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����������
�������

Citation: Bajić, D.; Dimić, G.;
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Abstract: This paper proposes a code defined on a finite ring ZpM , where pM = 2m − 1 is a Mersenne
prime, and m is a binary size of ring elements. The code is based on a splitting sequence (splitting
set) S , defined for the given multiplier set E =

{
±20, ±21, . . . , ±2m−1}. The elements of E corre-

spond to the weights of binary error patterns that can be corrected, with the bidirectional single-bit
error being the representative that occurs the most. The splitting set splits the code-word into sub-
words, which inspired the name splitting code. Each sub-word, provided with auxiliary control
symbols that are a byproduct of the coding procedure, corrects a single symbol error. The code can be
defined, with some constraints, for general Mersenne numbers as well, while the multiplier set can
be adjusted for adjacent binary errors correction. The application proposed for this code is a hybrid
three-stage incremental ARQ procedure that transmits the code-word in the first stage, auxiliary
control symbols in the second stage, and retransmits the sub-words detected as incorrect in the third
stage. At each stage, error correction can be turned on or off, keeping both the retransmission rate
and residual error rate at a low level.

Keywords: splitting sequences; Mersenne primes; splitting code; fragmented retransmission; hybrid
incremental redundancy automatic repeat request

1. Introduction

Splitting is a process in discrete algebra that applies to additive Abelian groups.
Suppose that E is a finite set of integers, and G is an Abelian group. If it is possible to find a
subset, S ⊂ G, such that every nonzero element, } ∈ G, can be uniquely represented in the
form ε·∫ , where ε ∈ E and ∫ ∈ S , then it is said that E splits G with splitting set S , with a
trivial case S = G and E = {1}. The set E is called a multiplier set, while the splitting set
S is frequently referred to as a splitting sequence, ∫1, ∫2, . . . [1].

A number of theoretical contributions justify the importance of the topic, to name just
a few. The product of the groups was analyzed as early as 1942 in the works of G. Hajós [2]
(in German). Non-Abelian groups were elaborated upon in [3]. The factorizations of the
semigroup of modular arithmetic integers into subsets E and S , where E is equal to {1, 2,
. . . , k} or { ±1, ±2, . . . , ±k}, was given in [4]. In the context of the geometry of numbers,
the same multiplier sets are thoroughly analyzed in [5].

In addition to deep mathematical elaboration, some contributions also offer applica-
tion examples, primarily in the domain of coding theory. The analysis of perfect run-length
limited codes capable of correcting single peak shifts was performed in [6]. In [7], the au-
thor analyzed multiplier sets {1, a, . . . , ar, b, . . . , bs} and {±1, ±a, . . . , ±ar,±b, . . . , ±bs}
and proved the existence of perfect three- and four-shift codes. Another paper [1] gives a
general and completely proven theory for generalized splitting, applied to the design of
codes that corrects asymmetric errors with limited magnitude and with possible implemen-
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tation in write-once memory (WOM) codes. A comprehensive review of historical notes,
relationships to other mathematical structures, and applications was recently given in [8].

There is no implementation of splitting for an error-control code that corrects errors
that are the consequence of ordinary Gaussian noise.

This paper fills this gap, proposing an error-correcting code based on a multiplier
set, E =

{
±20, ±21, . . . , ±2m−1}, that splits a finite ring, ZpM , where pM is a Mersenne

prime [9]. If the elements (symbols) of ZpM are mapped into m binary digits (bits), then
ε j = ±2j ∈ E corresponds to the integer weight of a bidirectional single-bit error that
occurs at the (j + 1)st position of the erroneously received symbol, j = 0, . . . , m− 1. The sign
of ε j denotes the direction of the error: positive, 0→1, when zero is erroneously perceived
as one, and negative, 1→0, when one is perceived as zero. The exponent j shows the
position of the corrupted bit. The code can be extended to ZnM , where nM is a general
Mersenne number [9]. The main feature of the code is that its code-word can be split into
the sub-words that correspond to the splitting set S , so we propose the name splitting
code. If the error correction is excluded, the code’s detection capacities are equivalent to
Fletcher’s checksum error detection code [10].

The application of the proposed code is envisaged in automatic repeat request pro-
cedures (ARQs). Increased power consumption inherent to forward error control (FEC)
codes initiate a regain of ARQ popularity [11] via their improved versions, such as Chase
Combining Hybrid ARQ (CC-HARQ) [12] and incremental redundancy (IR) HARQ [13].
Decreased consumption is paid by latency, resulting in engineering compromises [14].
Another approach is the selective retransmission of fragments of the entire message [15],
which might also comprise aggregated packets [16,17]. Packet aggregation is a technique
aiming for energy efficiency improvement and quality of service (QoS) enhancement, espe-
cially in low-power communications [16]. The procedure proposed in this paper is based
on a hybrid ARQ with incremental redundancy and selective fragment retransmission that
implements the splitting code.

The aims of our code are to work reliably, which is guaranteed by its theoretical
foundation, to have a low-power consuming realization, and to reduce the retransmission
rate. The code is based on the approved patents, listed in Section 6, that address these
problems. The first patent proposes an integer code with energy consumption optimization,
while the second one deals with a hybrid integer code ARQ optimization.

The difference between the proposed solution and already existing codes based on
splitting is that the latter ones are designed for very specific types of errors that are not
inherent in transmission systems. For this reason, these codes are not suitable for ARQ
procedures. Besides, the focus of these contributions is based on a theoretical background,
and no attention is devoted to power consumption optimization.

The paper is organized as follows: the methods are presented in Section 2, intro-
ducing a design of a forward error control (FEC) code based on splitting sequences and
Mersenne primes. The code corrects errors in the binary field by implementing integer
ring operations. Sections 3 and 4 are devoted to the results. Section 3 presents some
elaborations of the proposed splitting code regarding its embedded sub-word structures,
general Mersenne numbers, correctable error patterns, adjacent error correction, and asym-
metrical perfectness. Section 4 proposes an application of splitting codes for an incremental
hybrid retransmission procedure. The discussion and the concluding remarks are given
in Section 5, followed by a table that summarizes the notations and abbreviations.

2. Mersenne Primes and Splitting Sequences for Binary Errors Correction

A prime number is called a Mersenne prime if it can be written as pM = 2m − 1 [9].
The corresponding ring, ZpM , is a field GF(pM) as well. The underlying additive Abelian
group is cyclic: the additive order of each non-zero ring element is equal to pM, so each
non-zero element, zk ∈ ZpM , is a generator of ZpM .

The cardinality of the multiplier set E =
{
±20, ±21, . . . , ±2m−1} that corresponds

to a single-bit error weight is equal to |E | = 2·m. Since
∣∣ZpM\{0}

∣∣ = 2m−2, it follows
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that the cardinality of the splitting set is equal to |S| = |ZpM \{0}|
|E | = 2m−1−1

m . A list of
the first few Mersenne primes with the corresponding cardinality |S| is given in Table 1,
while a complete list of splitting elements ∫i, i = 1, . . . , |S|, can be found in a patent
application [18].

Since ZpM is a finite-integer ring, zk = k ∈ ZpM\{0}, k = 1, . . . , 2m − 2. Further on,
∫i ∈ S , i = 1, . . . , |S|, and ε j ∈ E , j = 1, . . . , 2·m. The indices k, i, and j are reserved
for symbol, splitting sequence, and error, respectively. The multiplication of each zk ∈
ZpM\{0} by ε j modulo pM yields a different permutation of integers zk; integers at the same
position within different permutations are mutually different. This is a straightforward
consequence of the maximal additive order of the ring elements zk ∈ ZpM\{0}.

Table 1. Mersenne primes and code-word lengths for RS, extended Hamming and splitting code.

Symbol Length m
Mersenne Prime

pM = 2m − 1

Number of
Elements in

Splitting Set |S |

Code-Word Lengths (in bits)

Reed–Solomon Extended
Hamming Splitting

2 3 - 6 8 -
3 7 1 21 32 24
5 31 3 155 512 460
7 127 9 889 8192 7952

13 8191 315 106,483 33,554,432 33,538,076

To design a code, we first prove the following Lemma 1:
For every combination of i, j, and k, where i = 1, . . . , |S|, j = 1, . . . , 2·m and

k = 1, . . . , 2m−2, the pair (∫i·ε j, zk·Ej) is given a unique value. In other words, (∫i1·ε j1, zk1·ε j1)
= (∫i2·ε j2, zk2·ε j2) iff

(
(∫i1 = ∫i2) ∧ (ε j1 = ε j2 ) ∧ (zk1 = zk2 )

)
.

Proof. Each product (∫i·ε j) is unique according to the definition of splitting. So, if ε j1 6= ε j2,
or if ∫i1 6= ∫i2, or if both ε j1 6= ε j2 and ∫i1 6= ∫i2, then the products ∫i1·ε j1 and ∫i2·ε j12
must be different. It follows that (∫i1·ε j1, zk1·ε j1) 6= (∫i2·ε j2, zk2·ε j2) as their first terms are
different, regardless of zk. �

If ε j1 = ε j2 = ε j, it should be recalled that the order of zk is maximal. Then, if
zk1 6= zk2, results of their multiplication by the same number ε j will be different. So,
(∫i·ε j, zk1·ε j) 6= (∫i·ε j, zk2·ε j) as their second terms (zk1·ε j) and (zk2·ε j) are different, regard-
less of ∫i.

The impact of the splitting sequence is that each code-word of the proposed will be
also “split”—it will comprise |S| splitting sub-words of length

∣∣ZpM \{0}
∣∣, as shown in the

example in Figure 1. In this example, m = 5, pM = 25 − 1 = 31, and the stream of information
symbols is split into |S| = 25−1−1

5 = 3 for sub-words with lengths of 30.
Each sub-word corresponds to one splitting element ∫i, i = 1, . . . , |S|. If symbols in sub-

words are labeled with the non-zero integer value zk = k then, according to Lemma 1, for
each combination of i, j, and k, the pair (∫i·ε j, zk·ε j) yields one out of |E |·

∣∣ZpM \{0}
∣∣·|S| =

(2m − 2)2 unique values. In the pair (∫i·ε j, zk·ε j), value ε j corresponds to the error weight,
∫i marks the sub-word, and zk = k is a marker of one out of

∣∣ZpM \{0}
∣∣ symbols within

the sub-word. These three elements indicate the value and position of error and enable
its correction.

To construct the code that corrects an error listed in the multiplier set
E =

{
±20, ±21, . . . ,±2m−1}, it is sufficient to find a coding procedure that adds two con-

trol symbols for which the pair (∫i·ε j, zk·ε j) forms a unique syndrome. Such a syndrome
would give information about the error weight (ε j), its position within the sub-word
( zk = k), and the sub-word within which the error occurred (∫i). The proposed code is
referred to as “splitting code” as it is based on a splitting sequence, and the corresponding
abbreviation is SpC.
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Figure 1. A code-word of the splitting code, m = 5, pM = 31, and |S| = 3 for sub-words comprising 30 symbols each. The
splitting control symbols, C1i and C2i, I = 1, 2, 3, are byproducts of control symbol formation; the sub-words and splitting
control symbols marked by the same color create independent embedded sub-code-words of the splitting code.

The first part of the coding procedure is performed for each sub-word separately and
involves forming auxiliary splitting control symbols.

From now on, all the operations are modulo pM, except if stated otherwise.
The first auxiliary splitting control symbol, which is given by the first part of Equation (1),

is the sum of information symbols in the sub-word, while the second one, which is given by
the second part of Equation (1), is the sum of information symbols weighted by the descending
non-zero ring elements (2m − 1− k):

Ci1 = −∑2m−2
k=1 aik, Ci2 = −∑2m−2

k=1 (2m − 1− k)·aik, i = 1, . . . , |S|, (1)

where aik is the kth information symbol from the ith splitting sub-word (Figure 1).
The splitting control symbols Ci1 and Ci2 are auxiliary, and therefore not a part of

the code-word. However, if coupled with the sub-words, they can form embedded FEC
code-words (Figure 1). The property that the byproducts of the coding procedure, Ci1 and
Ci2, form embedded sub-codes within the SpC is exploited in the following sections.

From Equation (1), it seems that the coding procedure requires two additions and
one multiplication per information symbol. However, the coding procedure in Figure 2a
follows the speed-up scheme from Fletcher’s error-detecting checksums [10] and eliminates
the multiplications. This scheme also explains the descending order of the coefficients
in Ci2.

The control symbols for the splitting code are formed as:

C1 = ∑|S|
i=1 ∫i·Ci1, C2 = ∑|S|

i=1 Ci2. (2)

At the receiver, syndrome forming follows the same procedure (Figure 2b):

S1 = ∑|S|
i=1 ∫i· ∑2m−2

k=1 âik + Ĉ1, S2 = ∑|S|
i=1 ∑2m−2

k=1 (2m − 1− k)·âik + Ĉ2, (3)

where “ˆ” denotes the estimation of the received symbols. If a single error of weight, ε j,
occurs at the kth symbol of the ith splitting sub-word, âik = aik + ε j, the corresponding
syndromes would be:

(S1, S2) =
(
∫i ·ε j, (2m − 1− k)·ε j

)
=
(
∫i ·ε j,−k·ε j

)
=
(
∫i ·ε j,−zk·ε j

)
, (4)

which, according to Lemma 1, uniquely represent the occurrence of a single-bit error.
If ε j was known, it would be easy to find the splitting sub-word, i, and the position,

k, of the erroneous symbol within the sub-word: ∫i = S1/ε j and k = −S2/ε j (modular



Mathematics 2021, 9, 2620 5 of 20

division). However, ε j is not known. Moreover, there are three pieces of information,
ε j, ∫i , and zk = k, required for error correction, and only two syndromes to provide them.
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Figure 2. (a) Coding, (b) syndrome forming, and (c) error-correcting procedures. The coding procedure requires two ad-
ditions per information symbol, and two additions, two negations, and one multiplication per sub-word. The splitting
control symbols Ci1 and Ci2 are byproducts of coding procedure. Text in gray marks the changes due to the truncation and
shortening described in Sections 3.3 and 3.4. li—length of the ith sub-word; ss—number of sub-words.

The third, hidden piece of information is the property of the Abelian additive group:
each correctable error weight, ε j, is a closed cyclic permutation of the weight ±20 = ±1.
The n-fold multiplication of error weight ε j by a factor of two, or, equivalently, n cyclic shifts
of its binary value to the right eventually yields ±1. Once determined by consecutively
doubling (or cyclic shifting) the first syndrome n times until its value becomes ±1·∫i, the
obtained n ∈ {0, . . . , m − 1} straightforwardly gives the required error weight and the
sub-word within which it occurs:

S1·2n = ∫i ·ε j·2n = ∫i ·
(
±2j

)
·2n = ±2j+n·∫i = ±2m·∫i = ±∫i. (5)

The number of multiplications, n, shows that the absolute value of ε j is equal to
abs(ε j) = 2j = 2m−n, while its sign is equivalent to the sign of the splitting element
obtained after the n-fold multiplication of the first syndrome, i.e.,sign(ε j) = sign(S1·2n).
The outcome of Equation (5), ±∫i, points out that the error occurs within the ith sub-word.

Multiplying the second syndrome by the same factor 2n, or cyclically shifting it n times,
yields the position of the erroneous symbol:

S2·2n = −k·
(
±2j

)
·2n = −k·(±1) = −k·sign(S1·2n)⇒ ⇒ k = −1·(S2·2n)·sign(S1·2n) (6)

The error is corrected if the error weight ε j is subtracted from the kth received symbol
âik, located in the splitting sub-stream i, as shown in Figure 2c.
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Figure 2 points out that the procedures of coding and error correction are simple and
suitable for applications where energy resources are scarce. The coding procedure requires
two additions per information symbol, and two additions, one multiplication and two
complements per splitting sub-word. Similar requirements hold for syndrome forming.
Error correction requires n < m cyclic shifts and 2·n·|S| comparisons, while the look-up
table comprises the elements of the splitting set |S|.

A case when only one syndrome is non-zero indicates an error at the control symbol,
which is irrelevant as the control symbols are discarded anyway.

The basic idea of correcting a single error in the binary field using the algebraic struc-
tures defined on the non-binary alphabet appeared long ago [19], and, to our knowledge,
it did not have a predecessor. It was briefly analyzed in [20], but in a constrained form,
without variability in sub-words lengths, without any theoretical analysis, and without a
connection to splitting sequences and Mersenne primes. Some additional explanations can
be found in the last paragraph of [21].

3. Properties and Modifications of Splitting Code

This section lists some modifications of the splitting code: it can be adjusted to non-
prime Mersenne numbers, and it can be adjusted to correct adjacent error pairs within an
integer, including the circular adjacency.

The section also describes some properties of the splitting code: all its variants can
correct some binary error patterns besides a single-bit error, its sub-code-word corrects
a single-symbol error in the case of Mersenne prime, and a single-bit error (plus some
additional patterns) in a case of Mersenne non-prime, it can be scaled by shortening sub-
words, or by omitting sub-words, and, in a case of Mersenne primes, it can be considered
as “asymmetrically perfect”.

3.1. Correctable Error Patterns

The error weights ε j = ±2j, j = 0, . . . , m− 1 correspond not only to the single-bit
error but also to all bidirectional error patterns with this weight. The correctable error
patterns are:

(1) m1 positive errors (0→1) followed by a single negative error (1→0) and m−m1 − 1
zeros, m1 = 0, . . . , m− 1;

(2) A chain of m− 1 adjacent positive errors (0→1) followed by zero;
(3) All inversions of patterns (1) and (2) when a positive error is substituted by negative

and vice versa;
(4) All circular shifts of the previous patterns (1), (2), (3).

Obviously, error patterns are data-dependent, but most transmission systems use
binary scramblers, so bias is excluded.

The maximal code-word lengths of splitting code, Reed–Solomon code, and extended
Hamming code with equivalent redundancy are presented in Table 1. The code-word
of SpC is slightly shorter than the one of the extended Hamming code, although both
ones correct a single-bit error. The difference is due to their additional capabilities: the
extended Hamming code detects an even number of errors, while the SpC corrects multiple
bidirectional error patterns that correspond to the single-bit error weight.

3.2. Embedded Sub-Code of the Splitting Code

If compared to the single-symbol correcting the RS code (Table 1), the code length of
SpC, for the same redundancy, is increased approximately |S| times. This increase is at the
cost of reduced correction capability from a symbol error to a single-bit error.

However, if the individual SpC sub-words are coupled with the auxiliary splitting con-
trol symbols Ci1 and Ci2, they form embedded SpC sub-codes (Figure 1). Their respective
syndromes are:

(Si1, Si2) =
(
∑2m−2

k=1 âik + Ĉi1, ∑2m−2
k=1 (2m − 1− k)·âik + Ĉi2

)
==

(
εij, (2m − 1− k)·εij

)
. (7)
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The first syndrome directly shows the error weight, εij = Si1, while the second one
shows the error position within the sub-code, k = −Si2/εij = −Si2/Si1, where the division
is modular. Since the order of elements is maximal, the pair (Si1, Si2) has a unique value
for each non-zero element of ZpM .

Therefore, each embedded sub-code can correct any single symbol error. It is com-
parable to the single-symbol correcting the Reed–Solomon code, except that the RS is a
(2m − 1, 2m − 3) code defined over GF(2m), while the SpC sub-code is a (2m, 2m − 2) code
defined over GF(2m –1) = GF(pM). So, the proposed SpC can be regarded as a “split”
version of the single-symbol correcting code: its length is multiplied as many times as there
are splitting symbols, but its error-correcting capabilities are reduced from a single symbol
to a single bit (operations in this paragraph are decimal).

The splitting control symbols Ci1 and Ci2 and syndromes Si1 and Si2 are byproducts
of coding procedure, so the formation of sub-codes requires no additional processes. The
embedded sub-codes are a useful property of SpC, which is a core element of the procedure
proposed in the following section.

3.3. Truncated Splitting Code for General Mersenne Numbers nM

So far, we only considered the Mersenne primes pM = 2m − 1, with the symbol length m
also being a prime [22]. However, the information symbols with a prime number of bits
have limited application value.

The splitting, though truncated (incomplete), can be applied for arbitrary m, i.e., to
any Mersenne number nM = 2m− 1. Then, some elements of the splitting set do not have
maximal order, so the splitting ∫i·ε j and/or products zk·ε j are not unique.

For example, the Mersenne number for m = 6 is nM = 63. Its factors are 3, 7, 9, and 21, and
their orders are 21, 9, 7, and 3, respectively. The splitting set is S = {1, 3, 5, 7, 9, 11, 21},
but only the elements ∫i ∈ {1, 5, 11} have maximal additive order. The splitting code can
still be formed, but with the truncated splitting set ST = {1, 5, 11}, with a lower number
of the sub-words, and a lower code rate. The set of syndrome values will not be complete,
raising the possibility for error detection (Figure 2c). The corresponding ring ZnM is not a
field, so the sub-codes from Section 3.2. cannot correct all possible errors within a symbol,
only the weights corresponding to a single-bit error. A list of Mersenne non-prime numbers,
nM, and the cardinality |ST| of the truncated splitting sets is given in Table 2, while the
corresponding splitting elements with the maximal additive order, ∫i, i = 1, . . . , |ST|, can
be found in the patent application [18].

From now on, the term “splitting code” and the abbreviation SpC is used for the
truncated splitting codes as well.

Table 2. The cardinality of the truncated splitting sets ST.

Symbol Length m Mersenne Non-Prime
Numbers nM = 2m − 1

Number and List of
Non-Trivial Prime

Factors of nM

Number of Elements
in the Truncated

Splitting Set |ST|

Number of Elements
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3.4. Shortened Splitting Codes and Error Detection

The splitting code can be shortened by either omitting the sub-words or shortening
them. The shortening need not be uniform: each shortened sub-word can be of a different
length, li. It implies the changes in Equations (1), (3), (4), and (7), where the term 2m − 1
should be substituted by li + 1, and |S| in summations of Equations (2) and (3) should be
substituted by the number of sub-words, denoted as ss. The position of the erroneous byte
within the sub-word is then equal to:

k = li + 1− (S2·2n)·sign(S1·2n). (8)

Shortening or omitting the sub-words reduces the number of syndrome values that
correspond to the correctable errors, offering the possibility for error detection. This
is another issue important for the application proposed in the following section. This
reduction is shown in Figure 3, for two SpCs, one corresponding to Mersenne number
(m = 12), and the other to Mersenne prime (m = 13). In Figure 3a, the sub-word lengths are
shortened, keeping the number of sub-words as the parameter. In Figure 3b, the number of
sub-words is reduced, keeping the length as the parameter. The percentage of syndromes
that indicate correctable error patterns reaches 100% for Mersenne primes only.
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3.5. Splitting Code for Adjacent Error Correction

The error patterns from Section 3.1. include adjacent and circularly adjacent error
pairs of different polarities, 01→10 and 10→01. Error pairs are inherent to systems with
differential coding, and it would be useful to correct the remaining patterns, 00→11 and
11→00. To accomplish this, it is sufficient to create a multiplier set, E2, that includes
the corresponding weights: E2 =

{
±20, . . . , ±2m−1,±3·20, . . . ,±3·2m−1 }. Since the full
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splitting set for E2 could not be found (its non-existence is not proven), a truncated splitting
set that comprises the elements with maximal order can be used, similar to Section 3.3.

Unfortunately, if exponent m is even, m = 2·r, the error weight ε = 3·20 = 3 is a factor
of Mersenne number: nM = 2m − 1 = 22·r − 1 = 4r − 1 = (4− 1)·

(
1 + 4 + · · ·+ 4r−1) =

3·
(
1 + 4 + · · ·+ 4r−1) (decimal). Then, the maximal order of elements is not 2m − 1, but

(2m—1)/3. The code can be formed, but the maximal length of sub-words is reduced and
equal to (2m −1)/3 −1.

Besides the error patterns (1), (2), (3), and (4) from Section 3.1, the correctable error
patterns also include:

(5) Two zeros, followed by (m—2) negative errors;
(6) A positive error, followed by m2 negative errors, then positive error and (m—m2—2)

zeros, m2 = 0, . . . , m − 2;
(7) Negative error followed by zero and by m3 negative errors, then positive error fol-

lowed by (m—m3—3) zeros, m3 = 0, . . . , m—3;
(8) All inversions of patterns (5), (6), and (7) when a positive error is substituted by a

negative and vice versa;
(9) All circular shifts of the previous patterns (5), (6), (7) and (8).

The cardinality |ST2| of the truncated splitting sets for E2 is given in Table 3, while the
elements of the splitting set with the maximal possible additive order, ∫i, i = 1, . . . , ST2,
are listed in the patent application [18]. The comparison of code-word lengths for extended
Hamming code, RS code, and splitting codes for multiplication sets E with |S| or |ST|, and
E2 is shown in Figure 4. Even with the reduced number of sub-words with truncated split-
ting sets |ST|, the length of SpC does not considerably decrease with respect to extended
Hamming code. The increase in code lengths of SpC with E2 as a function of m is not
monotonous. It is due to the decrease in sub-word length for even values of m. For lower
values of m, the SpC with E2 is not justified as its length is below the RS code that corrects
all symbol errors.

Figure 5 shows the ratio of correctable error patterns with respect to all error patterns
and the ratio of the probability of correctable errors with respect to the total probability
of errors. These features are given as a function of symbol length, m (Figure 5a), and as a
function of maximal code-word length (Figure 5b).

Table 3. The cardinality of the truncated splitting sets ST2 for E2.

Symbol Length m Number of Elements in the Truncated Splitting Set |ST2| for E2

4 1
5 1
6 1
7 4
8 4
9 10

10 15
11 37
12 24
13 133
14 189
15 389
16 512
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Figure 5. The number and probability of correctable error patterns per symbol with respect to total
number of error patterns, and probability of all error patterns, expressed in %; (a) symbol length m as
a parameter; (b) maximal code-word length as a parameter. The percentage of correctable patterns is
low, but these are the most probable patterns in the case of isolated and statistically independent
errors. The increase in code-word length for splitting code with E2 is not monotonous, as can also be
seen in Figure 4.



Mathematics 2021, 9, 2620 11 of 20

3.6. Asymmetrically Perfect Splitting Codes

As stated in the introduction, each zk ∈ ZpM can be uniquely represented in the form
ε j·∫i, where ε j ∈ E and ∫i ∈ S , with every ∫i and zk having a maximal order. Such splitting
can be considered “perfect”, in contrast to splitting over ZnM , where splitting elements
do not have maximal order. In spite of perfect splitting, the splitting code for correcting a
single-bit error weight defined over ZpM is not perfect. Perfect codes imply that the code-
words and their correctable counterparts symmetrically fill the complete code-word space
without overlapping and without free space left [23]. However, the following analysis,
implementing decimal operations, shows the existence of surpluses:

The maximal code-word length is equal to (2m−2)2

2·m + 2 symbols. Each symbol can
obtain one out of 2m − 1 possible values, so the entire code-word space comprises CS =

(2m − 1)(
(2m−2)2

2·m +2) code-words:

CS = (2m − 1)(
(2m−2)2

2·m +2) = (2m − 1)(
(2m−2)2

2·m )·(2m − 1)2 = CEF·(2m − 1)2, (9)

where CEF = (2m − 1)(
(2m−2)2

2·m ) is the number of error-free code-words.

The code-word can be either error-free or with an error at one of its (2m−2)2

2·m +2 symbols.
There are 2·m possible error values, so the total number of allowed code-words is equal to:

CC = (2m − 1)(
(2m−2)2

2·m )·
((

(2m − 2)2

2·m + 2

)
·2·m + 1

)
= CEF·

(
(2m − 2)2 + 4·m + 1

)
(10)

In perfect codes, CS − CC = 0.
In the proposed splitting code:

CS − CC = CEF·
(
(2m − 1)2 − (2m − 2)2 − 4·m− 1

)
= CEF·2·(2m − 2− 2·m). (11)

The difference can be interpreted as follows: each of CEF code-words can be addition-
ally corrupted at one of its two control symbols by (2m − 2− 2·m) different error values.
The total number of error values is equal to 2m − 2. The number of allowed ones is equal to
2·m, but they are already included in CC, shown in Equation (10). So, the number of error
values that can be corrected in control symbols is equal to 2m − 2.

The difference between the cardinality of the entire code-word space and the number
of correctable code-words shows that, if an error of any weight corrupts a control symbol,
it can be corrected. This is intuitively clear from the explanation given at the end of
Section 3.1.—the code corrects a single-bit error if it occurs at the information symbol and a
single-symbol error if it occurs at the control symbol.

The correctable errors that occur at control symbols encircle different spheres around
the code-word than the errors that corrupt the information symbols. Nevertheless, all the
points in the code-word space are covered without overlapping. As the term “quasi-perfect”
code is used in a different context [24], we call the splitting codes over ZpM “asymmetrically
perfect”. Formally, there are 51 asymmetrically perfect splitting codes, as 51 Mersenne
primes have been discovered so far [25]. The ones that may have applicative value are
defined with m = {5, 7, 13, 17, 19, 31, 61}.

4. Application Example: An ARQ Procedure for Selective Fragment Retransmission of
Aggregated Data

The application of the proposed splitting code is suited for the procedures that use
packet aggregation with fragment retransmission. In packet aggregation, instead of a
separate header for each packet, all packets are grouped into a single frame and share a
joint header [26]. The overhead reduction decreases its impact on energy per transmitted bit,



Mathematics 2021, 9, 2620 12 of 20

simultaneously increasing the throughput and efficiency [27,28]. The applications of packet
aggregation are, among others, in the domain of VoIP [29] and wireless networks [30].

Aggregation with fragment retransmission (AFR) [17] opposes the idea of a single
header for all packets, as it excludes joint error control and forms a separate check sequence
for each packet (or fragment). If an error occurs, only the corrupted packets/fragments
are retransmitted. Such a technique has already been used to improve communication
performance in low data rate networks [31], to reduce delay, as well as in high data rate
networks [17], to preserve delay and throughput efficiency in a case of the data rate
change. The retransmission of packets/fragments of unequal and variable length was
considered in [32,33], but transmitting the length of each particular packet is an additional
overhead burden.

As an application of the splitting code, we propose a hybrid ARQ procedure with
incremental redundancy for fragment retransmission. Each splitting sub-word is allocated
to a single fragment, while incremental redundancy is formed as auxiliary splitting control
symbols, two per each sub-word. To avoid ambiguities, in this context the splitting code-
word provided with overhead is regarded as a “frame”, and the corresponding splitting
sub-words are regarded as “fragments”.

The proposed procedure comprises three-stage retransmission that can be followed by
a standard automatic repeat request (ARQ). In the first stage, the auxiliary splitting control
symbols, Ci1 and Ci2, formed during the coding procedure, are stored, while the control
symbols, C1 and C2, are transmitted alongside the frame. In the case of a negative response
(NAK), in the second stage, the stored auxiliary splitting control symbols are transmitted.
The fragments and splitting controls are coupled and checked for errors. In the third stage,
only the unacknowledged fragments are retransmitted. If the failure of the same fragment
persists, subsequent fragment retransmissions follow a standard ARQ, according to the
scheduled maximal number of retransmissions.

The splitting code offers easy switching between error correction and error detection,
so there are several possible scenarios. Scenario (a) includes error correction both in the first
and in the second stage, as shown in Figure 6a. If multiple frame errors occur, some of them
can be falsely perceived as correctable—the residual frame errors, R1COR, in Figure 6a.
The remaining multiple errors are detected, and for these frames, the auxiliary check
symbols (incremental redundancy) are sent within the second stage. At the receiver, the
check symbols are coupled with already received fragments. The third stage is initiated
for fragments with multiple errors. Such errors can be either missed (residual fragment
errors, R2COR and R3COR in Figure 6) or detected. The fragments with detected errors are
retransmitted in the third stage, and, if their erroneous status persists, retransmitted again
following the standard ARQ procedure.

In scenario (b), in the first stage, error detection is performed, and the incremental
redundancy is sent for all the frames with the non-zero syndrome(s), while the correction is
performed in the second stage (Figure 6b). In scenario (c), no error correction is performed
(Figure 6c) at any stage. The last scenario (d) includes error correction in the first stage, and
detection at the subsequent stages.

Regarding residual errors if only error detection is performed, R1DET, R2DET, R3DET
in Figure 6 correspond to the residual errors of the Fletchers error-detection checksums
with detection capabilities comparable to the cyclic redundancy check (CRC) codes [10]. As
already stated, the splitting FEC code is based on the Fletchers checksums, so if the error
correction is turned off, the code is reverted to its detection origins, and the only residual
frames/fragments errors are the ones when the code falsely declares a no-error event.
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Figure 6. Different scenarios of the proposed hybrid incremental ARQ based on splitting code:
(a) error correction performed at frame and at fragment stages; (b) error correction performed at
fragment stages only; (c) no error correction performed. Frame, its incremental redundancy and
its erroneous fragments are sent in stages 1, 2 and 3, respectively. The frames/fragments that are
error-free, corrected or with residual errors require no further transmissions.

Figure 7 shows the stage outcomes for the frames comprising m = 8 symbols, with
fragment length equal to 2m−1 − 1 = 127 symbols, half of its theoretical maximum. The
number of fragments per frame is set to the theoretical maximum (eight fragments, Table 2).
The simulation is performed in the Gaussian noise environment. The distribution of frames
according to errors is shown in Figure 7a. Figure 7b shows the cases of multiple error
frames when errors can be either detected or missed. Fragment distribution in the case
of frames with multiple errors is shown in Figure 7c. To gain a better insight into the
decrease in retransmissions if error correction is turned on, the absolute number of both
frame and fragment retransmissions is presented in Figure 7d. Retransmission decrease
is at the cost of increased residual errors that comprise both “FALSE single error” and
“FALSE error-free” cases from Figure 7b,c.
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Figure 7. Outcomes of different stages as a function of bit error probability p, for symbol length m = 8 and frame partitioned
into eight fragments of length equal to 2m−1 −1 = 127 symbols. (a) Frame error events distribution; (b) multiple errors
event distribution per frame; (c) multiple error events distribution per fragment; (d) number of retransmitted frames and
fragments with error correction turned on and off.

Figure 8 presents m = 8 frame statistics for bit error rate p = 10−5 and different pairs
of fragment length and number. Heat maps cover the statistics of single-error frames,
multiple-error frames, frames with detected errors (retransmitted incremental redundancy),
and frames with residual errors. It can be seen that the percentage of frames with residual
errors is below the percentage of frames with multiple errors detected, except when both
the length and number of fragments are at their maximal values.

Figure 9 presents similar heat maps, but for fragments of frames that contain multiple
errors. If a frame with multiple errors comprises only one fragment, then this fragment
also contains multiple errors and cannot be corrected, as shown in the leftmost columns of
Figure 9a,b. Figure 9c,d show that the percentage of fragments with detected errors in all
cases exceeds the percentage of fragments with residual error.

The influence of the fragment (sub-word) length is presented in Figure 10, for bit
error rate p = 10−5, with frames consisting of sixteen fragments, and two types of symbols,
m = 12 and m = 16. The respective fragment lengths in bits are equal, as the length of
100 symbols with m = 12 is equivalent to 75 symbols with m = 16, providing the same
frame error distribution in both cases (Figure 10a). The difference between m = 12 and
m = 16 cases is observed in residual errors, both for frames (Figure 10b) and fragments
(Figure 10c). The residual errors for m = 16 are well below the m = 12 case, due to the
increased control redundancy per the same information content. However, although the
difference in absolute values exists, it is by several orders of magnitude lower than the
retransmission rate and does not alter it significantly (Figure 10d).
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Figure 8. Heat maps of frame error events, symbol length m = 8, bit error rate p = 10−5, for different
fragments (sub-words) number and length. (a) Single error; (b) multiple errors; (c) detected errors;
(d) missed (residual) errors.
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Figure 9. Heat maps of fragment error events, symbol length m = 8, bit error rate p = 10−5, for different
fragments (sub-words) number and length within a frame. (a) Error-free fragments; (b) single error;
(c) detected errors; (d) missed (residual) errors.
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Figure 10. Frame and fragment error events as a function of fragment lengths; increment of 1200 bits is equal to
400 m = 12 symbols, and to 75 m = 16 symbols; (a) Frame error events distribution; (b) residual errors in frame; (c) residual
errors in fragments; (d) retransmitted frames and fragments.

The influence of the number of fragments within a frame is presented in Figure 11
for bit error rate p = 10−5, and a fragment length equal to 400 symbols if m = 12, and
300 symbols if m = 16. In both cases, the fragment length is equal to 4800 bits. Again, the
difference between two symbol types is only reflected in residual errors (Figure 11b,c).
Again, these changes do not affect the retransmission rate.
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5. Discussion and Conclusions

The proposed splitting code corrects a single-bit error operating the m bit integer
ring. It corrects also corrects multiple bit errors within the symbol, provided that their
integer weight corresponds to a single bit error weight (Figure 5). The coding, syndrome
forming, and error correction procedures are simple (Figure 2). The code rate for codes
of maximal length is almost equivalent to the extended Hamming code, especially if SpC
is defined using the Mersenne primes (Figure 4). The slight difference is because the
extended Hamming code additionally detects an even number of errors, while SpC corrects
additional error patterns, and can additionally detect some other errors, especially in its
shortened versions (Figure 3).

Error correction can be easily turned off; then, splitting code becomes equivalent to
Fletcher’s checksums for error detection.

The code-word of splitting code is partitioned in sub-words that correspond to the
splitting set S (Figure 1). This partitioning is suitable for mapping the individual packets
into sub-words to form an aggregated frame—code-words with joint control symbols
and joint headers. The byproducts of the coding procedure for each particular sub-word
form auxiliary splitting control symbols that can be stored and transmitted if necessary.
Thus, formed sub-code-words can also correct single-bit errors, except when defined
using Mersenne primes when they correct single-symbol errors. Based on this feature,
we proposed a hybrid incremental ARQ procedure as an application of SpC code. The
procedure comprises three stages, with several implementation scenarios, based on turning
the error correction on and off (Figure 6). In the first stage, a frame is transmitted, in
a second, auxiliary control symbols are transmitted, and in the third, the sub-words
(fragments) with detected errors are re-transmitted. Figures 7–9 show the frame and
fragment event distribution for m = 8 symbols. The results are presented as a percentage of
all transmitted frames (Figures 7a,b,d and 8), and as a percentage of all fragments from
frames with multiple errors (Figures 7c,d and 9). The figures show that the retransmission
rate considerably decreases if the error correction is turned on (Figure 7b–d), but at the
cost of increased residual frame and fragment rate. Residual errors are partitioned into
falsely perceived error-free cases that persist if error correction is turned off, and into falsely
perceived single-bit error cases, which are inherent in error-correcting scenarios. Both cases
are equivalent and constant considering the fragments (Figure 7c), but the percentage of
false single error frames increases with bit error probability.

Heat maps in Figure 8, for bit-error-rate p = 10−5, varies sub-words (fragments) length
and number up to their maximal values which are, for m = 8, equal to 30 symbols and
8 sub-words, respectively. The frame statistic reveals that the portion of multiple-error
frames that correspond to residual errors (sum of false error-free and false single-error
events) is well below the portion of multiple error frames that correspond to detected errors
that initiate the second stage of transmission. The exception is maximal-length frames
for which most, or in the case of Mersenne primes, all syndrome values are reserved for
correctable errors and very little remains for detection (Figure 8c,d). On the other hand,
heat maps in Figure 9c,d reveal that the percentage of fragments with detected errors
exceeds the number of fragments with residual errors for all sets of parameters.

The two leftmost columns in fragment heat maps in Figure 9 present the case of short
frames, where the errors are less likely to appear. A small number of multiple error frames
was hardly sufficient for reliable statistics in the case of such rare events as residual errors.
For this reason, the colors in these columns of Figure 9d are not ordered. Considering the
first column, it corresponds to the frames with only one sub-word. If the frame contains
multiple errors, the sub-word also contains multiple errors, and the number of error-free or
single-error cases is set to zero (Figure 9a,b).

Figures 10 and 11 present the results for m = 12 and m = 16. These symbol lengths
are chosen as they correspond to 150% and 200% of a classical eight-bit byte. In both
figures, the abscissa shows the frame length in increasing order: in Figure 10, due to the
increase in the fragment length, and in Figure 11, due to the increase in the number of
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fragments. For this reason, the graphs showing the percentage of residual error frames in
Figures 10b and 11b, and the percentage of residual error fragments in Figures 10c and 11c
follow a similar trend both for frames and fragments.

However, the trends of frame and fragment retransmission rates differ (Figure 11d).
Frame retransmission increases with frame size as multiple errors are more likely to occur
in long frames, but fragment retransmission decreases. The reason lies in the fact that
fragment retransmission is only possible if the frame contains multiple errors. Only in this
case does the ARQ procedure enter stage two. If there is just a single fragment within the
frame, all the errors are located within this fragment and the retransmission will surely
occur. If the number of fragments is greater than one but still small, the multiple errors from
the frame are divided among the small number of fragments. Consequently, the probability
that some fragments will contain more than one error is high, resulting in retransmission.
This is the reason for the increased retransmission rate for a small number of fragments in
Figure 11d, also observable in Figure 9c.

In Figure 10, the number of fragments is set to 16, which is 22.22% of the maximum
for m = 12, and only 1.5626% of the maximum for m = 16. Similarly, in Figure 11, fragment
(sub-word) length is set to 4800 bits, which is 400 symbols—9.77% of maximal length for
m = 12, and 300 symbols—0.46% of maximal length for m = 16. In other words, for the
same code-word (frame) and sub-word (fragment) parameters, the m = 16 case occupies a
lower portion of the code-word space than the m = 12 case. This difference, coupled with
the increased protective redundancy, is reflected in a considerably lower number of false
single-error frames and false error-free fragments. The number of false error-free frames
and false single-error fragments is also lower, but only slightly. These values are of the
order of a fraction of percent, so their influence on the total retransmission rate is very
low. However, in a trade-off between the retransmissions, latency, power requirements,
and residual errors when error corrections are turned on and off, these differences give the
platform for optimization study, also considering different scenarios with error correction
on and off, and in errors in more realistic surroundings than Gaussian. This will be the
subject of our further research.
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Abbreviations and Notations

Abbreviations
AFR Aggregation with fragment retransmission;
ARQ Automatic repeat request;
CC-HARQ Chase combining hybrid automatic repeat request;
IR-HARQ Incremental redundancy hybrid automatic repeat request;
CRC Cyclic redundancy check;
FEC Forward error control;
SpC Splitting code;
QoS Quality of Service;
RS code Reed–Solomon code;
WOM Write-once memory;
Notations
G, } ∈ G Abelian group, element of Abelian group;

E , ε j ∈ E , j
Multiplier set that corresponds to a single bit error weight, its
element, and the corresponding index; E =

{
±20, ±21, . . . , ±2m−1};

E2

Multiplier set that corresponds to a single bit and adjacent bits within
a symbol, including circular adjacency;
E2 =

{
±20, . . . , ±2m−1,±3·20, . . . ,±3·2m−1 };

S , ∫i ∈ S , i Splitting set, its element and the corresponding index (Table 1);
ST Truncated splitting set for Mersenne non-prime numbers (Table 1);
ST2 Truncated splitting set for adjacent error correction (Table 3);
m Number of bits in symbol;
nM, pM Mersenne number 2m−1, Mersenne prime;

ZpM , zk ∈ ZpM , k
Integer ring with pM elements, ring element, the corresponding
index;

GF(pM) Galois field with pM elements;

Ci1, Ci2, C1, C2
Auxiliary splitting control symbols of the ith sub-word, code-word
control symbols;

Si1, Si2, S1, S2 Syndromes of the ith sub-word, code-word syndromes;
CC Number of code-words in the code-word space;
CS Number of code-words with allowed error weights;
CEF Number of error-free code-words;

R1DET, R2DET, R3DET
Frames or fragments with residual errors if only error detection is
turned on, at stages 1, 2 and 3;

R1COR, R2COR, R3COR
Frames or fragments with residual errors if error correction is also
turned on, at stages 1, 2 and 3;

li
Length of the ith sub-word, if the sub-words are of different length;
the maximal length is 2m−2;

aik The kth information symbol in the ith sub-word;
ss Number of sub-words; the maximal values are given in Tables 1–3;
Operators
|.| cardinality (number of elements);
∈ is element of;
∧ logical and;
\ set difference;
ˆ value estimated at the receiver.
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