = S−1

j x, j ∈ J1(x), q(x) = 0,

µj y = S−1
0 S−1

j Sax, j ∈ J1(x), q(x) > 0, a ∈ A(S−1
0 S−1

j x),

−((N − l(x)) + ∑
j∈J1(x)

µj) y = x,

0 otherwise

(2)

with λx(a) = −λxx(a) = −∑y 6=x λxy(a), where Sa and S−1
j stand for the shift operators

applied to the vector state x in the following way,

Sax = x + ea(K + 1), a ∈ J0(x) and S−1
j x = x− ej(K + 1), j ∈ J1(x).

Due to the finiteness of the state space EX and boundedness of the immediate cost
function l(x) ≤ N, a stationary average-cost optimal policy f : E→ A exists with a finite
constant mean value for the number of customers in the system

g f = lim sup
t→∞

1
t
E f
[ ∫ t

0

(
Q(t) +

K

∑
j=1

Dj(t)
)

dt
∣∣∣X(0) = x

]
= ∑

x∈EX

l(x)π f
x < ∞,

which is independent of the initial state x. In this case the policy-iteration algorithm
introduced in Algorithm 1 converges.

This algorithm consists of two main parts: Policy evaluation and Policy improvement.
In the first part, a system of linear equations with immediate costs l(x)

v f (x) = − 1
λxx(a)

(
l(x) + ∑

y 6=x
λxy(a)v f (y)− g f

)
(3)

is solved for the unknown real-valued dynamic-programming value function v f : EX → R
and mean value g f given a control policy is f . The second part of the algorithm is responsi-
ble for improving the previous policy, which for a given system consists in determining,
for each system state, a control action a that minimizes the value function v(Sax). The
improved control action in state x is defined then as f ∗(x) = argmina∈A(x) v(Sax) for
x ∈ EX \ {x : l(x) = N}. Thus, the algorithm constructs a sequence of improved control
policies until it finds one that minimizes the gain g f .

In Algorithm 1 we perform a conversion of the K + 1-dimensional state space EX
of the Markov chain (1) to one-dimensional equivalent state space using the function
∆ : EX → N0, where

∆(x) = q(x)2K +
K

∑
i=1

di(x)2i−1. (4)
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In one-dimensional state space the transitions due to arrivals and service completions
can be defined then as

∆(x± e0(K + 1)) = (q(x)± 1)2K +
K

∑
i=1

di(x)2i−1 = ∆(x)± 2K,

∆(x± ej(K + 1)) = q(x)2K +
K

∑
i=1

di(x)2i−1 ± 2j−1 = ∆(x)± 2j−1, 1 ≤ j ≤ K.

For more details about derivation of the optimality equation for heterogeneous queue-
ing systems the interested reader is referred to relevant publications, e.g., [3].

Algorithm 1 Policy-iteration algorithm

1: procedure PIA(K, N, λ, µj, j = 1, 2, . . . , K)

2: f (0)(x) = argmaxj∈J0(x)

{
µj

}
. Initial policy

3: n← 0
4: g f (n) = Nλv f (n)(e1(K + 1)) . Policy evaluation
5: for x = (0, 1, 0, . . . , 0) to (N − K, 1, 1, . . . , 1) do

v f (n)(x) =
1

(N − l(x))λ + ∑j∈J1(x) µj

[
l(x)− g f (n) + (N − l(x))λv f (n)(S f (n)(x)x)

+ ∑
j∈J1(x)

µjv f (n)(S−1
j x)1{q(x)=0}

+ ∑
j∈J1(x)

µjv f (n)(S−1
0 S−1

j S f (n)(S−1
0 S−1

j x)x)1{q(x)>0}

]
6: end for
7: . Policy improvement

f (n+1)(x) = argmina∈A(x) v f (n)(Sax)

8: if f (n+1)(x) = f (n)(x), x ∈ E f then return f (n+1)(x), v f (n)(x), g f (n)

9: else n← n + 1, go to step 4
10: end if
11: . Threshold evaluation

qk : f (n+1)(q, 1, . . . , 1, 0, dk+1, . . . , dK) =

{
0 q ≤ qk − 2
k q > qk − 2

, k = 2, . . . , K

12: end procedure

Numerical analysis confirms our expectation that the optimal control policy in het-
erogeneous systems for a finite number of customers also belongs to a class of threshold
policies, as in infinite population case. Theoretical justification of this statement is still
difficult. For this purpose it is necessary to prove that the dynamic-programming operator
B defined for our queueing model as

v(x) =
1

(N − l(x))λ + ∑
j∈J1(x)

µj

[
l(x) + (N − l(x))λT0v(x) + ∑

j∈J1(x)
µjTjv(x)− g

]
= Bv(x),

(5)
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where T0 and Tj are the events operators in case of a new arrival and a service completion
at server j ∈ J1(x),

T0v(x) = min
a∈A(x)

v(Sax),

Tjv(x) = v(S−1
j x), q(x) = 0,

Tjv(x) = T0v(S−1
0 S−1

j x), q(x) > 0,

preserves the monotonicity properties of the increments of the value function v:

v(S0x)− v(S2x)− v(S2
0x) + v(S0S2x) ≤ 0, x ∈ EX , d1(x) = 1, d2(x) = 0, (6)

v(S0x)− v(x)− v(S0S2x) + v(S2x) ≤ 0, x ∈ EX , d1(x) = 1, d2(x) = 0. (7)

In proving the inequality (7) we encounter difficulty. This is due primarily to the form
of the operator B in (5). There is a term describing arriving customers whose coefficient
(N − l(x))λ depends on the system state x. Bringing the terms in inequality (7) to a
common denominator by introducing fictitious transitions, we get terms which cannot
be proved to be negative. We hope that we will be able to overcome these difficulties
in our next paper, but to date we’re basing our statement about a threshold structure of
the optimal control policy f exclusively on the performed numerical experiments. The
following example makes the case vividly.

Example 1. Consider the system with K = 5, N = 60 and λ = 0.3. The service rates take the
following values: (µ1, µ2, µ3, µ4, µ5) = (20, 8, 4, 2, 1). The Table 1 of optimal control actions f (x)
for selected system states x is of the form:

Table 1. The optimal control actions.

System State x Queue Length q(x)

d = (d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0, *, *, *, *) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1, 0, *, *, *) 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(1, 1, 0, *, *) 0 3 3 3 3 3 3 3 3 3 3 3 3 3

(1, 1, 1, 0, *) 0 0 0 4 4 4 4 4 4 4 4 4 4 4

(1, 1, 1, 1, 0) 0 0 0 0 0 0 0 0 5 5 5 5 5 5

(1, 1, 1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Threshold levels qk, 2 ≤ k ≤ K, are evaluated by comparing the optimal actions f (x) = 0 and
f (S0x) = k for x = (q(x), 1, . . . , 1, 0, dk+1(x), . . . , dK(x)), 0 ≤ q(x) ≤ N−∑K

j=1 dj(x), dj(x) ∈
{0, 1}. In this example the optimal policy f is defined here through a sequence of threshold levels (q2, q3, q4, q5)
= (1, 2, 4, 9) and g f = 4.91549.

2.2. Evaluation of System Performance Measures

We are concerned in calculation of the system performance measures for a given policy
f . The state probabilities and performance characteristics defined here will refer to some
particular fixed control policy f , so we will use in notations the corresponding upper index.
The states x of the set EX with q(x) = 0 are ordered according to the number of busy
servers |J1(x)| while the states for q(x) > 0 are ordered with respect to the queue length,
so that the infinitesimal matrix Λ f has a block three-diagonal structure for the fixed policy
f . First we define the performance characteristics:

• The probability that the kth server 1 ≤ k ≤ K is busy, Ū f
k = ∑x∈EX

dk(x)π f
x ;
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• The mean number of busy servers, C̄ f = ∑K
k=1 Ū f

k ;

• The mean number of customers in the queue, Q̄ f = ∑x∈EX
q(x)π f

x .
• The mean number of customers in the system, N̄ f = C̄ f + Q̄ f .

The following vectors of dimension |EX | − 1 comprise the policy-dependent values
a f (x) and policy-independent values b(x),

a f = (a f (x) : x ∈ EX \ {x0}), b = (b(x) : x ∈ EX \ {x0}), x0 = 0.

where the first elements of the vectors are respectively a f (e1(K + 1)) and b(e1(K + 1)).
Denote by M̄ f

1 one of the performance characteristics Ū f
k , C̄ f , Q̄ f and N̄ f .

Proposition 1. The performance measure M̄ f
1 satisfies the relation

M̄ f
1 = Nλe′1(|EX | − 1)a f , (8)

where the vector a f is a solution of the system

(Λ̃ f + Nλe′(|EX | − 1)⊗ e1(|EX | − 1))a f = −b. (9)

The matrix Λ̃ f is obtained from Λ f by removing the first column and the first row, and

M̄ f
1 =


Ū f

k b(x) = dk(x), x ∈ EX ,
C̄ f b(x) = ∑K

k=1 dk(x), x ∈ EX ,
Q̄ f b(x) = q(x), x ∈ EX ,
N̄ f b(x) = l(x), x ∈ EX .

(10)

Proof. We multiply the both sides of the equality (9) by the row-vector of the stationary
state probabilities π̃ f = (π

f
x : x ∈ E \ {x0}),

π̃ f (Λ̃ f − Nλe′(|EX | − 1)⊗ e1(|EX | − 1))a f = −π̃ f b,

where π̃ f b = ∑x∈EX\{x0} b(x)π f
x for the corresponding function b(x) is obviously equal to

the performance measure M̄ f
1 . The following sequence of relations

π̃(Λ̃ f − Nλe′(|EX | − 1)⊗ e1(|EX | − 1))a f =

π̃ f Λ̃ f a f − Nλπ̃ f e′(|EX | − 1)⊗ e1(|EX | − 1)a f =

− π
f
x0(Nλ, 0, . . . , 0)a f − Nλ(1− π

f
x0 , 0, . . . , 0)a f = −Nλe′1(|EX | − 1)a f = −M̄ f

1 .

validates the statement.

The following measures characterize the behaviour of the system in a busy period
which we define as a duration starting when the arrived customer enters the empty system
in state x0 and finishes when the system visits x0 again after a service completion.

• The mean length of a busy period, L̄ f = 1
Nλ

(
1

π
f
x0

− 1
)

;

• The mean number of customers served in a busy period by the kth server, N̄ f
L,k;

• The total mean number of customers served in a busy period,

N̄ f
L = ∑K

k=1 N̄ f
L,k =

1
π

f
x0

.

In the following proposition we describe a general way to calculate these character-
istics for the fixed control policy f . Denote by M̄ f

2 one of the performance characteristics

L̄ f , N̄ f
L,k and N̄ f

L .
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Proposition 2. The performance measure M̄ f
2 satisfies the relation

M̄ f
2 = e′1(|EX | − 1)a f , (11)

where the vector a f is a solution of the system

Λ̃ f a f = −b. (12)

The matrix Λ̃ f is obtained from Λ f by removing the first column and the first row, and

M̄ f
2 =


L̄ f b(x) = 1 + ∑K

k=1 dk(x)µk1{|J1(x)|=1}, x ∈ EX ,

N̄ f
L,k b(x) = dk(x)µk, x ∈ EX ,

N̄ f
L b(x) = ∑K

k=1 dk(x)µk, x ∈ EX .

Proof. Denote by ϕ̃
f
x(s) =

∫ ∞
0 ϕ

f
x(t)e−stdt, Re[s] > 0, the Laplace-Stiltjes transform (LST) of

the probability density function (PDF) ϕ
f
x(t) for the first passage time to state x0 given that

the initial state is x ∈ EX , the control policy is f and by L̄ f
x =

∫ ∞
0 tϕ

f
x(t)dt the corresponding

first moment. According to the first step analysis we get for the LST the system

ϕ̃
f
x0(s) = 0,

ϕ̃
f
x = ∑

y 6=x

λxy(a)
s + λx(a)

ϕ̃
f
y(s), x ∈ EX \ {x0}.

(13)

We take into account that L̄ f (x) = − d
ds ϕ̃

f
x(s)

∣∣∣
s=0

, we can obtain from (13) the system

for the conditional moments

L̄ f (x0) = 1,

L̄ f (x) =
1

λx(a)

[
1 + ∑

y 6=x
λxy(a)L̄ f (y)

]
, x ∈ EX \ {x0}.

(14)

The system (14) for the transition rates (2) is of the form(
(N − l(x))λ + ∑

j∈J1(x)
µj

)
L̄ f (x) = 1 + ∑

j∈J1(x),|J1(x)|=1
µj1{q(x)=0}+

(N − l(x))λL̄ f (S f (x)x) + ∑
j∈J1(x),|J1(x)|>1

µj L̄(S−1
j x)1{q(x)=0}+

∑
j∈J1(x)

µj L̄ f (S−1
0 S−1

j S f (S−1
0 S−1

j x)x)1{q(x)>0}, x ∈ EX \ {x0}

(15)

By expressing relations (15) in matrix form and taking into account that L̄ f :=
L̄ f (e1(K + 1)) we obtain the expressions (11) for a f (x) = L̄ f (x).

Denote now by ψ̃
f
x,k = ∑∞

i=0 ψ
f
x,k(i)z

i, |z| ≤ 1, the probability generating function

(PGF) of the PDF ψ
f
x,k(i) of the number of service completion at server k up to the end of

busy period given that the initial state is x ∈ EX \ {x0}. With respect to the law of the total
probability we get the following relations for the function ψ

f
x,k(i),

ψ
f
x,k(i) =

λxu(a)
λx(a)

ψ
f
u,k(i− 1) + ∑

y 6=x,u

λxy(a)
λx(a)

ψ
f
y,k(i), i ≥ 1. (16)

The first term on the right hand side of (16) represents the transition to state u accom-
panied with an event we count, that is a service completion at server k. The second term
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stands for other possible transitions. The system (16) can be rewritten in terms of the PGF
in the following form,

ψ̃
f
x,k(z) =

zλxu(a)
λx(a)

ψ̃
f
u,k + ∑

y 6=x,u

λxy(a)
λx(a)

ψ̃
f
y,k(z). (17)

The expressions (17) can be modified using the property N̄ f
L,k(x) = d

dz ψ̃x,k(z)
∣∣∣
z=1

in

such a way that we get a system for the corresponding first moments,

N̄ f
L,k(x0) = 1,

N̄ f
L,k(x) =

1
λx(a)

[
λxu(a) + ∑

y 6=x
λxy(a)N̄ f

L,k(y)
]
, x ∈ EX \ {x0}.

(18)

For the model under study the system (18) is of the form(
(N − l(x))λ + ∑

j∈J1(x)
µj

)
N̄ f

L,k(x) = dk(x)µk+

(N − l(x))λN̄ f
L,k(S f (x)x) + ∑

j∈J1(x)
µjN̄

f
L,k(S

−1
j x)1{q(x)=0}+

∑
j∈J1(x)

µjN̄
f
L,k(S

−1
0 S−1

j S f (S−1
0 S−1

j x)x)1{q(x)>0}, x ∈ EX \ {x0}.

(19)

The last system can be also expressed in form (11) for a f (x) = N̄ f
L,k(x) and N̄ f

L,k =

N̄L,k(e1(K + 1)). For the mean total number of customers served N̄L the term dk(x)µk on
the right hand side of (19) must be replaced by ∑K

k=1 dk(x)µk.

Finally, one more performance measure in this section is of our interest, namely, the
distribution of the maximal queue length in a busy period for the given control policy f .
Denote by Q f

max the maximum number of customers waiting in the queue during a busy
period. For each fixed value n ≥ 0 the event {Q f

max ≤ n} is equivalent to the event that the
process {X(t)}t≥0 starting in state e1(K + 1), where the first server is busy, hits the empty
state x0 before visiting the subset of states

Emax,n ={x = (q(x), d1(x), . . . , dK(x)) :

q(x) ∈ {n + 1, n + 2, . . . , N −
K

∑
j=1

dj(x)}, dj(x) ∈ {0, 1}, j = 1, . . . , K}

The probability Q̄ f
max,n = P[Q f

max ≤ n] will be calculated by means of absorption
probabilities for states in a set of absorbing states Emax,n ∪ {x0} given that the initial state
is x ∈ EX,n = EX \ Emax,n ∪ {x0}. Denote by

a f = (a f (x) : x ∈ EX,n) and b = (b(x) : x ∈ EX,n)

the column-vectors of dimension |EX,n| = |EX | − |Emax,n| − 1 = ∑K
j=0 (

K
j )(n+ 1)− 1, where

n is fixed. Denote further by M̄ f
3 one of performance characteristics Q̄ f

max,n, n ≥ 0.

Proposition 3. The performance measure M̄ f
3 satisfies the relation

M̄ f
3 = e′1(|EX,n|)a f , (20)
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where the vector a f is a solution of the system

Λ̃ f (n)a f = −b. (21)

The matrix Λ̃ f (n) is obtained from Λ̃ f by removing all columns and rows starting with the
n + 1, and

M̄ f
3 = Q̄ f

max,n, b(x) =
K

∑
k=1

dk(x)µk1{|J1(x)|=1}, x ∈ EX,n. (22)

Proof. Denote by Q̄ f
max,n(x) the probability of absorption into empty state x0 starting in

x ∈ EX,n, where Q̄ f
max,n = Q̄ f

max,n(e1(K + 1)), where e1(K + 1) as before is the state after
an arrival to an empty state x0. The following system can be obtained by conditioning on
the next visited state Using again the first principles,

Q̄ f
max,n(x0) = 1,

Q̄ f
max,n(x) =

1
λx(a) ∑

y 6=x
λxy(a)Q̄ f

max,n(y), x ∈ EX,n,

Q̄ f
max,n(x) = 0, x ∈ Emax,n.

(23)

For the queueing system operation under the control policy f the system (23) is of the form,(
(N − l(x))λ + ∑

j∈J1(x)
µj

)
Q̄ f

max,n(x) = (N − l(x))λQ̄ f
max,n(S f (x)x)+

∑
j∈J1(x)

µjQ̄
f
max,n(S−1

j x)1{q(x)=0}+

∑
j∈J1(x)

µjQ̄
f
max,n(S−1

0 S−1
j S f (S−1

0 S−1
j x)x)1{q(x)>0}, x ∈ EX,n.

(24)

Then after a routine of (block) identification the system (24) can be expressed in form (21),
where a f (x) = Q̄ f

max,n(x), x ∈ EX,n.

As we can see, calculating the performance characteristics requires solving very similar
systems of equations. Thus, the same algorithm can be used for this purpose by substituting
appropriate values into vectors a f and b, This versatility of the proposed approach greatly
simplifies the application of algorithmic types of analysis of complex controlled queueing
systems. In principle, we assume that for a fixed control threshold policy, the structure
of the infinitesimal matrix can be even fully defined for an arbitrary number of servers,
as will be proposed in the next section for the special case of the control policy where all
thresholds are equal to 1. Thus we believe that matrix expressions can be derived explicitly
from the presented matrix systems for performance characteristics. We leave this problem
for our research in the near future.

3. FSF-Model

Here we discuss the FSF-Model which is a special case of the OTP-model, where
q1 = q2 = · · · = qK = 1. The Markov-chain {X(t)}t≥0 operating under the FSF-policy has
a state space

EX = {x : q(x) = 0, |J1(x)| < K} ∪ {x : q(x) ≥ 1, |J1(x)| = K}.
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The states in EX are divided in to levels y in the following way,

y = {x ∈ E : q(x) = 0, |J1(x)| = y}, 0 ≤ y ≤ K,

y = {x ∈ E : q(x) = y, |J1(x)| = K}, K + 1 ≤ y ≤ N.

Denote by si,j = (K−j+i
i ) for K ≥ j, then |y| = sy,y for 1 ≤ y ≤ K and |y| = 1 for

K + 1 ≤ y ≤ N. Within each level y, 1 ≤ y ≤ K, the states are ordered in the lexicographic
order, where the rank of x in the level y with |J1(x)| = y and |J0(x)| = K − y can be
evaluated by

∆y(x) =
K−1

∑
i=1,i∈J0(x)

ni(x)(K− i)!(
∑K

j=i dj(x)
)

!
(

K−∑K
j=i dj(x)

)
!
+ 1, (25)

where ni(x) = |{j : dj(x) = 1, di(x) = 0, j > i}| is the number of slower busy servers as
the ith idle one. Note that this ordering of states differs from that defined in (4) and used in
the policy iteration algorithm. In the lexicographic ordering within each level of states it is
possible to obtain explicit matrix expressions for state probabilities in case of an arbitrary
number of servers K. Denote further by Ly, 1 ≤ y ≤ K, matrices whose rows consist of
ordered elements of level y.

Proposition 4. The the system under FSF-policy is described by a QBD process with a block-three
diagonal infinitesimal matrix of the form

Λ =



A1,0 A0,1 0 0 0 0 0 0 . . . 0
A2,0 A1,1 A0,2 0 0 0 0 0 . . . 0

0 A2,1 A1,2 A0,3 0 0 0 0 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 A2,K−2 A1,K−1 A0,K 0 0 . . . 0
0 . . . 0 0 A2,K−1 A1,K A0,K+1 0 . . . 0
0 . . . 0 0 0 A2,K A1,K+1 A0,K+2 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 0 0 0 0 A2,N−2 A1,N−1 A0,N
0 . . . 0 0 0 0 0 0 A2,N−1 A1,N


. (26)

The square blocks A1,y of dimension sy,y for 0 ≤ y ≤ K− 1 and 1 for K ≤ y ≤ N consist of
the rates to stay in the yth level, are defined as

A1,y = Isy,y(e
′(sy,y)⊗ [LyB0,1 + (N − y)λe(sy,y)]), 0 ≤ y ≤ K− 1,

A1,y = (N − y)λ + mK, K ≤ y ≤ N.
(27)

The blocks A0,y of dimension sy−1,y−1 × sy,y for 1 ≤ y ≤ K and of dimension 1 for K + 1 ≤
y ≤ N consist of the rates to move upwards from the level y− 1 to y due to arrivals and are defined as

A0,y = (N − y + 1)λ


Is0,y 0 0 0 . . . 0
Is1,y 0 0 . . . 0
. . . . . . . . . . . . . . .

Isy−1,y 0 . . . 0

, 1 ≤ y ≤ K,

A0,y = (N − y + 1)λ, K + 1 ≤ y ≤ N.

(28)
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The blocks A2,y of dimension sy,y × sy−1,y−1 for 1 ≤ y ≤ K and of dimension 1 for K + 1 ≤
y ≤ N consist of the rates to move downwards from the level y + 1 to y due to service completions
and are defined as recursive matrices

A2,y = By,y+1, 1 ≤ y ≤ K, where

B0,j = (µj, µj+1, . . . , µK)
′,

Bi,j =


Bi−1,j Isi,j µj−i

0 Bi−1,j+1 Isi,j+1 µj+1−i
. . . . . . . . . . . . . . .
0 0 . . . 0 Bi−1,K Isi,K µK−i

,

A2,y = mK, K + 1 ≤ y ≤ N.

(29)

Proof. Analysing the transitions of the Markov-chain {X(t)}t≥0 we get a system of balance
equations in form

((N −
K

∑
j=1

dj(x)− q(x))λ +
K

∑
j=1

dj(x)µj)πx = (N −
K

∑
j=1

dj(x)− q(x) + 1)λ

×
K

∑
k=1

1{∑k
i=1 di(x)=k}πx−ek +

K

∑
j=1

(1− dj(x))µjπx+ej , q(x) = 0, |J1(x)| ≤ K,

((N − K− q(x))λ + mK)πx = (N − K− q(x) + 1)λπx−e0 + mKπx+e0 ,

q(x) > 0, |J1(x)| = K,

(30)

where πx = limt→∞ P[X(t) = x], x ∈ E. Expressing Equation (30) for the sub-vectors πy,
1 ≤ y ≤ K − 1, and the scalars π0 and πy, K ≤ y ≤ N, by means of defined blocks and
taking into account the states’ ordering (25) we get the system

π0 A1,0 = π1 A0,1,

πy A1,y = πy−1 A0,y + πy+1 A2,y, 1 ≤ y ≤ K− 2,

πK−1 A1,K−1 = πK−2 A0,K−1 + πK A2,K−1,

πK A1,K = πK−1 A0,K + πK+1 A2,K,

πy A1,y = πy−1 A0,y + πy+1 A2,y, K + 1 ≤ y ≤ N − 1,

πN A1,N = πM−1 A0,N .

(31)

Denote by π the macro-vector of the stationary state probabilities, i.e.

π = (π0, π1, . . . , πK−1, πK, . . . , πM).

Compiling relations (31) to the the system πΛ = 0 we get then the infinitesimal matrix
Λ is the form (26) with blocks defined by (27)–(29).
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Proposition 5. The elements of the stationary probability macro-vector π satisfy the relations

π0 =
K

∏
j=1

MK−jπK, (32)

πy =
K−y

∏
j=1

MK−jπK, 1 ≤ y ≤ K− 1, (33)

πy =
(N − K)!
(N − y)!

ρ
y−K
K πK, K ≤ y ≤ N, (34)

πK =
( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)−1
, (35)

where the matrices My satisfies the recursive relations

M0 = A0,1 A−1
1,0 ,

My = A2,y(A1,y −My−1 A0,y)
−1, 1 ≤ y ≤ K− 1.

(36)

Proof. The probability π0 and sub-vectors πy, 1 ≤ y ≤ K− 2, can be expressed from the
balance equations (31) using a block forward elimination-backward substitution as

π0 = A0,1 A−1
1,0 π1 = π1M0,

π1 A1,1 = π1M0 A0,1 + π2 A2,1 ⇒ π1 = π2 A2,1(A1,1 −M0 A0,1)
−1 = π2M1,

πy A1,y = πy My−1 A0,y + πy+1 A2,y ⇒ πy = πy+1 A2,y(A1,y −My−1 A0,y)
−1 = πy+1My.

We similarly obtain an expression for πK−1,

πK−1 A1,K−1 = πK−1MK−2 A0,K−1 + πK A2,K−1 ⇒
πK−1 = A2,K−1(A1,K−1 −MK−2 A0,K−1)

−1πK = MK−1πK

The relations (32) and (33) are obtained then through a successive substitution. The
relation (34) is obtained by solving (31) for K ≤ y ≤ N recursively using

πy =
(N − y + 1)λ

mK
πy−1

starting from the last equation. The relation (35) for the probability πK is determined using
the normalizing condition πe(N) = 1.

To calculate performance characteristics the expressions from the previous section
applied to a control policy f (x) = argmaxj∈J0(x){µj} can be used. As an alternative to the
policy-iteration algorithm we can use the proposed matrix-analytic solution (32)–(35) to
obtain the matrix expressions for the performance characteristics in an explicit form.

Corollary 1. The probability that the kth server is busy and the mean number of busy servers,

Ūk =
( K−1

∑
y=1

K−y

∏
j=1

MK−jLyek(sy,y) +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)
×,

×
( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)−1
, C̄ =

K

∑
k=1

Ūk.
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The mean number of customers in the queue,

Q̄ =
N

∑
y=K

(y− K)(N − K)!
(N − y)!

ρ
y−K
K

( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)−1
.

The mean number of customers in the system,

N̄ = C̄ + Q̄ =
( K−1

∑
y=1

K−y

∏
j=1

MK−jLye(sy,y) +
N

∑
y=K

(y− K + 1)(N − K)!
(N − y)!

ρ
y−K
K

)
×,

×
( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)−1

Mean length of a busy period,

L̄ =
1

Nλ

(( K

∏
j=1

MK−j

)−1( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)
− 1
)

.

Mean number of customers served in a busy period,

N̄L =
( K

∏
j=1

MK−j

)−1( K−1

∑
y=0

K−y

∏
j=1

MK−j +
N

∑
y=K

(N − K)!
(N − y)!

ρ
y−K
K

)
.

The mean number of customers served by the kth server in a busy period and the
distribution of the maximal queue length can be evaluated using the matrix systems (11)
and (20) taking into account the structure (26) of the infinitesimal matrix Λ.

Proposition 6. The mean number N̄L,k of customers served in a busy period by the kth server
satisfies the relation

N̄L,k = e′1(K)
N

∑
y=1

( y−1

∏
j=1

Tj

)
Sy, 1 ≤ k ≤ K, (37)

where

S1 = A−1
1,1 b1, T1 = −A−1

1,1 A0,2,

Sy = (A2,y−1Ty−1 + A1,y)
−1(by − A2,y−1Sy−1), Ty = −(A2,y−1Ty−1 + A1,y)

−1 A0,y+1

2 ≤ y ≤ N − 1,

SN = (A2,N−1TN−1 + A1,N)
−1(bN − A2,N−1SN−1).

(38)

The column-vector by = Lyek(K + 1)µk for 1 ≤ y ≤ K and the scalar by = µk for
K + 1 ≤ y ≤ N.

Proof. The system (11) can be rewritten for appropriate blocks in form

A1,1a1 + A0,2a2 = b1,

A2,y−1ay−1 + A1,yay + A0,y+1ay+1 = by, 2 ≤ y ≤ N − 1,

A2,N−1aN−1 + A1,NaN = bN
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The elements of by are equal to µk if for some state x of the level y dk(x) = 1. This
implies the relations for by. Using a forward elimination - backward substitution we get
the recursive relations

ay = Sy + Tyay+1, 1 ≤ y ≤ N − 1, aN = SN ,

where Sy and Ty are defined by (38). This statement follows through recurrence substitution
taking into account that N̄L,k = e′1(K)a1, since the level 1 consists of K states.

The following statement for the matrix equation (20) can be proved in a similar way
taking into account the structure (26) of the infinitesimal matrix Λ.

Proposition 7. The probability of the maximum queue length in a busy period satisfies the relation

Q̄max,n = e′1(K)
n

∑
y=1

( y−1

∏
j=1

Tj

)
Sy, (39)

where

S1 = A−1
1,1 A2,0, T1 = −A−1

1,1 A0,2,

Sy = −(A2,y−1Ty−1 + A1,y)
−1 A2,y−1Sy−1, Ty = −(A2,y−1Ty−1 + A1,y)

−1 A0,y+1

2 ≤ y ≤ n− 1,

Sn = −(A2,n−1Tn−1 + A1,n)
−1 A2,n−1Sn−1.

(40)

4. PS-Model

In this section we discuss a queueing system with a preemption operating under
a general threshold policy f defined as a sequence of threshold levels (q2, . . . , qK). The
first server in this system is permanently available for service while the jth slower server
must be used as soon as the number of customers in the system increases up to the value
qj−1 + j− 2. This server must be removed from the system when the number of customers
becomes again less as qj−1 + j− 2. Denote by {Y(t)}t≥0 the continuous-time Markov-chain
with a state space EY = {y : y ∈ N0}. All the rates are the same as in the model without
preemption. The infinitesimal matrix Λ f

Y = λxy(q2, . . . , qK) is then of the form:

λxy(q2, . . . , qK) =


λ y = x + 1,
mj y = x− 1,

qj−1 + j− 2 ≤ y ≤ qj + j− 2, j = 2, . . . , K,

(41)

where mj =
j

∑
i=1

µi and q1 = 1. The state transition diagram of the process {Y(t)}t≥0 is

illustrated in Figure 2.

Figure 2. The state transition diagram for the queueing system S2.
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Proposition 8. The steady-state probabilities πy = limt→∞ P[Y(t) = y] of the PS-Model satisfy
the relations

πy =
N!

(N − y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j π0, qj + j− 1 ≤ y ≤ qj+1 + j− 1,

j = 1, . . . , K− 1,

πy =
N!

(N − y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K π0, qK + K− 1 ≤ y ≤ N,

π0 =
(

1 +
K

∑
j=1

qj+1+j−1

∑
y=qj+j−1

N!
(N − y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j +

N

∑
y=qK+K−1

N!
(N − y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K

)−1
,

(42)

where ρj =
λ

mj
, j = 1, . . . , K and ∏0

i=1 ... = 1.

Proof. The proposition follows by solving the following equations

Nλπ0 = µ1π1,

((N − qj+1 − j + 1)λ + mj)πqj+1+j−1 = (N − qj+1 − j + 2)λπqj+1+j−2

+ mj+1πqj+1+j,

((N − y)λ + mj)πy = (N − y + 1)λπy−1 + mjπy+1,

qj + j− 1 ≤ y ≤ qj+1 + j− 2,

((N − y)λ + mK)πy = (N − y + 1)λπy−1 + mKπy+1,

qK + K− 1 ≤ y ≤ N − 1,

mKπN = λπN−1

recursively for j = 1, . . . , K − 1, where π0 is calculated by means of the normalizing
condition ∑M

y=0 πy = 1.

Corollary 2. The kth server is busy with a probability,

Ū f
k =

[
K

∑
j=k

qj+1+j−1

∑
y=qj+j−1

M!
(M− y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j +

N

∑
y=qK+K−1

M!
(M− y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K

]
π0.

The mean number of busy servers,

C̄ f =
K

∑
k=1

Ū f
k .

The mean number of customers in the queue,

Q̄ f =

[
K−1

∑
j=1

qj+1+j−1

∑
y=qj+j−1

(y− j)N!
(N − y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j

+
N

∑
y=qK+K−1

(y− K)N!
(N − y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K

]
π0.
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The mean number of customers in the system N̄ f = C̄ f + Q̄ f .

The mean length of busy period,

L̄ f =
1

Nλ

[
K

∑
j=1

qj+1+j−1

∑
y=qj+j−1

N!
(N − y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j +

N

∑
y=qK+K−1

N!
(N − y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K

]
.

The mean number of customers served in a busy period,

N̄ f
L =1 +

K

∑
j=1

qj+1+j−1

∑
y=qj+j−1

N!
(N − y)!

j−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qj−j+2
j +

N

∑
y=qK+K−1

N!
(N − y)!

K−1

∏
i=1

ρ
qi−qi−1+1
i ρ

y−qK−K+2
K .

Further we use a similar methodology that has been employed in previous section to
derive expressions for N̄ f

L,k and Q̄ f
max,n with the knowledge that all levels y consist now of

only one state, and hence in the sequel we omit some details.

Proposition 9. The mean number of customers served by the kth server in a busy period satisfies
the relation

N̄ f
L,k =

N

∑
y=1

( y−1

∏
j=1

Tj

)
Sy, (43)

where

S1 =
m1 + µ11{k=1}
(N − 1)λ + m1

, T1 =
(N − 1)λ

(N − 1)λ + m1

Sy =
mjSy−1 + µk1{j≥k}

(N − y)λ + mj −mjTy−1
, Ty =

(N − y)λ
(N − y)λ + mj −mjTy−1

,

qj + j− 1 ≤ y ≤ qj+1 + j− 1, 1 ≤ j ≤ K− 1,

Sy =
mjSy−1 + µK

(N − y)λ + mj −mjTy−1
, Ty =

(N − y)λ
(N − y)λ + mK −mKTy−1

,

qK + K− 1 ≤ y ≤ N − 1,

SN =
SN−1

1− TN−1
.

(44)

Proof. The proof follows directly from (11) by forward elimination - backward substitution
taking into account the structure (41) of the infinitesimal matrix Λ f .

Proposition 10. The distribution function of the maximum queue length observed in a busy period
satisfies the relation

Q̄ f
max,n =

n

∑
y=1

( y−1

∏
j=1

Tj

)
Sy, (45)
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where

S1 =
m1

(N − 1)λ + m1
, T1 =

(N − 1)λ
(N − 1)λ + m1

Sy =
mjSy−1 + µk1{j≥k}

(N − y)λ + mj −mjTy−1
, Ty =

(N − y)λ
(N − y)λ + mj −mjTy−1

,

qj + j− 1 ≤ y ≤ min{n− 1, qj+1 + j− 1}, 1 ≤ j ≤ K− 1,

Sy =
mjSy−1 + µK

(N − y)λ + mj −mjTy−1
, Ty =

(N − y)λ
(N − y)λ + mK −mKTy−1

,

qK + K− 1 ≤ y ≤ min{n− 1, N − 1},

Sn =
mjSn−1 + µK

(N − n)λ + mj −mjTn−1
, n < N, Sn =

Sn−1

1− Tn−1
, n = N.

(46)

The last result can be rewritten in explicit form as well.

Proposition 11. The distribution function of the maximum queue length observed in a busy period
is given by

Q̄max,n =
∑n

y=1 F(y)

1 + ∑n
y=1 F(y)

, (47)

where the function F(n) has the following product form,

F(y) =
m

y−qj−j+2
j

∏
y
i=qj+j−1((N − i)λ + mj)

j−1

∏
i=1

mqi+1−qi+1
i

∏
qi+1+i−1
s=qi+i−1((N − s)λ + mi)

,

qj + j− 1 ≤ y ≤ qj+1 + j− 1, 1 ≤ j ≤ K− 1,

F(y) =
my−qK−K+2

K

∏
y
i=qK+K−1((N − i)λ + mK)

K−1

∏
i=1

mqi+1−qi+1
i

∏
qi+1+i−1
s=qi+i−1((N − s)λ + mi)

,

qK + K− 1 ≤ y ≤ N.

(48)

Proof. The function Q̄ f
max,n(x), x ∈ EY for the given policy f satisfy the following system,

Q̄ f
max,n(0) = 1,

((N − y)λ + mj)Q̄
f
max,n(y) = (N − y)λQ̄ f

max,n(y + 1) + mjQ̄
f
max,n(y + 1),

qj + j− 1 ≤ y ≤ min{n− 1, qj+1 + j− 1}, 1 ≤ j ≤ K− 1,

((N − y)λ + mK)Q̄
f
max,n(y) = (N − y)λ + Q̄ f

max,n(y + 1) + mKQ̄ f
max,n(y− 1),

qK + K− 1 ≤ y ≤ min{n− 1, N},

((N − y)λ + mK)Q̄
f
max,n(n) = mKQ̄ f

max,n(n− 1), n < N.

(49)

These difference equations can be rewritten as recurrent relation for 1 ≤ y ≤ n,

Q̄ f
max,n(y + 1)− Q̄ f

max,n(y) =
mj

(N − y)λ + mj
(Q̄ f

max,n(y)− Q̄ f
max,n(y− 1)). (50)

By iterating (50), taking into account the structure of difference equations for the
threshold policy we obtain

Q̄ f
max,n(y + 1)− Q̄ f

max,n(y) = F(y)(Q̄ f
max,n(1)− Q̄ f

max,n(0)), (51)
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where the function F(y) has a product form (48). Summing (51) for y = 1, . . . , n yields

Q̄ f
max,n(n + 1)− Q̄ f

max,n(1) =
n

∑
y=1

F(n)(Q̄ f
max,n(1)− Q̄ f

max,n(0)), (52)

where Q̄ f
max,n(n + 1) = 0 and Q̄ f

max,n(0) = 1. Expressing Q̄ f
max,n(1) we obtain the explicit

formula (47).

5. Comparison Analysis

In this section we discuss the results after having computed the performance metrics
for the following finite-source heterogeneous queueing models: Non-preemptive queueing
system operating under the optimal threshold policy (OTP-Model), non-preemptive queue-
ing system with a fastest server first policy (FSF-Model), preemptive queueing system
(PS1-Model), where the kth server is used when at least k customers present in the system,
and preemptive queueing system (PS2-Model) operating according to a given threshold
policy. This policy we calculate using a similar heuristic formula obtained in [13], which
can be rewritten in form

qk = max
{

qk−1,

( k−1

∑
j=1

µj − (N − N̄PS1)λ
)( 1

µk
− k− 1

∑k−1
j=1 µj

)+ k
}

, 2 ≤ k ≤ K,

where q1 = 1 and (N− N̄PS1)λ is an average arrival rate in the PS1-Model which is derived
in explicit form.

In our experiments we fix the number of servers K = 5, the source capacity N = 60
and service intensities (µ1, µ2, µ3, µ4, µ5) = (20, 8, 4, 2, 1). The rate λ will be varied in the
interval [0.01, 0.7]. The choice of this interval is not random. At higher values of λ, the
analysed functions become indistinguishable, since the corresponding queueing systems
will have similar stochastic behaviour in a so-called heavy-traffic mode.

In Figure 3, we display the functions N̄ f (figure labeled by “a”) and Q̄ f (figure labeled
by “b”) for different models as λ varies. We observe that the functions N̄FSF and Q̄PS1

models are the natural upper and low bounds for N̄OTP. It is clear that the FSF-model
is a particular case of the OTP and the queue with a preemption is always superior in
performance comparing to the non-preemptive case.

Differences between the functions N̄OTP and N̄PS2 are almost not visible. This effect
is also observed for other values of system parameters. It allows the preemptive system
under a threshold policy to be used as an approximation of the original OTP-model. In
contrary, the PS2-model exhibits the higher values of queue lengths while the PS1-model—
the shortest. The OTP-model also has in average more waiting customers as in FSF-model
which is not surprising, since the optimal policy minimizes in our case the mean number
of customers in the system but not in the queue. It should also be noted that the higher the
degree of heterogeneity of the servers, the greater the differences in performance functions
for different models become.
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Figure 3. N̄ f (a) and Q̄ f (b) versus λ.

Figure 4 illustrates the influence of λ and model types on the functions C̄ f (figure
labelled by “a”) and L̄ f (figure labelled by “b”). The functions of the mean number of busy
servers for the OTP- and PS1-models are very close to each other. Thus, by subtracting
the mean number of busy servers in PS1-model from the mean number of customers in
PS2-model, an approximation can be obtained for the mean queue length of the OTP-model.
The functions C̄FSF and C̄PS2 represent the upper and low bound for C̄OTP. The longest
busy period appears in FSF-model. In this case the slower servers can be occupied with
higher probability and then these servers remain busy for a very long time. As expected,
the shortest busy period exhibits the preemptive PS1-model.
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Figure 4. C̄ f (a) and L̄ f (b) versus λ.

Figure 5 shows the effect of the service speed of kth server, 1 ≤ k ≤ K, to the mean
number of customers N̄L,k served in a busy period (figures are labeled respectively by
“a”–“f”). We observe that the slow servers begin to contribute to the number of customers
served as the intensity of λ increases. The functions N̄ f

L,k are proportional to the rate λ,
they are simply shifted to the right as λ is getting higher without changing their form. It
can be observed also that the FSF-policy maximizes the number of customers served in
a busy period at any server. This observation coincides with a statement in [14] that the
fastest available server stochastically maximizes the number of service completions.
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Figure 5. The mean number of customers N̄L,k for k = 1, . . . , 5 respectively in (a–e) versus λ.

We now focus on the results obtained for the maximum queue length observed during
a busy period. To study the influence of system parameters and model type we summarized
the results in Table 2 for OTP- and FSF-models and in Table 3—for PS1- and PS2-models. In
tables we vary the rate λ keeping as before other parameters constant. The results compiled
and presented in tables correlate with the graphs for the mean length of the busy period.
The longer the busy period is, the more likely there will be fewer waiting customers in the
queue. In the FSF-model it is more likely that there is an empty waiting line. As λ increases,
the queues grow and hence we observe that for all models that the 99th percentile increases.

Table 2. The distribution function of the maximum queue length Q̄ f
max,n as λ varies for OTP and FSF.

n λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

0 0.79903 0.58580 0.47423 0.40562

1 0.94864 0.75918 0.61516 0.52072

2 0.98649 0.84411 0.68819 0.58156

3 0.99963 0.94722 0.77455 0.64604

4 0.99995 0.96327 0.80985 0.67923

5 1 0.97991 0.84369 0.70681

...
...

...
...

...

10 1 0.99956 0.96445 0.84265

...
...

...
...

...

20 1 0.99987 0.99772 0.91243

...
...

...
...

...

40 1 1 0.98523 0.93216

n λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

0 0.99944 0.87367 0.60804 0.44909

1 0.99992 0.91039 0.61822 0.45087

2 0.99998 0.94535 0.63089 0.45254

3 0.99999 0.97086 0.64667 0.45413

4 1 0.98591 0.64667 0.45568

5 1 0.99361 0.69029 0.45723

...
...

...
...

...

10 1 0.999993 0.86795 0.46603

...
...

...
...

...

20 1 1 0.99910 0.53571

...
...

...
...

...

40 1 1 1 0.99998
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Table 3. The distribution function of the maximum queue length Q̄ f
max,n as λ varies for PS1 and PS2.

n λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

0 0.77220 0.53050 0.40404 0.32626

1 0.95182 0.74672 0.57128 0.45002

2 0.99112 0.86396 0.67401 0.52063

3 0.99851 0.92976 0.74748 0.56866

4 0.99976 0.96533 0.80376 0.60468

5 0.99996 0.98344 0.84775 0.63305

...
...

...
...

...

10 1 0.99971 0.96288 0.72316

...
...

...
...

...

20 1 1 0.99951 0.86029

...
...

...
...

...

40 1 1 1 0.99999

n λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

0 0.77220 0.53050 0.40404 0.32626

1 0.93781 0.74672 0.57128 0.45002

2 0.98639 0.85561 0.66394 0.51281

3 0.99723 0.91588 0.72366 0.54955

4 0.99945 0.95076 0.77102 0.57612

5 0.99989 0.97293 0.80967 0.59627

...
...

...
...

...

10 1 0.99923 0.93623 0.66395

...
...

...
...

...

20 1 1 0.99854 0.79730

...
...

...
...

...

40 1 1 1 0.99998

We have also conducted various experiments where we analyzed the effect of the
number of servers, the source capacity, the level of heterogeneity and so on to performance
metrics of non-preemptive heterogeneous systems and possible approximations through
their preemptive equivalents. Due to the space limitations of the paper, we omit these
results. As a generalisation, we can state that the main observations we made in the
presented examples remain valid also for other values of system parameters.

6. Conclusions

Finite-source multi-server heterogeneous systems without priority service interruption
are described using a multivariate Markov-chains. For such a systems we have found the
optimal threshold policy and calculated the corresponding performance measure. Both
analytical and numerical studies of such a system face constraints on the dimensionality of
the problem, i.e., on the number of servers. In this paper we have also tried to understand,
whether there are simplified variations of the main model which are appropriate for
boundary values calculation or even for approximation of the main model but without
constraint on the number of servers. We have analyzed non-preemptive and preemptive
queues and provided comparison analysis of the performance characteristics.
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