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Abstract: When images are acquired for finger-vein recognition, images with nonuniformity of
illumination are often acquired due to varying thickness of fingers or nonuniformity of illumination
intensity elements. Accordingly, the recognition performance is significantly reduced as the features
being recognized are deformed. To address this issue, previous studies have used image preprocess-
ing methods, such as grayscale normalization or score-level fusion methods for multiple recognition
models, which may improve performance in images with a low degree of nonuniformity of illumina-
tion. However, the performance cannot be improved drastically when certain parts of images are
saturated due to a severe degree of nonuniformity of illumination. To overcome these drawbacks,
this study newly proposes a generative adversarial network for the illumination normalization of
finger-vein images (INF-GAN). In the INF-GAN, a one-channel image containing texture informa-
tion is generated through a residual image generation block, and finger-vein texture information
deformed by the severe nonuniformity of illumination is restored, thus improving the recognition
performance. The proposed method using the INF-GAN exhibited a better performance compared
with state-of-the-art methods when the experiment was conducted using two open databases, the
Hong Kong Polytechnic University finger-image database version 1, and the Shandong University
homologous multimodal traits finger-vein database.

Keywords: finger-vein recognition; nonuniformity of illumination; image restoration; INF-GAN;
residual image generation block

1. Introduction

Biometrics are replacing traditional authentication methods in several fields requiring
security. Biometric identifiers include fingerprint, iris, face, and finger-vein. Biometrics
using finger-vein have the following advantages [1]. (1) As veins are hidden inside the body,
there is little risk of forgery or theft, and the surface conditions of the hands have no effect
on authentication. (2) The use of infrared light allows for noninvasive, contactless imaging
that ensures both convenience and cleanliness for the user experience. (3) Vein patterns
are stable and clearly defined, allowing the use of low-resolution cameras to capture vein
images for small-size, simple data image processing. As finger-vein images are captured
using near-infrared (NIR) light when deoxygenated hemoglobin inside the vein absorbs
NIR illumination [2], a blur may occur or low-quality images with poor illumination may be
acquired due to the difference in thicknesses of fingers, the nonuniformity of illumination
intensity, and light scattering as light passes through the skin layer [3,4]. Low-quality
images due to blur or poor illumination, significantly affect the recognition performance;
thus, with the advancements in deep-learning technology, extensive research is being
conducted on finger-vein recognition using a convolutional neural network (CNN) [5,6].
For solving the problem of low-quality image recognition due to blur or nonuniform
illumination in finger-vein images, various methods in which a blur is removed by restoring
images or a vein pattern is restored using a generative adversarial network (GAN) have
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been studied [7,8]. Further, methods to ensure robust training through CNN recognition
using a GAN in data augmentation have been studied [9]. However, the restoration of only
optical blur was considered in the previous study [7]; the restoration method of focusing
on a vein shape was difficult to apply to a severe case of nonuniformity of illumination
where images were entirely or partially bright or dark due to nonuniform illumination in
the previous study [8]. As in the previous study [9], performing data augmentation by
adding random noise to input data is inappropriate for solving the problem of nonuniform
illumination. Therefore, a method for restoring the severe nonuniformity of illumination
based on a GAN for the illumination normalization of finger-vein images (INF-GAN) and
for improving the performance of finger-vein recognition is proposed in this paper. The
main contributions of our paper are as follows:

- This study is the first to restore finger-vein images with nonuniform illumination
using a GAN.

- The INF-GAN is newly proposed for the restoration of a finger-vein image with
nonuniform illumination.

- The INF-GAN is based on the conventional Pix2Pix-HD, but uses a ResNet generator
and only one PatchGAN discriminator, unlike the Pix2Pix-HD. A residual image-
generation block (RIGB) is newly proposed for highlighting the vein texture of images
distorted by the severe nonuniformity of illumination. In the INF-GAN, a one-channel
residual image containing the finger-vein texture information is generated to be con-
catenated onto the input, thus improving the restoration performance. Furthermore, a
feature encoder network was not used, unlike in Pix2Pix-HD.

- For a fair performance assessment by other researchers, the nonuniform finger-vein
images, INF-GAN, and algorithm proposed in this study are disclosed through [10].

The remainder of this paper is organized as follows. In Section 2, the previous studies
are described, and the proposed method is described in Section 3. In Section 4, comparative
experiments and experimental results with analysis are described. Finally, in Section 5, the
conclusions of this study are provided.

2. Related Work

Finger-vein recognition can be largely divided into preprocessing, feature extraction,
and recognition. During preprocessing, a region-of-interest (ROI) is extracted in addition
to the enhancement, resizing, and alignment of finger-vein images for improving the
performance of feature extraction and recognition to be performed subsequently. Feature
extraction involves extracting a vein pattern or texture for recognition, and recognition
involves determining the recognition decision based on the extracted features. Among
the three processes, preprocessing can enhance image quality through image restoration
or improve recognition performance by inducing the robust training of a recognition
model through data augmentation. By focusing on the illumination quality of images,
previous studies on finger-vein recognition were examined by dividing them into the
cases of performing recognition without restoration or illumination compensation through
robust training methods and the cases of performing recognition with restoration or after
illumination compensation through robust training methods.

2.1. Finger-Vein Recognition without Illumination Compensation

Lee et al. [11] proposed a finger-vein recognition method based on the Hamming
distance after performing feature extraction through minutia-based alignment and a local
binary pattern (LBP). In the study, a finger region was localized for extracting the ROI
in the image obtained through preprocessing, and the localized region was stretched for
subsampling. Then, for aligning the subsampled image, affine transformation was applied
to the minutia point of the subsampled image, and the LBP was used for extracting features.
Song et al. [12] proposed a method in which a vein region is extracted through the mean
curvature, and the finger-vein is recognized through a matched pixel ratio (MPR). In their
study, the Laplacian kernel was used to detect the outline of a finger, and the features inside



Mathematics 2021, 9, 2613 3 of 32

the vein region within the outline were extracted using the mean curvature to extract the
ROI. For compensation of the misalignment due to in-plane rotation, which may occur
during finger-vein image acquisition when recognizing the extracted features through the
MPR, the input image was applied with an in-plane rotation of −10◦ to 10◦ in steps of 2◦

for matching for recognition. In previous studies [11,12], misalignment was corrected to a
certain extent through in-plane rotation during minutia-based alignment and finger-vein
matching, but there was no compensation for illumination.

Moreover, a similar level of performance cannot be expected when the same method is
applied to the dataset acquired from a different environment, as the fitting method for the
dataset used in the experiment is applied as a non-training-based method. Wu et al. [13]
proposed a method for performing finger-vein recognition using a support vector machine
(SVM) and adaptive neuro-fuzzy inference system (ANFIS) to overcome the drawbacks
of non-training-based methods. In their study, images were cut and resized during pre-
processing, and then features were extracted by reducing the dimension through principal
component analysis (PCA) and linear discriminant analysis. The method proposed by
Wu et al. can achieve more robust recognition compared with non-training-based methods.
However, it still has a limitation in performance improvement, as feature extraction is a non-
training-based method. Accordingly, studies are being conducted on deep-learning-based
methods where both feature extraction and recognition are performed in a training-based
manner to overcome such disadvantages. Hong et al. [5] suggested a training-based
method for performing feature extraction and recognition using a CNN-based method.
After extracting the ROI, the authors used the difference between the enrolled and target
images as input to finetune the visual geometry group (VGG) Net-16 [14]. Thus, they per-
formed feature extraction and recognition using training-based methods, which allowed
more robust recognition against environmental factors compared with previous studies.
However, the performance was substantially affected by image quality, as illumination was
not compensated.

2.2. Finger-Vein Recognition with Illumination Compensation

When acquiring images for finger-vein recognition, the illumination quality of the
images can change severely or weakly due to the difference in thicknesses of fingers, the
nonuniformity of illumination intensity, or light scattering as light passes through the skin
layer. The recognition performance can be improved through simple pixel normalization
or by using a recognition model that is robust against illumination for weak changes in
illumination intensity. Meanwhile, the recognition performance is difficult to improve
without illumination restoration in the case of severe changes in illumination intensity.
Therefore, previous studies were divided into the following two categories to be reviewed
in this study.

2.2.1. Finger-Vein Recognition with Images Including Weak Nonuniformity of Illumination

Peng et al. [15] proposed a robust finger-vein recognition method in which the Gabor
filter was used in eight directions to extract a vein pattern, and the features were extracted
through fusion using the logical AND operator for the outputs where features were ad-
equately extracted among the eight outputs. Then, the features were matched through
the scale-invariant feature transform (SIFT). The Gaussian filter was used to remove noise,
the Sobel filter was used to detect the edge region, and the ROI was extracted by resizing
the respective region. Uneven illumination was compensated by normalizing pixel values
through grayscale normalization. Van et al. [16] proposed a method in which features
were extracted through the modified finite Radon transform (MFRAT) and GridPCA, and
then the finger-vein was recognized using the Euclidean-distance-based k-nearest classifier.
In this study, the edge region was detected using the Canny edge detector, and then the
ROI was extracted by resizing the detected region. An orientation matrix was generated
by applying the MFRAT to the extracted ROI, and a discriminant feature was created by
encoding the matrix. The discriminant feature was generated in a feature with a reduced
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dimension through GridPCA, and the finger-vein was recognized using the k-nearest clas-
sifier. The advantage of the method proposed by Van et al. is that features that are robust
against illumination and in-plane rotation can be obtained, as local invariant orientation
features can be acquired through the MFRAT.

Qin et al. [17] suggested a recognition method for the fusion of finger-vein shape
feature and orientation feature. The shape feature was extracted through the curvature of
pixel difference, and the orientation feature was extracted through the difference curvature
in two directions. Then, the shape feature and orientation feature were matched using
the feature extracted through the SIFT. Then, the shape, orientation, and SIFT feature
matching scores were combined through the weighted sum rule; recognition was then
performed using the combined score as the input of an SVM. The recognition method
proposed by Qin et al. is robust against noise, affine distortion, and illumination, as shape
and orientation features are applied with fusion. Noh et al. [6] proposed a recognition
method involving the score level fusion of the texture and shape of finger-veins using a
CNN-based method. After detecting the finger region using the Sobel edge detection, the
background was removed, and in-plane rotation compensation was applied to extract the
ROI. The image was normalized through contrast-limited adaptive histogram equalization
to detect only the shape region from the extracted ROI, and then only the shape region
was extracted through repeated line tracking. The shape image was then created by
applying dilation and erosion to the detected image. Using a model with two densely
connected convolutional networks, DenseNet-161 [18], pretrained with the ImageNet
database [19], texture and shape were finetuned using the three-channel composite image,
where the enrolled and target images were mixed as input. After finetuning, the score from
each model was applied with weighted-sum-rule-based fusion for recognition. Feature
extraction and recognition were performed using the training-based method proposed by
Noh et al., and the scores of shape feature and texture feature were applied with fusion
for the recognition to be robust against image quality. The methods proposed in [6,15–17]
are all illumination compensation methods. However, pixel normalization, robust feature
extraction, and robust recognition through feature fusion have limitations in images that
are distorted to be bright or dark due to the severe nonuniformity of illumination, where
patterns are difficult to detect even after preprocessing.

2.2.2. Finger-Vein Recognition with Images Including Severe Nonuniformity
of Illumination

In finger-vein images containing severe nonuniformity of illumination, the pattern of
finger-vein shape or texture is difficult to detect even when pixels are normalized or contrast
is adjusted during preprocessing, as the image is partially or entirely distorted to be bright
or dark. The recognition performance is also poor, as a pattern is difficult to detect through
robust feature extraction or recognition. To solve this problem, Lee et al. [4] proposed a
method for enhancing image quality through hardware-based adaptive illumination when
acquiring finger-vein images. The authors acquired finger-vein images with a default
intensity and obtained an optimal image by adjusting the hardware-based illumination
until an optimal value was obtained in the image evaluation using 2D entropy. However,
this method requires additional hardware devices and cannot be used in a general finger-
vein image acquisition device. Hence, this study newly proposes a method for restoring the
severe nonuniformity of illumination based on the INF-GAN to improve the performance of
finger-vein recognition, thus overcoming the drawbacks of previously mentioned methods.
Table 1 presents the summaries of the proposed and previous studies on finger-vein
recognition with or without illumination compensation.
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Table 1. Summaries of the proposed and previous studies on finger-vein recognition with or without illumination compensation.

Category Method Advantage Disadvantage

Without
illumination compensation

Non-training-based

Minutia-based alignment and
LBP [11]

Misalignment compensation
through minutia-based

alignment Performance is affected by
illumination quality, because

there is no illumination
compensation

Mean curvature and MPR [12]
Misalignment compensation

through in-plane rotation
during finger-vein matching

Training-based
ANFIS and SVM [13] More robust recognition than

non-training-based methodsCNN with difference image [5]

With
illumination compensation

Including weak
nonuniformity
of illumination

Non-training-based Gabor filter and SIFT [15]
Illumination compensation

through grayscale
normalization

Recognition performance is
difficult to improve in the

case of severe nonuniformity
of illuminationTraining-based

MFRAT, GridPCA, and k-nearest
classifier [16]

Robust feature extraction
through MFRAT

Shape feature and orientation
feature fusion [17]

Robust recognition through
score-level feature fusionCNN with shape feature and

texture feature using composite
image and score level fusion [6]

Including severe
nonuniformity
of illumination

Hardware-based Hardware-based adaptive
illumination [4]

Solves the problem of severe
nonuniformity
of illumination

Requires additional hardware
devices and cannot be used in

general finger-vein image
acquisition devices

Software-based
(training-based)

INF-GAN-based illumination
compensation

(Proposed method)

Does not require additional
hardware devices and can be
used in general finger-vein
image acquisition devices

Requires additional
procedure of training of

INF-GAN,
including RIGB
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3. Proposed Methods
3.1. Overview of the Proposed Method

Figure 1 shows the overall procedure of the proposed method. After obtaining finger-
vein images, the finger ROI is detected through preprocessing. Using the INF-GAN
proposed in this study, nonuniform illumination is restored. Then, a composite image
is generated to be used as input for the CNN, and the final matching score is obtained
through shift matching to perform finger-vein recognition.

Figure 1. Overall procedure of the proposed method.

3.2. Preprocessing

The preprocessing shown in Figure 2 was performed to extract the finger ROI in a
finger-vein image. For the input image shown in Figure 2a, image binarization using
fixed threshold of 127 was performed to obtain the image shown in Figure 2b. That is,
for the input image, a pixel value higher than (or the same as) 127 becomes 255 (white)
and those lower than 127 becomes 0 (black). As shown in Figure 2c, an edge-map image
is obtained by applying the Sobel edge detector to the original input image of Figure 2a.
Then, a difference image is obtained as shown in Figure 2d, by subtracting the resulting
edge-map image of Figure 2c from the binarized image of Figure 2b. In this case, 0 (black)
is assigned to the pixel value of difference image if the subtracted value is less than 0.
Then, with the difference image of Figure 2d, local binarization based on 25 × 25 window
(binarization threshold is set as the Gaussian average value of pixels of difference image
within 25 × 25 window) is performed as area thresholding, which produces the resulting
image of Figure 2e. With Figure 2e, contour extraction is performed as shown in Figure 2f.
As shown in Figure 2f, finger area is separated from background, and only the finger
region is extracted as shown in Figure 2g by component labeling, size filtering based on
the selection of largest isolated area, hole filling, and morphological erosion.
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Figure 2. Examples of preprocessing: (a) Input image, (b) binarized image, (c) edge-map image, (d) difference image
between the binarized and edge-map images, (e) resulting image by area thresholding with (d), (f) resulting image by
contour extraction with (e), (g) mask image after component labeling, size filtering, hole filling, and morphological erosion
with (f), (h) mask image after rotational alignment with (g), (i) mask image of the ROI with (h), and (j) finger-vein ROI image.

After obtaining the mask image, an in-plane rotation compensation method [20] was
used for the rotational alignment of the finger image. Equation (1) was then used to
determine the normalized second-order moments using the mask image.

β11 =
∑(x,y)∈R

(
y− gy

)2 I(x, y)

∑(x,y)∈R I(x, y)
, β12 =

∑(x,y)∈R
(
y− gy

)
(x− gx)I(x, y)

∑(x,y)∈R I(x, y)
, β22 =

∑(x,y)∈R(x− gx)
2 I(x, y)

∑(x,y)∈R I(x, y)
(1)

Here, I(x, y) and (gx, gy) refer to the pixel value and the position of the center of the
mask image, respectively. Using the value obtained from Equation (1), the angle value
was calculated in Equation (2). Subsequently, the image in Figure 2h, to which rotational
alignment was applied, was obtained.

θ =


tan−1

{
β11−β22+

√
(β11−β22)

2+4β2
12

−2β12

}
i f β11 > β22

tan−1

{
−2β12

β22−β11+
√
(β22−β11)

2+4β2
12

}
i f β11 ≤ β22

(2)

The ROI was extracted after performing rotational alignment using the mask image.
As shown in Figure 2a, the vein pattern cannot be easily observed in the left and right sides
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of the image due to the fingernail or the thickness of the finger. Therefore, both sides of the
image were cut. After cutting the image, a 4 × 20 filter was used to correct the excessively
cut part of the image to create the final ROI. Figure 2i shows the mask image of the ROI,
and Figure 2j shows the finger-vein image of the ROI.

3.3. Restoration of Nonuniform Illumination by INF-GAN

The performance of a recognition model is significantly reduced if the finger-vein
image is transformed to be bright or dark due to severe nonuniform illumination. Features
are difficult to find after image transformation due to illumination; thus, the performance
cannot be improved through simple preprocessing, such as grayscale normalization or
the robust training of a recognition model. Therefore, this study aims to improve the
performance against severe nonuniform illumination through image restoration using the
newly proposed INF-GAN. The Pix2Pix-HD model [21] was used as a baseline model
of the INF-GAN. Pix2Pix-HD is used for obtaining high-resolution images, but it uses a
ResNet generator, unlike the conventional image-to-image translation model. Features
are extracted from multiple layers of a discriminator, thus generating more photorealis-
tic images using a feature matching loss. In Pix2Pix-HD, two generators and multiple
discriminators are used to obtain high-resolution images. However, this study aims to
obtain nonuniform illumination restoration instead of obtaining high-resolution images.
Thus, one ResNet generator and one discriminator are used in the proposed method. The
Pix2Pix-HD model concatenates the instance map containing the image boundary informa-
tion onto the input image, and generates an output image where the object boundary does
not collapse by distinguishing the boundary between objects during training. This study
newly proposes an RIGB and applies the concatenation of a residual image containing
image texture information onto the input image, thus correcting the texture information
that has weakened owing to the transformation of the image to be bright or dark.

3.3.1. Generator of INF-GAN

A ResNet generator is the generator using a residual block in the study by He et al. [22],
which can easily train a very deep network where an image can be concentrated on major
features to be transformed, thus exhibiting an excellent performance in an image-to-image
translation network. However, for severe nonuniform illumination, illumination restoration
is difficult, as the skin region and vein region of the finger-vein image become difficult
to discern as the image becomes distorted. Using the RIGB proposed in this study, a
residual image that evidently shows the vein texture of the input image was used. In this
study, a ResNet generator consisting of one RIGB, two 2D convolutional layer blocks, four
downsampling blocks, nine residual blocks, and four upsampling blocks was used. In
the ResNet generator, a 2D convolutional layer, instance normalization [23], and rectified
linear unit (ReLU) activation [24] were used. Table 2 presents the detailed architecture of
the ResNet generator used in this study. The detailed architecture of the RIGB in Table 2 is
presented in Table 3.

To restore distorted vein texture in this study, a one-channel residual image containing
vein texture characteristics was generated from the input image, with a reduced quality
due to severe nonuniform illumination, using the RIGB consisting of a 2D Conv block and
residual block, as shown in Table 3. This residual image was then concatenated onto the
input of the ResNet generator, as shown in Figure 3a. Two residual blocks were used in the
RIGB to create a residual image. The vein texture of an image becomes more evident as a
greater number of residual blocks are connected. However, only two residual blocks were
used in this study, as the edge sharpness of the vein was weakened.
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Table 2. Structure of the generator.

Layer
Filter

(Number of Filters, Size, Stride)
(Number of Blocks)

Padding Input Output

Input layer 224 × 224 × 3 224 × 224 × 3

RIGB

64, 3 × 3 × 3, 1 (1)
64, 1 × 1 × 64, 1 (2)
64, 3 × 3 × 64, 1 (3)
1, 1 × 1 × 64, 1 (1)

224 × 224 × 3
224 × 224 × 4
(Channel-wise
concatenation)

Conv block 1 64, 7 × 7 × 4,1 3 × 3 224 × 224 × 4 224 × 224 × 64

Downsampling 1 128, 3 × 3 × 64, 2 1 × 1 224 × 224 × 64 112 × 112 × 128

Downsampling 2 256, 3 × 3 × 128, 2 1 × 1 112 × 112 × 128 56 × 56 × 256

Downsampling 3 512, 3 × 3 × 256, 2 1 × 1 56 × 56 × 256 28 × 28 × 512

Downsampling 4 1024, 3 × 3 × 512, 2 1 × 1 28 × 28 × 512 14 × 14 × 1024

Residual blocks (9) 1024, 3 × 3 × 1024, 1 1 × 1 14 × 14 × 1024 14 × 14 × 1024

Upsampling 1 512, 3 × 3 × 1024, 2 1 × 1 14 × 14 × 1024 28 × 28 × 512

Upsampling 2 256, 3 × 3 × 512, 2 1 × 1 28 × 28 × 512 56 × 56 × 256

Upsampling 3 128, 3 × 3 × 256, 2 1 × 1 56 × 56 × 256 112 × 112 × 128

Upsampling 4 64, 3 × 3 × 128, 2 1 × 1 112 × 112 × 128 224 × 224 × 64

Conv block 2 3, 7 × 7 × 64, 1 3 × 3 224 × 224 × 64 224 × 224 × 3

Conv block consists of 2D convolutional layer-instance normalization ReLU. Downsampling is configured identically as Conv block,
whereas upsampling consists of a 2D transposed convolutional layer. A residual block is configured as 2D convolutional layer-instance
normalization-ReLU-2D convolutional layer-instance normalization-residual connection.

Table 3. Structure of the RIGB.

Layer
Filter

(Number of Filters,
Size, Stride)

Padding Input Output

Input layer 224 × 224 × 3 224 × 224 × 3

Conv block 1 64, 3 × 3 × 3, 1 1 × 1 224 × 224 × 3 224 × 224 × 64

Conv block 2 64, 1 × 1 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 64

Residual block 1 64, 3 × 3 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 64

Conv block 3 64, 3 × 3 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 64

Conv block 4 64, 1 × 1 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 64

Residual block 2 64, 3 × 3 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 64

Conv 1 1, 1 × 1 × 64, 1 1 × 1 224 × 224 × 64 224 × 224 × 1

Conv block consists of 2D convolutional-layer instance-normalization leaky ReLU (negative slope = 0.3), whereas the residual block is
configured as 2D convolutional layer-instance normalization-ReLU-2D convolutional layer-instance normalization-residual connection.
Conv indicates one 2D convolutional layer.

3.3.2. Discriminator of INF-GAN

The PatchGAN discriminator [25] classifies whether an N × N patch is real or fake.
PatchGAN computes at the unit of an image patch. Thus, it is fast and exhibits an excellent
performance in the image-to-image translation network by training features in a local
region by discriminating parts of an image, instead of an entire image. In this study, a
70 × 70 PatchGAN consisting of five convolutional layers, as shown in Figure 4, was used.
A seven-channel input was used for the discriminator, as the number of input image
channels of the generator is four, whereas the number of target (or restoration image)
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channels is three. Table 4 presents the detailed architecture of the PatchGAN discriminator
used in this study.

Figure 3. Network architecture of the INF-GAN. (a) ResNet generator and (b) RIGB.

Figure 4. Network architecture of the discriminator.
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Table 4. Structure of the discriminator.

Layer
Filter

(Number of Filters,
Size, Stride)

Padding Input Output

Input layer
224 × 224 × 4
224 × 224 × 3

(channel-wise concatenation)
224 × 224 × 7

Conv block 1 * 64, 4 × 4 × 7, 2 2 × 2 224 × 224 × 7 113 × 113 × 64

Conv block 2 ** 128, 4 × 4 × 64, 2 2 × 2 113 × 113 × 64 57 × 57 × 128

Conv block 3 ** 256, 4 × 4 × 128, 2 2 × 2 57 × 57 × 128 29 × 29 × 256

Conv block 4 ** 512, 4 × 4 × 256, 1 2 × 2 29 × 29 × 256 30 × 30 × 512

Conv block 5 *** 1, 4 × 4 × 512, 1 2 × 2 30 × 30 × 512 31 × 31 × 1

* consists of 2D convolutional-layer leaky ReLU (negative slope = 0.2), whereas ** consists of 2D convolutional-layer instance-normalization
leaky ReLU (negative slope = 0.2). *** consists of 2D convolutional-layer 2D average pooling.

3.3.3. Loss Function of INF-GAN

In this study, adversarial loss was used for training the INF-GAN in addition to feature
matching loss [26] and perceptual loss [27]. The goal of the generator when using a GAN is
to generate an image that is difficult to discriminate using the discriminator. Conversely,
the goal of the discriminator is to distinguish the output of the generator from the actual
target image. The goal of training a GAN is to induce the generator and discriminator to
achieve Nash equilibrium by having them compete against each other using the adversarial
loss [28]. However, both the generator and discriminator attempt to reduce their own
loss, which thus cannot lead to an ideal convergence, and overtraining may occur as the
discriminator tends to be trained relatively faster. In detail, as shown in Figure 3a, a
generator usually tries to produce the whole image which is similar to the ground-truth
(target) image, whereas a discriminator usually tries to only classify real (target) and fake
(produced) images during the training procedure, as shown in Figure 4. Therefore, the task
of the discriminator is relatively simpler compared with that of the generator, which causes
the discriminator to be trained faster than the generator. Therefore, although the training
of the discriminator is accomplished (low-value of training loss), further training proceeds
because the training of generator is not accomplished (high-value of training loss). This
procedure of further training causes the overtraining of discriminator.

To prevent the overtraining by the discriminator, the feature matching loss is used in
our discriminator, which is calculated from the extracted feature sets through the discrimi-
nator from the produced output (fake) and target (real) image, and the difference between
the extracted feature sets is reflected as the loss. In this study, the feature matching loss
was calculated using the feature sets extracted from four layers: Conv blocks one–four, in
Table 4. By using this feature matching loss, we can make the training convergence of the
discriminator more difficult, which causes the reduction of training speed of the discrimi-
nator compared to that of the generator, and consequently prevents the overtraining of the
discriminator. Equations (3) and (4) express the adversarial loss and feature matching loss
used in this study, respectively.

min
G

max
D

LGAN(G, D) = E(x,y)[log D(x, y)] +Ex[log(1− D(x, G(x))] (3)

LFM(G, D) = E(x,y)

T

∑
l=1

E(x,y)

T

∑
l=1

1
Nl

[∣∣∣∣∣∣DFl(x, y)− DFl(x, G(x))
∣∣∣∣∣∣

1

]
(4)

Here, G and D in Equations (3) and (4) represent the generator and discriminator,
respectively; x is the four-channel input image where the residual image has been concate-
nated in a channel-wise manner, and y is the target image. In Equation (4), T is the total
number of layers from which feature sets are extracted, Nl is the feature-set size obtained
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from the lth layer of the discriminator, and DFl is the feature set obtained from the lth layer
of the discriminator.

Perceptual loss is similar to feature matching loss, but it extracts feature sets from a
specific layer using the pretrained CNN model, unlike feature matching loss. As a method
for calculating the feature loss extracted from the generator’s output and target image, the
perceptual loss was used for style transfer or for image-to-image translation [21,27]. The
VGG Net-19 model pretrained with the ImageNet database was used as the pretrained
model for perceptual loss. Equation (5) expresses the perceptual loss used in this study.

LP(V, G) = E(x,y)

T

∑
l=1

1
Ml [|

∣∣∣V l(y)−V l(G(x))
∣∣∣|1] (5)

Here, V l is the feature set obtained from the lth layer of the VGG Net-19 pretrained
with the ImageNet database, whereas G denotes the generator. Moreover, x and y in this
equation are identical to the x and y used in Equations (3) and (4); in VGG Net-19, feature
sets are extracted from T number of layers, as in Equation (4). Furthermore, Ml is the
feature-set size obtained from the lth layer. The final loss equation can be expressed as
follows by combining Equations (3)–(5).

min
G

(max
D

LGAN(G, D) + λ1LFM(G, D) + λ2Lp(V, G)) (6)

3.4. Differences between the Proposed INF-GAN and Pix2Pix-HD

The difference between the Pix2Pix-HD model and the proposed INF-GAN can be
summarized as follows:

- The generator of the Pix2Pix-HD was configured with a global generator, which is a
ResNet generator, and a multiresolution pipeline as an additional local generator to
transform low-resolution images into high-resolution images. The INF-GAN proposed
in this study only used the ResNet generator, as it is a translation of nonuniform
illumination to the uniform illumination of the images with an identical resolution.

- Pix2Pix-HD used three multiscale discriminators to use three PatchGAN discriminators with
different receptive field sizes, whereas the INF-GAN used one PatchGAN discriminator.

- Pix2Pix-HD used a one-channel instance map containing the boundary region infor-
mation of an object to ensure objects are distinguished for translation. In contrast,
the newly proposed RIGB was used in the INF-GAN to highlight the vein texture
of images distorted by severe nonuniformity of illumination. In the INF-GAN, a
one-channel residual image containing the vein texture information was generated to
be concatenated onto the input, thus improving the restoration performance.

- Pix2Pix-HD used a feature encoder network to generate images of various styles
to obtain output diversity. In contrast, the INF-GAN did not use a feature encoder
network, as it focused on an accurate restoration of nonuniform illumination rather
than output diversity.

3.5. Generation of Composite Image and Recognition by DenseNet-161 with Shift Matching

A composite image is created through the composition of enrolled and input im-
ages. When authentic and imposter matching is performed using a composite image,
training is more robust against noise [6] compared with a difference image matching
method [7]. A composite image consists of a 224 × 224 enrolled image in the first channel,
a 224 × 224 input image in the second channel, and a 224 × 224 image created by vertically
concatenating the enrolled and input images that have been vertically squeezed into a size
of 224 × 112, where three images are applied with channel-wise concatenation. Figure 5
shows the example of a three-channel composite image.
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Figure 5. Example of a three-channel composite image.

DenseNet-161 [6,7,18] was used in this study to recognize finger-vein images. The
growth rate of the DenseNet-161 model was set to 32, and the weights pretrained with
the ImageNet database were used. While 1000 vectors are output in the last output layer
of the original DenseNet-161, DenseNet-161 in this study was trained by revising the
output nodes of the fully connected layer to output two vectors, as it had been determined
whether the enrolled and input images were same-class images (genuine matching) or
different-class images (imposter matching). The Conv block, dense block, and transition
block of DenseNet-161 are all orderly configured with batch normalization [29], ReLU, and
a convolutional layer. The detailed structure of DenseNet-161 is shown in Table 5.

Table 5. Structure of DenseNet-161.

Layer
Filter

(Number of Filters,
Size, Stride)

Padding Input Output

Input layer 224 × 224 × 3 224 × 224 × 3

Conv block 96, 7 × 7 × 3, 2 3 × 3 224 × 224 × 3 112 × 112 × 96

Max Pooling 96, 3 × 3 × 96, 2 1 × 1 112 × 112 × 96 56 × 56 × 96

Dense Block 1
6 × 192, 1 × 1 × 96, 1

56 × 56 × 96 56 × 56 × 3846 × 48, 3 × 3 × 192, 1 1 × 1

Transition Block 1 192, 1 × 1 × 384, 1
192, 2 × 2 × 192, 2 56 × 56 × 384 28 × 28 × 192

Dense Block 2
12 × 192, 1 × 1 × 192, 1

28 × 28 × 192 28 × 28 × 76812 × 48, 3 × 3 × 48, 1 1 × 1

Transition Block 2 384, 1 × 1 × 768, 1
384, 2 × 2 × 384, 2 28 × 28 × 768 14 × 14 × 384

Dense Block 3
36 × 192, 1 × 1 × 384, 1

14 × 14 × 384 14 × 14 × 211236 × 48, 3 × 3 × 192, 1 1 × 1

Transition Block 3 1056, 1 × 1 × 2112, 1
1056, 2 × 2 × 1056, 2 14 × 14 × 2112 7 × 7 × 1056

Dense Block 4
24 × 192, 1 × 1 × 1056, 1

7 × 7 × 1056 7 × 7 × 220824 × 48, 3 × 3 × 192, 1 1 × 1

Global average pooling 2208, 7 × 7 × 2208, 1 7 × 7 × 2208 1 × 1 × 2208

Fully connected layer 1 × 1 × 2208 1 × 1 × 2

The dense block has two different 2D convolutional filters. The transition block has a convolutional filter and average pooling filter.
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DenseNet exhibits an excellent performance in finger-vein recognition tasks, as low-
level features are efficiently delivered using the dense block even when the network
is deep [6,7]. During final recognition, shift matching was used based on eight-way
translation (up, down, left, right, diagonal to left-up, diagonal to left-down, diagonal to
right-up, and diagonal right-down) by five pixels (left-right) and three pixels (up-down) [6].
Shift matching shifts the input image to match with the enrolled image, thus preventing
a reduction in the recognition performance due to misalignment between the input and
enrolled images. When recognition is performed using a composite image, the spatial
difference between the enrolled and input images included in each channel is used for
recognition. If there is misalignment between the input and enrolled images, the recognition
performance is degraded due to increased spatial difference. Hence, shifting matching was
applied in this study.

The output class of DenseNet-161 was set to two classes: genuine matching and
imposter matching. Genuine matching refers to the case where enrolled and recognized
finger-vein images are of the same class data, whereas imposter matching refers to the
case where enrolled and recognized finger-vein images are of different class data. Genuine
matching or imposter matching is determined based on the output score obtained from
the last layer of DenseNet-161. It is determined as genuine matching when the CNN
output score of the testing data is less than the threshold determined based on the genuine
matching distribution of the output score obtained from the training data and the equal
error rate (EER) of the imposter matching distribution. Otherwise, it is determined as
imposter matching if the CNN output score of the testing data is greater than the threshold.
EER is the error rate at the point when the false acceptance rate (FAR), which is the
error rate of incorrectly accepting imposter data as genuine data, becomes identical to the
false rejection rate (FRR), which is the error rate of incorrectly rejecting genuine data as
imposter data.

4. Experimental Results and Analysis
4.1. Dataset and Experimental Environments

In this study, experiments were conducted using the session one images of the Hong
Kong Polytechnic University finger image database version one (HKPU-DB) [20] and the
Shandong University homologous multimodal traits finger-vein database (SDUMLA-HMT-
DB) [30], which are open databases. For convenience, the SDUMLA-HMT-DB is referred
to as SDU-DB in this paper. There are other open databases such as MMCBNU_6000 [31]
and THU-FVFDT1 [32]. However, because the nonuniformity of illumination of finger-
vein images in MMCBNU_6000 is not severe, it is not appropriate for our experiments of
finger-vein recognition considering severe nonuniformity of illumination. Although THU-
FVFDT1 includes the images of nonuniform illumination, the HKPU-DB and SDUMLA-
HMT-DB used in our experiments have been most widely adopted for experiments in
previous research on finger-vein recognition [5–7,9,16,20]. Therefore, we used these two
open databases for experiments.

As shown in Table 6, six images of index and middle fingers each were obtained from
156 individuals for session one for a total of 1,872 images (156 people × two fingers × six
images) for the HKPU-DB. Furthermore, for the SDU-DB, six images of index, middle, and
ring fingers each were obtained from 106 individuals for a total of 3816 images (106 people
× two hands × three fingers × six images).

Table 6. Summary of the experimental databases.

Database People Hands Fingers Classes Images
Augmented Images

INF-GAN
Training

DenseNet-161
Training

HKPU-DB 156 1 2 312 1872 2600 9360

SDU-DB 106 2 3 636 3816 4580 19,080
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In this study, the classes of the HKPU-DB and SDU-DB were divided into half to
perform training and testing for twofold cross-validation. It was ensured that the same
class data were not used for training and testing (open-world setting). For example,
156 classes of data were used for training in the first fold validation for the HKPU-DB,
whereas the remaining 156 classes of data were used for testing. In the second fold
validation, the training and testing data used during the first fold validation were switched
for the experiment; the average value of the two testing accuracies was determined as the
final testing accuracy. A similar operation was performed with the SDU-DB.

Furthermore, to facilitate model training and prevent overfitting due to insufficient
training data, data augmentation was applied for the training data of the two open
databases, as shown in Table 6. Specifically, images that are five times the size of the
original images were generated by applying five-pixel and three-pixel translation and crop-
ping in the vertical and horizontal directions. The original images that were not augmented
were used as the testing data.

The computing environment of this study is a desktop computer equipped with
Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz with 16 GB RAM and NVIDIA GeForce GTX
1070 (1920 compute unified device architecture (CUDA) cores) graphic processing unit
(GPU) card with a graphics memory of 8 GB [33]. Compute unified device architecture
(CUDA) (version 10.2) and CUDA deep neural network library (cuDNN) (version 7.6.5)
environments were used; the algorithms and models were implemented using OpenCV
(version 4.4.0), PyCharm, and PyTorch (version 1.7.0) [34].

4.2. Generation of the Nonuniform Illumination Dataset

The quality of the finger-vein images may vary depending on the intensity of NIR
illumination. Due to the intensity of NIR illumination and finger thickness, the finger region
may be saturated quite brightly or a nonuniformly illuminated image that is too dark may
be obtained, as shown in Figure 6, which reduces the recognition accuracy. The following
method was used in this study to generate images containing nonuniform illumination from
the images of the HKPU-DB and SDU-DB. First, based on Equation (7) [35–37], extremely
dark and bright images were generated by nonlinearly transforming the intensity signal
of light through a nonlinear transfer function using gamma correction. A Gaussian blur
was also applied, as the vein pattern may become blurry when the images are transformed
to be bright or dark. Unlike the case in Figure 6, the overall brightness of an image is
changed when gamma correction is simply applied; thus, image contrast was adjusted
using Equation (8).

Y0 = BG
(
C·(I)γ)+ NG + NP (7)

Y1 = 2YM −Y0 (8)

Figure 6. Examples of original images with nonuniform illumination from (a) HKPU-DB and (b) SDU-DB.

In Equations (7) and (8), I is the two-dimensional finger-vein image pixel value in
grayscale, whereas C and γ are gamma correction parameters. BG is the Gaussian blur
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function for which a 3 × 3 kernel was used in this study, and the standard deviation value
was 0.8. Further, NG is the Gaussian noise, and NP is the Poisson noise. The contrast was
adjusted from Y0 in Equation (7), and the nonuniform illumination image Y1 was finally
generated, as shown in Figure 7. Here, YM is the average pixel value of Y0, and γ and C
values were applied differently to the HKPU-DB and SDU-DB for brightly adjusted and
darkly adjusted cases, respectively. To generate a bright image for the HKPU-DB, γ = 2.5
and C = 1 were applied; to generate a dark image, γ = 2 and C = 0.3 were applied.
Moreover, γ = 2.5 and C = 1 were applied for generating a bright image for the SDU-DB,
whereas γ = 2.5 and C = 0.2 were applied to generate a dark image.

Figure 7. Examples of original images with normal illumination (left) and generated images with
nonuniform illumination (middle and right) from (a) HKPU-DB and (b) SDU-DB.

Equations (7) and (8) were applied to the HKPU-DB and SDU-DB divided twofold
to examine how the performance is affected by the changes in illumination. These equa-
tions were randomly applied to 936 images out of 1872 images in the HKPU-DB and
1908 images out of 3816 images in the SDU-DB for conducting an experiment to com-
pare the performance with that of the original image during testing and to measure the
restoration performance.

4.3. Training of INF-GAN

The training data used for training the INF-GAN were selected by comparing the
average pixel distribution of the original image and the average pixel distribution of the
illumination-adjusted image. As shown in Table 6, 1040 images were randomly selected in
the HKPU-DB among the images with the average pixel value of less than 50 or greater
than 160, and half of 5200 images generated based on the data augmentation method
described in Section 4.1, or 2600 images, were used in the training set. For the SDU-DB,
1832 images were randomly selected among the images with the average pixel distribution
of less than 50 or greater than 120, and half of the 9160 images generated based on the data
augmentation method described in Section 4.1, or 4580 images, were used in the training
set. All the experiments were conducted as twofold cross-validation.

The hyperparameters had a learning rate of 0.0002, a batch size of 1, and 90 epochs
during the INF-GAN training. An adaptive moment estimation (ADAM) optimizer [38]
was used, where the first and second moment estimates were set to be 0.9 and 0.99,
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respectively, for the training. Using the training data, the optimal hyperparameters were
determined as the values when the best accuracies of finger-vein recognition were obtained.
Figure 8 shows the training loss graphs of the generator and discriminator with the HKPU-
DB and SDU-DB. As shown in Figure 8, the INF-GAN was sufficiently trained with the
training data.

Figure 8. Training loss graphs of the INF-GAN. Training loss curves of the generator and discriminator with the (a) HKPU-
DB and (b) SDU-DB.

4.4. Training of the CNN Model for Finger-Vein Recognition

The DenseNet-161 was trained for finger-vein recognition in two classes: authentic
matching and imposter matching. With respect to the number of augmented images in
Table 6, the number of authentic matching cases in HKPU-DB was 140,400, whereas that of
imposter matching cases was 21,762,000, creating a substantial imbalance between the two
classes. Therefore, imposter cases were trained through undersampling to correspond to
authentic cases for both the databases. Additionally, 90% of the data was used as training
data and the remaining 10% was used as validation data. The hyperparameters had a
learning rate of 0.0001, a batch size of four, and four epochs during the training of the
DenseNet-161. The Adam optimizer [38] was used, where the first and second moment
estimates were set to be 0.9 and 0.99, respectively, for the training. Using the training data,
the optimal hyperparameters were determined as the values when the best accuracies of
finger-vein recognition were obtained. Figures 9 and 10, respectively show the training loss
and accuracy graphs and the validation loss and accuracy graphs of DenseNet-161 with
the HKPU-DB and SDU-DB. As shown in Figures 9 and 10, DenseNet-161 was sufficiently
trained with the training data.
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Figure 9. Training loss and accuracy graphs of the DenseNet-161 with (a) HKPU-DB and (b) SDU-DB.

Figure 10. Validation loss and accuracy graphs of DenseNet-161 with (a) HKPU-DB and (b) SDU-DB.

4.5. Testing of the Proposed Method
4.5.1. Ablation Study

As the first ablation study, the performance was compared with respect to the number
of residual blocks in the RIGB in Table 3. Figure 11 shows the result images; when two
residual blocks were used, as shown in Figure 11c, more fine textures of the vein pattern
were observed than when one residual block was used, as shown in Figure 11b.

Figure 11. Examples of residual images generated by the RIGB. (a) Input finger-vein image and
generated residual images by using (b) one residual block in the RIGB and (c) two residual blocks in
the RIGB.
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Table 7 shows the comparison of the finger-vein recognition accuracies according to the
number of residual blocks in the RIGB. Here, the EER of finger-vein recognition described
in Section 3.5 was used as the performance evaluation metric. As shown in Table 7, using
two residual blocks resulted in more accurate finger-vein recognition than using other
numbers of residual blocks for the HKPU-DB. In contrast, using one residual block resulted
in more accurate finger-vein recognition than using other numbers of residual blocks for
the SDU-DB. As the image quality of the SDU-DB is poorer than that of the HKPU-DB, the
high-frequency information of features before passing through the convolutional layer is
preserved more when two residual blocks are used, while also generating more noise, thus
reducing the accuracy of finger-vein recognition.

Table 7. Comparisons of finger-vein recognition accuracies according to the number of residual
blocks in the RIGB (unit: %).

Number of Residual Blocks
EER

HKPU-DB SDU-DB

1 4.78 2.95

2 1.65 3.17

3 3.09 5.55

4 3.82 5.61

Table 8 shows the comparison of the finger-vein recognition accuracies when the
RIGB was used and when the RIGB was not used. As shown in Table 8, the finger-vein
recognition accuracy was higher when the RIGB was used compared with when the RIGB
was not used.

Table 8. Comparisons of finger-vein recognition accuracies with or without the RIGB (unit: %).

Method
EER

HKPU-DB SDU-DB

Without RIGB 4.87 5.83

With RIGB 1.65 3.17

4.5.2. Comparison of Distribution of Generated Images by INF-GAN and Original Images

In this section, various methods (proposed INF-GAN, Pix2Pix [39], CycleGAN [40],
Pix2Pix-HD [21], attention-guided image-to-image translation GAN [41], and Enlighten-
GAN [42]) were used to compare the distributions of the average pixel value of the restored
images and the distributions of the average pixel value of the original images, as shown
in Figure 12. The experiment results showed that the distributions of the average pixel
value by the INF-GAN (Figure 12c), Pix2Pix (Figure 12d), and Pix2Pix-HD (Figure 12f)
were similar to the average pixel distribution (Figure 12a) of the original image.

For the next experiment, the similarity between the distributions of the average pixel
value of the original image and the distributions of the average pixel value of the images
restored by various methods in Figure 12 was quantitatively compared using d-prime
(d′) [43], Wasserstein distance [44], and Fréchet inception distance (FID) [45], as shown
in Table 9.

d′ =
|µs − µn|√
1
2 (σ

2
s + σ2

n)
(9)

WDp(P, Q) =

(
in f

π∈Γ(P,Q)

∫
Rd×Rd

|X−Y|pdπ

)1/p

(10)
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FID =
∣∣µx − µy

∣∣2 + Tr

(
∑
x
+∑

y
−2 ∑

x
∑
y

)
(11)

d′ was calculated through mean µs, µn and standard deviation σs, σn calculated from two
distributions as in Equation (9). Equation (10) is Wasserstein distance and is calculated
through combined probability distribution Γ(P, Q) for the two probability distributions
P and Q, marginal probability distribution Rd ×Rd, Random variables X and Y in each
probability distribution, and dπ which is the joint probability for random variables X and Y.
The inf in Equation (10) is infimum, meaning the greatest lower bound, and through this, the
value estimated with the smallest expected value for the distance between random variables
X and Y among all joint probability distributions Γ(P, Q) is divided into two distributions.
Equation (11) is Fréchet inception distance and is calculated through mean µx, µy and
covariance matrix ∑x, ∑y and Tr which is the diagonal sum function, by using 2048
size feature x, y extracted through Inception-v3 which is pretrained using the ImageNet
database. Unlike the results in Figure 12, the similarity between the original image and the
images generated with the INF-GAN was relatively lower than that of the other methods.
In the case of d′, simple mean and standard deviation are used for computation under the
assumption that the distribution follows a Gaussian distribution [43]. The Wasserstein
distance, which is the earth mover’s distance for calculating the cost required for ensuring
two distributions to be identical by moving the distribution, also cannot accurately reflect
the similarity between two distributions because from the point of view of cumulative
distribution, the frequency of individual variables cannot be reflected [44]. The FID is
a feature-based distance extracted from the image that is input into Inception-v3 [46],
pretrained with the ImageNet database, thus showing a difference from the average pixel
distribution of the image [45].

Figure 12. Cont.
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Figure 12. Distribution of the average pixel value of the (a) original image, (b) nonuniformly
illuminated image, and images restored by the (c) INF-GAN, (d) Pix2Pix, (e) CycleGAN, (f) Pix2Pix-
HD, (g) attention-guided image-to-image translation GAN, and (h) EnlightenGAN.

Table 9. Comparisons of the d′ value, Wasserstein distance, and FID between the original and nonuniformly illuminated
images in addition to those between the original and restored images by various methods.

Database Metric Nonuniform
Illumination Pix2Pix [39] CycleGAN

[40]
Pix2Pix-HD

[21]

Attention-Guided
Image-to-Image

Translation GAN [41]

EnlightenGAN
[42] INF-GAN

HKPU-DB

d′ 0.0689 0.0624 0.0489 0.1455 0.0841 0.0775 0.2482

Wasserstein
distance 21.154 6.8135 10.705 6.63 20.03 16.734 10.728

FID 7.93 8.44 28.8 2.89 5.92 4.72 4.82

SDU-DB

d′ 0.191 0.502 0.031 0.215 0.030 0.490 0.171

Wasserstein
distance 24.314 10.774 2.83 4.25 11.77 19.53 3.545

FID 4.61 6.48 4.18 2.03 9.33 3.81 3.37

As shown in Table 9, the INF-GAN produced slightly poorer results compared with
the other methods from the perspective of the similarity between the original image and
the generated image, but in Figure 13, the similarity of the generated image compared
to the original image was high. This is because of the characteristics described above
for d′, Wasserstein distance, and FID used in Table 9. In the case of d′, the average pixel
value distribution does not follows a Gaussian distribution, and in the case of Wasserstein
distance, the metric does not reflect the difference in frequency of individual variables from
the point of view of cumulative distribution. In addition, in the case of FID, it can differ from
average pixel value distribution because it is a distribution comparison method through
feature. However, this study focused on improving the finger-vein recognition accuracy,
rather than the quality of the generated image. Therefore, the results were compared from
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the perspective of finger-vein recognition accuracy in the following subsection. Figure 13
shows the examples of the original image, nonuniformly illuminated image, and images
generated using various methods.

Figure 13. Examples of the (a) original image, (b) nonuniformly illuminated image, and images restored by the (c) INF-GAN,
(d) Pix2Pix, © CycleGAN, (f) Pix2Pix-HD, (g) attention-guided image-to-image translation GAN, and (h) EnlightenGAN.

4.5.3. Comparisons of Finger-Vein Recognition Accuracies by the Proposed Method

Figure 14 shows the original images, nonuniformly illuminated images, residual im-
ages generated by the RIGB, and images restored by the INF-GAN. As shown in Figure 14,
the INF-GAN restored even a low-quality image with nonuniform illumination so that it is
closer to the original image.

Figure 14. Examples of (a) original images, (b) nonuniformly illuminated images, (c) residual images generated by the
RIGB, and (d) images restored by the INF-GAN. The first row is an example of restoration of a relatively brightened images
and the second row is an example of restoration of a relatively darkened images due to nonuniform illumination.
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In Table 10, the EERs of finger-vein recognition were computed when the original
images and nonuniformly illuminated images were used for the baseline performance.
The EERs of finger-vein recognition were also computed for the cases where the images
restored by the INF-GAN were used. Figure 15 shows the receiver-operating characteristic
(ROC) curves of each case. The x-axis of the ROC curve is the FAR, whereas the y-axis
is the genuine acceptance rate (GAR) (100−FRR (%)) where the graph is placed more
toward the top left as the accuracy is higher. As shown in Table 10 and Figure 15, the
finger-vein recognition accuracies were lower when the images restored by the INF-GAN
were used compared with when the original images were used. However, the finger-vein
recognition accuracies were considerably improved compared with when the nonuniformly
illuminated images were used.

Table 10. Comparisons of EER of finger-vein recognition with the original images, nonuniformly
illuminated images, and images restored by the INF-GAN (unit: %).

Database Original Image Nonuniformly
Illuminated Image

Restored Image by
INF-GAN

HKPU-DB 0.37 16.23 1.65

SDU-DB 1.65 19.3 3.17

Figure 15. ROC curves of finger-vein recognition with the original images (blue lines), nonuniformly illuminated images
(red lines), and images restored by the INF-GAN (green lines) on the (a) HKPU-DB and (b) SDU-DB.

4.5.4. Comparisons of the Proposed Method and State-of-the-Art Methods

In this subsection, we compared our method with the state-of-the-art methods in
terms of finger-vein recognition accuracies. For fair comparisons, the DenseNet-161-based
finger-vein recognition methods described in Section 3.5 were applied to all the methods.
As shown in Table 11, the proposed INF-GAN (with the RIGB) had a higher finger-vein
recognition accuracy for all the cases compared with state-of-the-art methods.
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Table 11. Comparisons of EER for the proposed method with those of state-of-the-art methods.

Database Pix2Pix
[39]

CycleGAN
[40]

Pix2Pix-HD
[21]

Attention-Guided
Image-to-Image

Translation GAN [41]

EnlightenGAN
[42]

INF-GAN
(without RIGB)

INF-GAN
(with RIGB)

HKPU-DB 4.24 8.31 2.84 15.48 8.72 4.87 1.65

SDU-DB 8.81 4.28 3.66 10.39 12.52 5.83 3.17

Figure 16 shows the ROC curves of each case. As shown in Figure 16, the proposed
INF-GAN (with RIGB) had a higher finger-vein recognition accuracy for all the cases
compared with the state-of-the-art methods.

Figure 16. ROC curves of finger-vein recognition by proposed method and the state-of-the-art methods on (a) HKPU-DB
and (b) SDU-DB.

Figure 17a,c shows the cases of authentic and imposter matching, respectively, before
restoration, which are examples of incorrect matching, as the vein pattern and texture in-
formation have been transformed due to nonuniform illumination. For incorrect matching,
authentic matching was classified as imposter matching through false rejection, whereas
imposter matching was classified as authentic matching through false acceptance, thus
degrading the recognition performance. From the left, the images correspond to enrolled,
recognized, and concatenated images of Figure 5, respectively. Figure 17b,d shows the
cases where the incorrect matching in (a) and (c) was determined to be correct matching
by restoring with the INF-GAN proposed in this study. Authentic matching was correctly
classified into correct acceptance, whereas imposter matching was correctly classified into
correct rejection.

Figure 18 shows the examples of false rejection and false acceptance even when the
images were restored by the INF-GAN. The cause of these errors is that the visibility of the
finger-vein pattern in the enrolled and recognized images has weakened.

4.5.5. Testing on the Unseen Dataset

We performed additional experiments on the unseen dataset. For this purpose, INF-
GAN is trained with HKPU-DB, and tested with SDUMLA-HMT-DB in the first trial. Then,
INF-GAN is trained with SDUMLA-HMT-DB and tested with HKPU-DB in the second trial.
As shown in Figure 19, our INF-GAN can produce the images where the nonuniformity of
illumination can be removed and which are similar to original target images. From that,
we confirm that our INF-GAN can be operated well on the unseen dataset, also.
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Figure 17. Example of recognition result with or without image restoration by INF-GAN. (a) Incorrect
authentic matching before restoration (middle image), (b) correct authentic matching after restoration
(middle image), (c) incorrect imposter matching before restoration (middle image), and (d) correct
imposter matching after restoration (middle image). Images in (a–d) show the enrolled, recognized,
and concatenated images of Figure 5, respectively, from the left.
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Figure 18. Examples of recognition depending on the application of image restoration by the INF-
GAN. (a) Incorrect authentic matching before restoration (middle image), (b) incorrect authentic
matching after restoration (middle image), (c) incorrect imposter matching before restoration (middle
image), and (d) incorrect imposter matching after restoration (middle image). Images in (a–d) show
the enrolled, recognized, and concatenated images of Figure 5, respectively, from left to right.
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Figure 19. Testing examples on the unseen dataset. In (a) INF-GAN is trained with HKPU-DB, and tested with SDUMLA-
HMT-DB, and (b) INF-GAN is trained with SDUMLA-HMT-DB, and tested with HKPU-DB. In (a,b), original image of
uniform illumination (target image), image of severely nonuniform illumination, and restored image by INF-GAN are
shown from left to right, respectively. In (a,b), each row represents the different examples of testing results.

4.5.6. Analysis of Feature Maps by Grad-CAM

In this subsection, we analyzed the feature maps from DenseNet-161 using a class
activation map (CAM). A CAM expresses which parts were concentrated on by a classifier,
such as a CNN, for distinguishing specific classes [47]. The feature maps extracted from
dense blocks one, two and three in Table 5 were compared through a Grad-CAM [48].
Accordingly, the cases of matching using the original image, nonuniformly illuminated
image, and images restored by the INF-GAN were compared by separating into authentic
matching and imposter matching, as shown in Figure 17. For the composite image, the
restored image and the original image showed similarities; for authentic matching in
Figure 20a, the similarity in activation maps between the original image and the restored
image was higher than between the original image and the nonuniformly illuminated
image for dense blocks one, two and three. For imposter matching in Figure 20b, despite
the similarity between the nonuniformly illuminated image and the enrolled image, the
similarity in activation maps was higher between the original image and the restored
image than between the original image and the nonuniformly illuminated image for both
dense blocks three. The features extracted from the images restored by the INF-GAN
were more similar to the features extracted from the original image than the features
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extracted from the nonuniformly illuminated image. Thus, it was confirmed that the
features extracted from the images restored by the INF-GAN are helpful in improving the
accuracy of finger-vein recognition.

Figure 20. Grad-CAM by different layers from DenseNet-161 in the case of (a) authentic matching
and (b) imposter matching.

4.5.7. Processing Time of the Proposed Method

In this subsection, the processing time of the proposed restoration model with the
INF-GAN and DenseNet-161 was measured. The processing time was measured using
the desktop computer described in Section 4.1 and the Jetson TX2 embedded system in
Figure 21 [49]. Because finger-vein recognition is often used with an embedded system
as it is adopted in an environment where access is restricted due to security reasons,
the processing time was also measured using a Jetson TX2 board in this study. The
Jetson TX2 board is an embedded system with an NVIDIA PascalTM GPU architecture
with 256 NVIDIA CUDA cores, 8 GB 128-bit LPDDR4 memory, and Dual-Core NVIDIA
Denver 2 64-Bit CPU. The Jetson TX2 board execution environment was implemented in
Ubuntu 18.04, CUDA (version 10.2), and cuDNN (version 8.0.0). As presented in Table 12,
restoration through the INF-GAN required 15.62 ms and 33.77 ms on the desktop computer
and Jetson TX2 board, respectively, whereas finger-vein recognition through DenseNet-161
required 13.12 ms and 227.45 ms, respectively, on these systems. Accordingly, it was
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confirmed that the proposed method is applicable in an embedded environment where
resources and computing power are limited.

Figure 21. Jetson TX2 embedded system.

Table 12. Comparisons of processing speed by the proposed method on the desktop computer and
embedded system (unit: ms).

INF-GAN DenseNet-161 Total

Desktop computer 15.62 13.12 28.74

Jetson TX2 33.77 227.45 261.22

5. Conclusions

This paper proposed an image restoration method through the INF-GAN to prevent
performance degradation in finger-vein recognition due to severe nonuniformity of illu-
mination. An RIGB was used to supplement the distinction between vein textures in the
image weakened due to nonuniform illumination. The finger-vein recognition performance
through a deep CNN was improved when the restoration was performed by concatenating
a one-channel residual image, which is generated by the RIGB and includes vein texture
information, onto the input image. Through the experiment conducted using two open
databases, HKPU-DB and SDU-DB, the quality of the image generated through the INF-
GAN was compared using the state-of-the-art methods, d′, Wasserstein distance, and FID;
the accuracy of finger-vein recognition was also compared using EER and ROC curves.
The experiment results showed that the image quality of the INF-GAN was slightly poorer
than that of the state-of-the-art-methods, but the accuracy of finger-vein recognition of the
INF-GAN was better. Furthermore, the activation maps extracted from the DenseNet-161
were compared using a Grad-CAM, and the applicability of the proposed method on a
desktop computer and embedded system was verified.

In future work, we would evaluate our method with more databases such as the
MMCBNU_6000, THU-FVFDT1, etc. In addition, the quality of images generated by the
proposed INF-GAN would be improved to examine the applicability for nonuniform
illumination restoration in general scene images, instead of the finger-vein recognition
examined in this study. Moreover, the possibility of using the INF-GAN-based nonuniform
illumination restoration proposed in this study in various other biometric modalities of
face-, iris-, and body-based recognition will be examined.
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