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Abstract: In this paper, we complement a study recently conducted in a paper of H.A. Mombeni,
B. Masouri and M.R. Akhoond by introducing five new asymmetric kernel c.d.f. estimators on the
half-line [0, ∞), namely the Gamma, inverse Gamma, LogNormal, inverse Gaussian and reciprocal
inverse Gaussian kernel c.d.f. estimators. For these five new estimators, we prove the asymptotic
normality and we find asymptotic expressions for the following quantities: bias, variance, mean
squared error and mean integrated squared error. A numerical study then compares the performance
of the five new c.d.f. estimators against traditional methods and the Birnbaum–Saunders and Weibull
kernel c.d.f. estimators from Mombeni, Masouri and Akhoond. By using the same experimental
design, we show that the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators perform the
best overall, while the other asymmetric kernel estimators are sometimes better but always at least
competitive against the boundary kernel method from C. Tenreiro.

Keywords: asymmetric kernels; asymptotic statistics; nonparametric statistics; Gamma kernel;
inverse Gamma kernel; LogNormal kernel; inverse Gaussian kernel; reciprocal inverse Gaussian
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In the context of density estimation, asymmetric kernel estimators were introduced
by Aitchison and Lauder [1] on the simplex and studied theoretically for the first time
by Chen [2] on [0, 1] (using a Beta kernel), and by Chen [3] on [0, ∞) (using a Gamma
kernel). These estimators are designed so that the bulk of the kernel function varies
with each point x in the support of the target density. More specifically, the parame-
ters of the kernel function can vary in a way that makes the mode, the median or the
mean equal to x. This variable smoothing allows asymmetric kernel estimators to be-
have better than traditional kernel estimators (see, e.g., Rosenblatt [4], Parzen [5]) near
the boundary of the support in terms of their bias. Since the variable smoothing is
integrated directly in the parametrization of the kernel function, asymmetric kernel es-
timators are also usually simpler to implement than boundary kernel methods (see, e.g.,
Gasser and Müller [6], Rice [7], Gasser et al. [8], Müller [9], Zhang and Karunamuni
[10,11]). For these two reasons, asymmetric kernel estimators are, by now, well-known
solutions to the boundary bias problem from which traditional kernel estimators suffer. In
the past twenty years, various asymmetric kernels have been considered in the literature
on density estimation:

• Beta kernel, when the target density is supported on [0, 1], see, e.g., Chen [2], Bouez-
marni and Rolin [12], Renault and Scaillet [13], Fernandes and Monteiro [14],
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Hirukawa [15], Bouezmarni and Rombouts [16], Zhang and Karunamuni [17], Bertin
and Klutchnikoff [18,19], Igarashi [20];

• Gamma, inverse Gamma, LogNormal, inverse Gaussian, reciprocal inverse Gaussian,
Birnbaum–Saunders and Weibull kernels, when the target density is supported on [0, ∞),
see, e.g., Chen [3], Jin and Kawczak [21], Scaillet [22], Bouezmarni and Scaillet [23],
Fernandes and Monteiro [14], Bouezmarni and Rombouts [16,24,25], Igarashi and Kak-
izawa [26,27], Charpentier and Flachaire [28], Igarashi [29], Zougab and Adjabi [30], Kak-
izawa and Igarashi [31], Kakizawa [32], Zougab et al. [33], Zhang [34], Kakizawa [35];

• Dirichlet kernel, when the target density is supported on the d-dimensional unit
simplex, see [1] and the first theoretical study by Ouimet and Tolosana-Delgado [36].

• Continuous associated kernels, the aim of which is to unify the theory of asymmetric
kernels with the one for traditional kernels in both the univariate and multivariate settings,
see, e.g., Kokonendji and Libengué Dobélé-Kpoka [37], Kokonendji and Somé [38,39].

The interested reader is referred to Hirukawa [40] and Section 2 of Ouimet and
Tolosana-Delgado [36] for a review of some of these papers and an extensive list of papers
dealing with asymmetric kernels in other settings.

In contrast, there are almost no papers dealing with the estimation of cumulative
distribution functions (c.d.f.s) in the literature on asymmetric kernels. In fact, to the
best of our knowledge, [41] seems to be the first (and only) paper in this direction if we
exclude the closely related theory of Bernstein estimators. (In the setting of Bernstein
estimators, c.d.f. estimation on compact sets was tackled, for example, by Babu et al. [42],
Leblanc [43], Leblanc [44], Leblanc [45], Dutta [46], Jmaei et al. [47], Erdoğan et al. [48] and
Wang et al. [49] in the univariate setting, and by Babu and Chaubey [50], Belalia [51],
Dib et al. [52] and Ouimet [53,54] in the multivariate setting. In [55], the authors introduced
Bernstein estimators with Poisson weights (also called Szasz estimators) for the estimation
of c.d.f.s that are supported on [0, ∞), see also Ouimet [56]).

In the present paper, we complement the study reported in [41] by introducing five
new asymmetric kernel c.d.f. estimators, namely the Gamma, inverse Gamma, LogNormal,
inverse Gaussian and reciprocal inverse Gaussian kernel c.d.f. estimators. Our goal is to
prove several asymptotic properties for these five new estimators (bias, variance, mean
squared error, mean integrated squared error and asymptotic normality) and compare their
numerical performance against traditional methods and against the Birnbaum–Saunders
and Weibull kernel c.d.f. estimators from [41]. As we will see in the discussion of the results
(Section 9), the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators perform the
best overall, while the other asymmetric kernel estimators are sometimes better but always
at least competitive against the boundary kernel method from [57].

1. The Models

Let X1, X2, . . . , Xn be a sequence of i.i.d. observations from an unknown cumulative
distribution function F supported on the half-line [0, ∞). We consider the following seven
asymmetric kernel estimators (the first five are new):

F̂Gam
n,b (x) :=

1
n

n

∑
i=1

KGam(Xi | b−1x + 1, b), (1)

F̂IGam
n,b (x) :=

1
n

n

∑
i=1

KIGam(Xi | b−1 + 1, x−1b), (2)

F̂LN
n,b (x) :=

1
n

n

∑
i=1

KLN(Xi | log x,
√

b), (3)

F̂IGau
n,b (x) :=

1
n

n

∑
i=1

KIGau(Xi | x, b−1x), (4)
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F̂RIG
n,b (x) :=

1
n

n

∑
i=1

KRIG(Xi | x−1(1− b)−1, x−1b−1), (5)

F̂B−S
n,b (x) :=

1
n

n

∑
i=1

KB−S(Xi | x,
√

b), (6)

F̂W
n,b(x) :=

1
n

n

∑
i=1

KW(Xi | x/Γ(1 + b), b−1), (7)

where b > 0 is a smoothing (or bandwidth) parameter, and

KGam(t | α, θ) :=
Γ(α, t/θ)

Γ(α)
, α, θ > 0,

KIGam(t | α, θ) := 1− Γ(α, 1/(tθ))
Γ(α)

, α, θ > 0,

KLN(t | µ, σ) := 1−Φ
(

log t− µ

σ

)
, µ, σ > 0,

KIGau(t | µ, λ) := 1−Φ
(√

λ

t

( t
µ
− 1
))
− e2λ/µΦ

(
−
√

λ

t

( t
µ
+ 1
))

, µ, λ > 0,

KRIG(t | µ, λ) := Φ
(√

λt
( 1

tµ
− 1
))

+ e2λ/µΦ
(
−
√

λt
( 1

tµ
+ 1
))

, µ, λ > 0,

KB−S(t | β, α) := 1−Φ
(

1
α

(√ t
β
−
√

β

t

))
, β, α > 0,

KW(t | λ, k) := exp
(
−
( t

λ

)k
)

, λ, k > 0,

denote, respectively, the survival function of the

• Gamma(α, θ) distribution (with the shape/scale parametrization);
• InverseGamma(α, θ) distribution (with the shape/scale parametrization);
• LogNormal(µ, σ) distribution;
• InverseGaussian(µ, λ) distribution;
• ReciprocalInverseGaussian(µ, λ) distribution;
• Birnbaum–Saunders(β, α) distribution;
• Weibull(λ, k) distribution.

The function Γ(α, z) :=
∫ ∞

z tα−1e−tdt denotes the upper incomplete gamma function
(where Γ(α) := Γ(α, 0)), and Φ denotes the c.d.f. of the standard normal distribution. The
parametrizations are chosen so that

• The mode of the kernel function in (1) is x;
• The median of the kernel function in (3) and (6) is x;
• The mean of the kernel function in (2), (4), (5) and (7) is x.

In this paper, we will compare the numerical performance of the above seven asym-
metric kernel c.d.f. estimators against the following three traditional estimators (K here is
the c.d.f. of a kernel function):

F̂OK
n,b (x) :=

1
n

n

∑
i=1

K
( x− Xi

b

)
, (8)

F̂BK
n,b (x) :=

1
n

n

∑
i=1

{
K
( x− Xi

b

)
1[b,∞)(x) + K

( x− Xi
x

)
1(0,b)(x)

}
, (9)

F̂EDF
n (x) :=

1
n

n

∑
i=1

1[Xi ,∞)(x), (10)
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which denote, respectively, the ordinary kernel (OK) c.d.f. estimator (from Tiago de Oliveira [58],
Nadaraja [59] or Watson and Leadbetter [60]), the boundary kernel (BK) c.d.f. estimator
(from Example 2.3 in [57]) and the empirical c.d.f. (EDF) estimator.

2. Outline, Assumptions and Notation
2.1. Outline

In Sections 3–7, the asymptotic normality, and the asymptotic expressions for the
bias, variance, mean squared error (MSE) and mean integrated squared error (MISE), are
stated for the Gam, IGam, LN, IGau and RIG kernel c.d.f. estimators, respectively. The
proofs can be found in Appendices A–E, respectively. Aside from the asymptotic normality
(which can easily be deduced), these results were obtained for the Birnbaum–Saunders
and Weibull kernel c.d.f. estimators in [41]. In Section 8, we compare the performance of
all seven asymmetric kernel estimators above with the three traditional estimators OK,
BK and EDF, defined in (8)–(10). A discussion of the results and our conclusion follow
in Sections 9 and 10. Technical calculations for the proofs of the asymptotic results are
gathered in Appendix F.

2.2. Assumptions

Throughout the paper, we make the following two basic assumptions:

1. The target c.d.f. F has two continuous and bounded derivatives;
2. The smoothing (or bandwidth) parameter b = bn > 0 satisfies b→ 0 as n→ ∞.

2.3. Notation

Throughout the paper, the notation u = O(v) means that lim sup |u/v| < C < ∞ as
n → ∞. The positive constant C can depend on the target c.d.f. F, but no other variable
unless explicitly written as a subscript. For example, if C depends on a given point
x ∈ (0, ∞), we would write u = Ox(v). Similarly, the notation u = o(v) means that
lim |u/v| = 0 as n → ∞. Subscripts indicate which parameters the convergence rate
can depend on. The symbol D over an arrow ‘−→’ will denote the convergence in law
(or distribution).

3. Asymptotic Properties of the c.d.f. Estimator with Gam Kernel

In this section, we find the asymptotic properties of the Gamma (Gam) kernel estimator
defined in (1).

Lemma 1 (Bias and variance). For any given x ∈ (0, ∞),

Bias[F̂Gam
n,b (x)] := E[F̂Gam

n,b (x)]− F(x) = b · ( f (x) +
x
2

f ′(x)) + ox(b), (11)

Var(F̂Gam
n,b (x)) = n−1F(x)(1− F(x))− n−1b1/2 ·

√
x f (x)√

π
+Ox(n−1b). (12)

Corollary 1 (Mean squared error). For any given x ∈ (0, ∞),

MSE(F̂Gam
n,b (x)) = Var(F̂Gam

n,b (x)) +
(
Bias[F̂Gam

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 ·
√

x f (x)√
π

+ b2 · ( f (x) +
x
2

f ′(x))2 +Ox(n−1b) + ox(b2). (13)

In particular, if f (x) · ( f (x) + x f ′(x)) 6= 0, the asymptotically optimal choice of b, with respect to
MSE, is

bopt = n−2/3

[
4 · ( f (x) + x

2 f ′(x))2
√

x f (x)/
√

π

]−2/3

(14)



Mathematics 2021, 9, 2605 5 of 35

with
MSE(F̂Gam

n,bopt
(x)) = n−1F(x)(1− F(x))

− n−4/3 3
4

[
(
√

x f (x)/
√

π)4

4 · ( f (x) + x
2 f ′(x))2

]1/3

+ ox(n−4/3).
(15)

Proposition 1 (Mean integrated squared error). Assuming that the target density f = F′ satisfies∫ ∞

0

√
x f (x)dx < ∞ and

∫ ∞

0
( f (x) +

x
2

f ′(x))2dx < ∞, (16)

then we have

MISE(F̂Gam
n,b ) =

∫ ∞

0
Var(F̂Gam

n,b (x))dx +
∫ ∞

0

(
Bias[F̂Gam

n,b (x)]
)2dx

= n−1
∫ ∞

0
F(x)(1− F(x))dx− n−1b1/2

∫ ∞

0

√
x f (x)√

π
dx

+ b2
∫ ∞

0
( f (x) +

x
2

f ′(x))2dx + o(n−1b1/2) + o(b2). (17)

In particular, if f (x) · ( f (x) + x f ′(x)) 6= 0, the asymptotically optimal choice of b, with respect to
MISE, is

bopt = n−2/3

[
4
∫ ∞

0 ( f (x) + x
2 f ′(x))2dx∫ ∞

0
√

x f (x)/
√

πdx

]−2/3

(18)

with
MISE(F̂Gam

n,bopt
) = n−1

∫ ∞

0
F(x)(1− F(x))dx

− n−4/3 3
4

[ ( ∫ ∞
0
√

x f (x)/
√

πdx
)4

4
∫ ∞

0 ( f (x) + x
2 f ′(x))2dx

]1/3

+ o(n−4/3).
(19)

Proposition 2 (Asymptotic normality). For any x > 0 such that 0 < F(x) < 1, we have the
following convergence in distribution:

n1/2(F̂Gam
n,b (x)−E[F̂Gam

n,b (x)]) D−→ N (0, σ2(x)), as b→ 0, n→ ∞, (20)

where σ2(x) := F(x)(1− F(x)). In particular, Lemma 1 implies

n1/2(F̂Gam
n,b (x)− F(x)) D−→ N (0, σ2(x)), if n1/2b→ 0, (21)

n1/2(F̂Gam
n,b (x)− F(x)) D−→ N (λ · ( f (x) + x

2 f ′(x)), σ2(x)), if n1/2b→ λ, (22)

for any constant λ > 0.

4. Asymptotic Properties of the c.d.f. Estimator with IGam Kernel

In this section, we find the asymptotic properties of the inverse Gamma (IGam) kernel
estimator defined in (2).

Lemma 2 (Bias and variance). For any given x ∈ (0, ∞),

Bias[F̂IGam
n,b (x)] := E[F̂IGam

n,b (x)]− F(x) = b · x2

2
f ′(x) + ox(b), (23)

Var(F̂IGam
n,b (x)) = n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√

π
+Ox(n−1b). (24)
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Corollary 2 (Mean squared error). For any given x ∈ (0, ∞),

MSE(F̂IGam
n,b (x)) = Var(F̂IGam

n,b (x)) +
(
Bias[F̂IGam

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√
π

(25)

+ b2 · x4

4
( f ′(x))2 +Ox(n−1b) + ox(b2).

In particular, if f (x) · f ′(x) 6= 0, the asymptotically optimal choice of b, with respect to MSE, is

bopt = n−2/3

[
4 · x4

4 ( f ′(x))2

x f (x)/
√

π

]−2/3

(26)

with
MSE(F̂IGam

n,bopt
(x)) = n−1F(x)(1− F(x))

− n−4/3 3
4

[(
x f (x)/

√
π
)4

4 · x4

4 ( f ′(x))2

]1/3

+ ox(n−4/3).
(27)

Proposition 3 (Mean integrated squared error). Assuming that the target density f = F′ satisfies∫ ∞

0
x f (x)dx < ∞ and

∫ ∞

0
x4( f ′(x))2dx < ∞, (28)

then we have

MISE(F̂IGam
n,b ) =

∫ ∞

0
Var(F̂IGam

n,b (x))dx +
∫ ∞

0

(
Bias[F̂IGam

n,b (x)]
)2dx

= n−1
∫ ∞

0
F(x)(1− F(x))dx− n−1b1/2

∫ ∞

0

x f (x)√
π

dx (29)

+ b2
∫ ∞

0

x4

4
( f ′(x))2dx + o(n−1b1/2) + o(b2).

In particular, if
∫ ∞

0 x4( f ′(x))2dx > 0, the asymptotically optimal choice of b, with respect to
MISE, is

bopt = n−2/3

[
4
∫ ∞

0
x4

4 ( f ′(x))2dx∫ ∞
0 x f (x)/

√
πdx

]−2/3

(30)

with
MISE(F̂IGam

n,bopt
) = n−1

∫ ∞

0
F(x)(1− F(x))dx

− n−4/3 3
4

[( ∫ ∞
0 x f (x)/

√
πdx

)4

4
∫ ∞

0
x4

4 ( f ′(x))2dx

]1/3

+ o(n−4/3).
(31)

Proposition 4 (Asymptotic normality). For any x > 0 such that 0 < F(x) < 1, we have the
following convergence in distribution:

n1/2(F̂IGam
n,b (x)−E[F̂IGam

n,b (x)]) D−→ N (0, σ2(x)), as b→ 0, n→ ∞, (32)

where σ2(x) := F(x)(1− F(x)). In particular, Lemma 2 implies

n1/2(F̂IGam
n,b (x)− F(x)) D−→ N (0, σ2(x)), if n1/2b→ 0, (33)

n1/2(F̂IGam
n,b (x)− F(x)) D−→ N (λ · x2 f ′(x)

2 , σ2(x)), if n1/2b→ λ, (34)

for any constant λ > 0.
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5. Asymptotic Properties of the c.d.f. Estimator with LN Kernel

In this section, we find the asymptotic properties of the LogNormal (LN) kernel
estimator defined in (3).

Lemma 3 (Bias and variance). For any given x ∈ (0, ∞),

Bias[F̂LN
n,b (x)] := E[F̂LN

n,b (x)]− F(x) = b · x
2
( f (x) + x f ′(x)) + ox(b), (35)

Var(F̂LN
n,b (x)) = n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√

π
+Ox(n−1b). (36)

Corollary 3 (Mean squared error). For any given x ∈ (0, ∞),

MSE(F̂LN
n,b (x)) = Var(F̂LN

n,b (x)) +
(
Bias[F̂LN

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√
π

(37)

+ b2 · x2

4
( f (x) + x f ′(x))2 +Ox(n−1b) + ox(b2).

In particular, if f (x) · ( f (x) + x f ′(x)) 6= 0, the asymptotically optimal choice of b, with respect to
MSE, is

bopt = n−2/3

[
4 · x2

4 ( f (x) + x f ′(x))2

x f (x)/
√

π

]−2/3

(38)

with
MSE(F̂LN

n,bopt
(x)) = n−1F(x)(1− F(x))

− n−4/3 3
4

[
(x f (x)/

√
π)4

4 · x2

4 ( f (x) + x f ′(x))2

]1/3

+ ox(n−4/3).
(39)

Proposition 5 (Mean integrated squared error). Assuming that the target density f = F′ satisfies∫ ∞

0
x f (x)dx < ∞ and

∫ ∞

0
x2( f (x) + x f ′(x))2dx < ∞, (40)

then we have

MISE(F̂LN
n,b ) =

∫ ∞

0
Var(F̂LN

n,b (x))dx +
∫ ∞

0

(
Bias[F̂LN

n,b (x)]
)2dx

= n−1
∫ ∞

0
F(x)(1− F(x))dx− n−1b1/2

∫ ∞

0

x f (x)√
π

dx (41)

+ b2
∫ ∞

0

x2

4
( f (x) + x f ′(x))2dx + o(n−1b1/2) + o(b2).

In particular, if f (x) · ( f (x) + x f ′(x)) 6= 0, the asymptotically optimal choice of b, with respect to
MISE, is

bopt = n−2/3

[
4
∫ ∞

0
x2

4 ( f (x) + x f ′(x))2dx∫ ∞
0 x f (x)/

√
πdx

]−2/3

(42)

with
MISE(F̂LN

n,bopt
) = n−1

∫ ∞

0
F(x)(1− F(x))dx

− n−4/3 3
4

[ ( ∫ ∞
0 x f (x)/

√
πdx

)4

4
∫ ∞

0
x2

4 ( f (x) + x f ′(x))2dx

]1/3

+ o(n−4/3).
(43)
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Proposition 6 (Asymptotic normality). For any x > 0 such that 0 < F(x) < 1, we have the
following convergence in distribution:

n1/2(F̂LN
n,b (x)−E[F̂LN

n,b (x)]) D−→ N (0, σ2(x)), as b→ 0, n→ ∞, (44)

where σ2(x) := F(x)(1− F(x)). In particular, Lemma 3 implies

n1/2(F̂LN
n,b (x)− F(x)) D−→ N (0, σ2(x)), if n1/2b→ 0, (45)

n1/2(F̂LN
n,b (x)− F(x)) D−→ N (λ · x

2
( f (x) + x f ′(x)), σ2(x)), if n1/2b→ λ, (46)

for any constant λ > 0.

6. Asymptotic Properties of the c.d.f. Estimator with IGau Kernel

In this section, we find the asymptotic properties of the inverse Gaussian (IGau) kernel
estimator defined in (4).

Lemma 4 (Bias and variance). For any given x ∈ (0, ∞),

Bias[F̂IGau
n,b (x)] := E[F̂IGau

n,b (x)]− F(x) = b · x2

2
f ′(x) + ox(b), (47)

Var(F̂IGau
n,b (x)) = n−1F(x)(1− F(x))− n−1b1/2 · f (x)

2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]

(48)

+Ox(n−1b),

where T1, T2
i.i.d.∼ IGau(x, b−1x).

Corollary 4 (Mean squared error). For any given x ∈ (0, ∞),

MSE(F̂IGau
n,b (x)) = Var(F̂IGau

n,b (x)) +
(
Bias[F̂IGau

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]

(49)

+ b2 · x4

4
( f ′(x))2 +Ox(n−1b) + ox(b2),

where T1, T2
i.i.d.∼ IGau(x, b−1x). The quantity limb→0 b−1/2 E[|T1 − T2|] needs to be approxi-

mated numerically. In particular, if f (x)
[

limb→0 b−1/2 E[|T1 − T2|]
]
· f ′(x) 6= 0, the asymptoti-

cally optimal choice of b, with respect to MSE, is

bopt = n−2/3

[
4 · x4

4 ( f ′(x))2

f (x)
2 limb→0 b−1/2 E[|T1 − T2|]

]−2/3

(50)

with

MSE(F̂IGau
n,bopt

(x)) = n−1F(x)(1− F(x))

− n−4/3 3
4

[( f (x)
2 limb→0 b−1/2 E[|T1 − T2|]

)4

4 · x4

4 ( f ′(x))2

]1/3

+ ox(n−4/3).
(51)

Proposition 7 (Mean integrated squared error). Assuming that the target density f = F′ satisfies∫ ∞

0
f (x)

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
dx < ∞ and

∫ ∞

0
x4( f ′(x))2dx < ∞, (52)
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where T1, T2
i.i.d.∼ IGau(x, b−1x), then we have

MISE(F̂IGau
n,b ) =

∫ ∞

0
Var(F̂IGau

n,b (x))dx +
∫ ∞

0

(
Bias[F̂IGau

n,b (x)]
)2dx

= n−1
∫ ∞

0
F(x)(1− F(x))dx

− n−1b1/2
∫ ∞

0

f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
dx (53)

+ b2
∫ ∞

0

x4

4
( f ′(x))2dx + o(n−1b1/2) + o(b2).

The quantity limb→0 b−1/2 E[|T1 − T2|] needs to be approximated numerically. In particular, if∫ ∞
0 x4( f ′(x))2dx > 0, the asymptotically optimal choice of b, with respect to MISE, is

bopt = n−2/3

[
4
∫ ∞

0
x4

4 ( f ′(x))2dx∫ ∞
0

f (x)
2 limb→0 b−1/2 E[|T1 − T2|]dx

]−2/3

(54)

with
MISE(F̂IGau

n,bopt
) = n−1

∫ ∞

0
F(x)(1− F(x))dx

− n−4/3 3
4

[( ∫ ∞
0

f (x)
2 limb→0 b−1/2 E[|T1 − T2|]dx

)4

4
∫ ∞

0
x4

4 ( f ′(x))2dx

]1/3

+ o(n−4/3).

(55)

Proposition 8 (Asymptotic normality). For any x > 0 such that 0 < F(x) < 1, we have the
following convergence in distribution:

n1/2(F̂IGau
n,b (x)−E[F̂IGau

n,b (x)]) D−→ N (0, σ2(x)), as b→ 0, n→ ∞, (56)

where σ2(x) := F(x)(1− F(x)). In particular, Lemma 4 implies

n1/2(F̂IGau
n,b (x)− F(x)) D−→ N (0, σ2(x)), if n1/2b→ 0, (57)

n1/2(F̂IGau
n,b (x)− F(x)) D−→ N (λ · x2

2
f ′(x), σ2(x)), if n1/2b→ λ, (58)

for any constant λ > 0.

7. Asymptotic Properties of the c.d.f. Estimator with RIG Kernel

In this section, we find the asymptotic properties of the reciprocal inverse Gaussian
(RIG) kernel estimator defined in (5).

Lemma 5 (Bias and variance). For any given x ∈ (0, ∞),

Bias[F̂RIG
n,b (x)] := E[F̂IGau

n,b (x)]− F(x) = b · x2

2
f ′(x) + ox(b), (59)

Var(F̂RIG
n,b (x)) = n−1F(x)(1− F(x))− n−1b1/2 · f (x)

2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]

(60)

+Ox(n−1b),

where T1, T2
i.i.d.∼ RIG(x, b−1x).
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Corollary 5 (Mean squared error). For any given x ∈ (0, ∞),

MSE(F̂RIG
n,b (x)) = Var(F̂RIG

n,b (x)) +
(
Bias[F̂RIG

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]

(61)

+ b2 · 1
4

x4( f ′(x))2 +Ox(n−1b) + ox(b2),

where T1, T2
i.i.d.∼ RIG(x−1(1− b)−1, x−1b−1). The quantity limb→0 b−1/2 E[|T1 − T2|] needs to

be approximated numerically. In particular, if f (x)
[

limb→0 b−1/2 E[|T1 − T2|]
]
· f ′(x) 6= 0, the

asymptotically optimal choice of b, with respect to MSE, is

bopt = n−2/3

[
4 · 1

4 x4( f ′(x))2

f (x)
2 limb→0 b−1/2 E[|T1 − T2|]

]−2/3

(62)

with

MSE(F̂RIG
n,bopt

(x)) = n−1F(x)(1− F(x))

− n−4/3 3
4

[( f (x)
2 limb→0 b−1/2 E[|T1 − T2|]

)4

4 · 1
4 x4( f ′(x))2

]1/3

+ ox(n−4/3).
(63)

Proposition 9 (Mean integrated squared error). Assuming that the target density f = F′ satisfies∫ ∞

0
f (x)

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
dx < ∞ and

∫ ∞

0
x4( f ′(x))2dx < ∞, (64)

where T1, T2
i.i.d.∼ RIG(x−1(1− b)−1, x−1b−1), then we have

MISE(F̂RIG
n,b (x)) =

∫ ∞

0
Var(F̂RIG

n,b (x))dx +
∫ ∞

0

(
Bias[F̂RIG

n,b (x)]
)2dx

= n−1
∫ ∞

0
F(x)(1− F(x))dx (65)

− n−1b1/2
∫ ∞

0

f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
dx

+ b2
∫ ∞

0

x4

4
( f ′(x))2dx + o(n−1b1/2) + o(b2).

The quantity limb→0 b−1/2 E[|T1 − T2|] needs to be approximated numerically. In particular, if∫ ∞
0 x4( f ′(x))2dx > 0, the asymptotically optimal choice of b, with respect to MISE, is

bopt = n−2/3

[
4
∫ ∞

0
1
4 x4( f ′(x))2dx∫ ∞

0
f (x)

2 limb→0 b−1/2 E[|T1 − T2|]dx

]−2/3

(66)

with

MISE(F̂RIG
n,bopt

(x)) = n−1
∫ ∞

0
F(x)(1− F(x))dx

− n−4/3 3
4

[( ∫ ∞
0

f (x)
2 limb→0 b−1/2 E[|T1 − T2|]dx

)4

4
∫ ∞

0
1
4 x4( f ′(x))2dx

]1/3

+ o(n−4/3).

(67)
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Proposition 10 (Asymptotic normality). For any x > 0 such that 0 < F(x) < 1, we have the
following convergence in distribution:

n1/2(F̂RIG
n,b (x)−E[F̂IGau

n,b (x)]) D−→ N (0, σ2(x)), as b→ 0, n→ ∞, (68)

where σ2(x) := F(x)(1− F(x)). In particular, Lemma 5 implies

n1/2(F̂RIG
n,b (x)− F(x)) D−→ N (0, σ2(x)), if n1/2b→ 0, (69)

n1/2(F̂RIG
n,b (x)− F(x)) D−→ N (λ · x2

2
f ′(x), σ2(x)), if n1/2b→ λ, (70)

for any constant λ > 0.

8. Numerical Study

As in [41], we generated M = 1000 samples of size n = 256 and n = 1000 from eight
target distributions:

1. Burr (1, 3, 1), with the following parametrization for the density function:

f1(x | λ, c, k) := ck
λ

( x
λ

)c−1[1 + ( x
λ

)c]−k−1
1(0,∞)(x), λ, c, k > 0; (71)

2. Gamma (0.6, 2), with the following parametrization for the density function:

f2(x | α, θ) := xα−1 exp(− x
θ )

θαΓ(α) 1(0,∞)(x), α, θ > 0; (72)

3. Gamma (4, 2), with the following parametrization for the density function:

f3(x | α, θ) := xα−1 exp(− x
θ )

θαΓ(α) 1(0,∞)(x), α, θ > 0; (73)

4. GeneralizedPareto (0.4, 1, 0), with the following parametrization for the density function:

f4(x | ξ, σ, µ) := 1
σ

[
1 + ξ

( x−µ
σ

)]− 1
ξ−1

1(µ,∞)(x), ξ, σ > 0, µ ∈ R; (74)

5. HalfNormal (1), with the following parametrization for the density function:

f5(x | σ) :=
√

2
πσ2 exp

(
− x2

2σ2

)
1(0,∞)(x), σ > 0; (75)

6. LogNormal (0, 0.75), with the following parametrization for the density function:

f6(x | µ, σ) := 1
x
√

2πσ2 exp
(
− (log x−µ)2

2σ2

)
1(0,∞)(x), µ ∈ R, σ > 0; (76)

7. Weibull (1.5, 1.5), with the following parametrization for the density function:

f7(x | λ, k) := k
λ

( x
λ

)k−1 exp
(
−
( x

λ

)k)
1(0,∞)(x), λ, k > 0; (77)

8. Weibull (3, 2), with the following parametrization for the density function:

f8(x | λ, k) := k
λ

( x
λ

)k−1 exp
(
−
( x

λ

)k)
1(0,∞)(x), λ, k > 0. (78)
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For each of the eight target distributions (i = 1, 2, . . . , 8), each of the ten estimators
(j = 1, 2, . . . , 10), each sample size (n = 256, 1000), and each sample (k = 1, 2, . . . , M), we
calculated the integrated squared errors

ISE(k)
i,j,n :=

∫ ∞

0
(F̂(k)

j,n (x)− Fi(x))2dx, (79)

where

1. F̂(k)
1,n denotes the estimator F̂Gam

n,bopt
from (1) applied to the k-th sample;

2. F̂(k)
2,n denotes the estimator F̂IGam

n,bopt
from (2) applied to the k-th sample;

3. F̂(k)
3,n denotes the estimator F̂LN

n,bopt
from (3) applied to the k-th sample;

4. F̂(k)
4,n denotes the estimator F̂IGau

n,bopt
from (4) applied to the k-th sample;

5. F̂(k)
5,n denotes the estimator F̂RIG

n,bopt
from (5) applied to the k-th sample;

6. F̂(k)
6,n denotes the estimator F̂B−S

n,bopt
from (6) applied to the k-th sample;

7. F̂(k)
7,n denotes the estimator F̂W

n,bopt
from (7) applied to the k-th sample;

(for F̂(k)
1,n to F̂(k)

7,n, bopt is optimal with respect to the MISE (see (18), (30), (42), (54) and (66))

and approximated under the assumption that the target distribution is Gamma(α̂(k)
n , θ̂

(k)
n ),

where α̂
(k)
n and θ̂

(k)
n are the maximum likelihood estimates for the k-th sample) and

8. F̂(k)
8,n (x) := 1

n ∑n
`=1 Epa

( x−X(k)
`

bLNO

)
, where

• Epa(u) :=
( 1

2 +
3u
4 −

u3

4
)
·1(−1,1)(u)+1[1,∞)(u) denotes the c.d.f. of the Epanech-

nikov kernel;
• bLNO is selected by minimizing the Leave-None-Out criterion from page 197

in [61];

9. F̂(k)
9,n (x) := 1

n ∑n
`=1

{
Epa

( x−X(k)
`

bCV

)
1[bCV,∞)(x) + Epa

( x−X(k)
`

x
)
1(0,bCV)

(x)
}

is the bound-
ary modified kernel estimator from Example 2.3 in [57], where

• Epa(u) :=
( 1

2 +
3u
4 −

u3

4
)
·1(−1,1)(u)+1[1,∞)(u) denotes the c.d.f. of the Epanech-

nikov kernel;
• bCV is selected by minimizing the Cross-Validation criterion from page 180 in

[57];

10. F̂(k)
10,n(x) := 1

n ∑n
`=1 1{X(k)

` ≤x}
is the empirical c.d.f. applied to the k-th sample.

Everywhere in our R code, we approximated the integrals on (0, ∞) using the integral
function from the R package pracma (the base function integrate had serious precision
issues). Table 1 below shows the mean and standard deviation of the ISE’s, i.e.,

1
M

M

∑
k=1

ISE(k)
i,j,n and

√√√√ 1
M− 1

M

∑
k=1

(
ISE(k)

i,j,n −
1
M

M

∑
k′=1

ISE(k′)
i,j,n

)2
, (80)

for the eight target distributions (i = 1, 2, . . . , 8), the ten estimators (j = 1, 2, . . . , 10) and
the two sample sizes (n = 256, 1000). All the values presented in the table have been
multiplied by 104. In Table 2, we computed, for each target distribution and each sample
size, the difference between the ISE means and the lowest ISE mean for the corresponding
target distribution and sample size (i.e., the ISE means minus the ISE mean of the best
estimator on the corresponding line). The totals of those differences are also calculated
for each sample size on the two “total” lines. Figure 1 gives a better idea of the target
distribution of ISE’s by displaying the boxplot of the ISE’s for every target distribution and
every estimator, when the sample size is n = 1000. Finally, Figures 2–9 (one figure for each
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of the eight target distributions) show a collection of ten c.d.f. estimates from each of the
ten estimators when the sample size is 256.

Here are the results, which we discuss briefly in Section 9:
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Figure 1. Boxplots of the ISE(k)
i,j,n, k = 1, 2, . . . , M, for the eight target distributions and the ten estimators, when the sample

size is n = 1000. (a) Burr(1, 3, 1). (b) Gamma(0.6, 2). (c) Gamma(4, 2). (d) GeneralizedPareto(0.4, 1, 0). (e) HalfNormal(1).
(f) LogNormal(0, 0.75). (g) Weibull(1.5, 1.5). (h) Weibull(3, 2).
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Table 1. The mean and standard deviation of the ISE(k)
i,j,n, k = 1, 2, . . . , M, for the eight target distributions (i = 1, 2, . . . , 8), the ten estimators (j = 1, 2, . . . , 10) and the two sample sizes

(n = 256, 1000). All the values presented in the table have been multiplied by 104. The ordinary kernel estimator F̂8 is denoted by OK, the boundary kernel estimator F̂9 is denoted by BK,
and the empirical c.d.f. F̂10 is denoted by EDF. For each line in the table, the lowest ISE means are highlighted in cyan.

×10−4 i Gam (i = 1) IGam (i = 2) LN (i = 3) IGau (i = 4) RIG (i = 5) B-S (i = 6) W (i = 7) OK (i = 8) BK (i = 9) EDF (i = 10)
n j Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

256 1 1.39 1.27 1.37 1.34 1.31 1.26 1.37 1.32 1.37 1.32 1.31 1.26 1.37 1.32 1.54 1.43 1.47 1.34 1.54 1.44
2 2.59 2.36 2.50 2.53 2.36 2.42 2.49 2.46 2.49 2.47 2.36 2.42 2.50 2.51 2.76 2.44 2.67 2.57 2.76 2.45
3 6.70 6.28 6.77 6.58 6.62 6.28 6.69 6.45 6.69 6.45 6.62 6.28 6.74 6.54 7.44 7.01 6.70 6.39 7.44 7.00
4 3.74 3.14 3.60 3.27 3.36 3.15 3.61 3.20 3.61 3.21 3.36 3.14 3.60 3.26 3.96 3.24 3.80 3.27 3.97 3.24
5 1.14 1.10 1.18 1.13 1.18 1.07 1.17 1.13 1.17 1.13 1.18 1.07 1.17 1.12 1.26 1.19 1.10 1.14 1.26 1.19
6 1.93 1.83 1.91 1.89 1.81 1.80 1.91 1.87 1.91 1.87 1.81 1.80 1.91 1.88 2.13 1.94 2.05 1.93 2.13 1.95
7 1.75 1.82 1.77 1.99 1.68 1.83 1.76 1.96 1.76 1.96 1.68 1.83 1.76 1.95 1.95 1.93 1.73 2.04 1.95 1.92
8 2.69 2.71 2.75 2.78 2.81 2.66 2.67 2.71 2.67 2.71 2.81 2.66 2.75 2.75 3.02 2.88 2.56 2.59 3.03 2.88

1000 1 0.40 0.36 0.39 0.36 0.38 0.35 0.39 0.36 0.39 0.36 0.38 0.35 0.39 0.36 0.43 0.39 0.41 0.36 0.43 0.39
2 0.72 0.70 0.70 0.69 0.67 0.67 0.70 0.69 0.70 0.69 0.67 0.67 0.70 0.69 0.75 0.71 0.73 0.72 0.75 0.71
3 2.01 2.09 2.05 2.22 2.02 2.16 2.04 2.15 2.04 2.15 2.02 2.16 2.05 2.20 2.23 2.29 1.99 2.09 2.23 2.30
4 0.99 0.79 0.97 0.82 0.93 0.80 0.97 0.81 0.97 0.81 0.93 0.80 0.97 0.82 1.03 0.82 1.00 0.82 1.03 0.83
5 0.31 0.31 0.31 0.31 0.31 0.30 0.31 0.31 0.31 0.31 0.31 0.30 0.31 0.31 0.33 0.32 0.30 0.32 0.33 0.32
6 0.47 0.43 0.47 0.43 0.46 0.42 0.47 0.43 0.47 0.43 0.46 0.42 0.47 0.43 0.50 0.45 0.49 0.43 0.50 0.45
7 0.46 0.46 0.46 0.48 0.44 0.45 0.46 0.48 0.46 0.48 0.44 0.45 0.46 0.48 0.49 0.50 0.46 0.48 0.49 0.50
8 0.72 0.74 0.74 0.75 0.75 0.74 0.73 0.75 0.73 0.75 0.75 0.74 0.74 0.75 0.78 0.80 0.70 0.72 0.78 0.81
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Table 2. For each of the eight target distributions (i = 1, 2, . . . , 8) and each of the two sample sizes (n = 256, 1000), a cell represents the mean of the ISE(k)
i,j,n, k = 1, 2, . . . , M, minus the

lowest ISE mean for that line (i.e., minus the ISE mean of the best estimator for that specific target distribution and sample size). For each estimator (j = 1, 2, . . . , 10) and each sample size,
the total of those differences to the best ISE means is calculated on the line called “total”. For each sample size, the lowest totals are highlighted in cyan.

×10−4 i Gam (i = 1) IGam (i = 2) LN (i = 3) IGau (i = 4) RIG (i = 5) B-S (i = 6) W (i = 7) OK (i = 8) BK (i = 9) EDF (i = 10)
n j Diff. with Diff. with Diff. with Diff. with Diff. with Diff. with Diff. with Diff. with Diff. with Diff. with

Lowest Lowest Lowest Lowest Lowest Lowest Lowest Lowest Lowest Lowest
Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

256 1 0.08 0.06 0.00 0.06 0.06 0.00 0.06 0.23 0.16 0.23
2 0.23 0.14 0.00 0.14 0.13 0.00 0.14 0.40 0.32 0.40
3 0.08 0.15 0.01 0.08 0.07 0.00 0.12 0.82 0.09 0.82
4 0.38 0.24 0.00 0.25 0.24 0.00 0.23 0.60 0.43 0.60
5 0.05 0.08 0.09 0.07 0.07 0.08 0.08 0.16 0.00 0.17
6 0.12 0.10 0.00 0.10 0.10 0.00 0.10 0.32 0.24 0.32
7 0.07 0.10 0.00 0.09 0.09 0.00 0.08 0.27 0.05 0.27
8 0.13 0.19 0.25 0.11 0.11 0.25 0.19 0.46 0.00 0.46

total 1.14 1.07 0.35 0.89 0.88 0.34 0.99 3.26 1.29 3.28

1000 1 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.05 0.03 0.05
2 0.04 0.02 0.00 0.02 0.02 0.00 0.02 0.07 0.06 0.08
3 0.02 0.06 0.03 0.05 0.05 0.03 0.06 0.24 0.00 0.24
4 0.06 0.04 0.00 0.04 0.04 0.00 0.04 0.10 0.07 0.10
5 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.03 0.00 0.03
6 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.04 0.04 0.04
7 0.01 0.02 0.00 0.02 0.02 0.00 0.02 0.05 0.02 0.05
8 0.02 0.04 0.05 0.03 0.03 0.05 0.04 0.08 0.00 0.08

total 0.20 0.23 0.10 0.20 0.20 0.10 0.24 0.66 0.22 0.68
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Figure 2. The Burr (1, 3, 1) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere else.
Each plot has ten estimates in blue for the Burr (1, 3, 1) c.d.f. using one of the ten estimators (the name of the corresponding
kernel is indicated above each graph) and n = 256.
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Figure 3. The Gamma (0.6, 2) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere
else. Each plot has ten estimates in blue for the Gamma (0.6, 2) c.d.f. using one of the ten estimators (the name of the
corresponding kernel is indicated above each graph) and n = 256.



Mathematics 2021, 9, 2605 18 of 35

0 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

Density of Gamma(4,2)

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Gam

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

IGam

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

LN

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

IGau

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

RIG

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

B−S

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

W

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

OK

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

BK

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

EDF

Figure 4. The Gamma (4, 2) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere else.
Each plot has ten estimates in blue for the Gamma (4, 2) c.d.f. using one of the ten estimators (the name of the corresponding
kernel is indicated above each graph) and n = 256.
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Figure 5. The GeneralizedPareto (0.4, 1, 0) density function appears on the top-left, and the target c.d.f. is depicted in red
everywhere else. Each plot has ten estimates in blue for the GeneralizedPareto (0.4, 1, 0) c.d.f. using one of the ten estimators
(the name of the corresponding kernel is indicated above each graph) and n = 256.
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Figure 6. The HalfNormal (1) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere
else. Each plot has ten estimates in blue for the HalfNormal (1) c.d.f. using one of the ten estimators (the name of the
corresponding kernel is indicated above each graph) and n = 256.
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Figure 7. The LogNormal (0, 0.75) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere
else. Each plot has ten estimates in blue for the LogNormal (0, 0.75) c.d.f. using one of the ten estimators (the name of the
corresponding kernel is indicated above each graph) and n = 256.
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Figure 8. The Weibull (1.5, 1.5) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere
else. Each plot has ten estimates in blue for the Weibull (1.5, 1.5) c.d.f. using one of the ten estimators (the name of the
corresponding kernel is indicated above each graph) and n = 256.
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Figure 9. The Weibull (3, 2) density function appears on the top-left, and the target c.d.f. is depicted in red everywhere else.
Each plot has ten estimates in blue for the Weibull (3, 2) c.d.f. using one of the ten estimators (the name of the corresponding
kernel is indicated above each graph) and n = 256.
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9. Discussion of the Simulation Results

In Table 1, the mean and standard deviation of the ISE(k)
i,j,n, k = 1, 2, . . . , M, are dis-

played for the eight target distributions (i = 1, 2, . . . , 8), the ten estimators (j = 1, 2, . . . , 10)
and the two sample sizes (n = 256, 1000). All the values presented in the table have been
multiplied by 104. For each line in the table (i.e., for each target distribution and each
sample size), the lowest ISE means are highlighted in cyan. We see that the LogNormal (LN)
and Birnbaum–Saunders (B–S) kernel c.d.f. estimators performed the best (had the lowest
ISE means) for the majority of the target distributions considered (for j = 1, 2, 3, 4, 6, 7
when n = 256, and for j = 1, 2, 4, 6, 7 when n = 1000). They also always did so in pair,
with the same ISE mean up to the second decimal. For the remaining cases, the boundary
kernel c.d.f. estimator (BK) from Tenreiro [57] had the lowest ISE means. As expected, the
ordinary kernel c.d.f. estimator and the empirical c.d.f. performed the worst. The standard
deviations are fairly stable across all estimators for any given target distribution and sample
size (this can also be seen in Figure 1), so our analysis focuses on the ISE means. In [41],
the authors reported that the empirical c.d.f. performed better than the BK estimator, but
this has to be a programming error (especially since the bandwidth was optimized with a
plug-in method). Overall, our means and standard deviations in Table 1 seem to be lower
than the ones reported in [41] at least in part because we used a more precise option (the
pracma::integral function in R) to approximate the integrals involved in the bandwidth
selection procedures and the computation of the ISE’s. In all cases, the asymmetric kernel
estimators were at least competitive with the BK estimator in Table 1. To give an idea of
the shape of the eight target distributions and the corresponding estimates for each of the
ten estimators, we plotted the eight target c.d.f.s and ten estimates for each estimator (one
figure for each of the eight target distributions, ten graphs per figure for the ten estimators,
and ten estimates per graph) in Figures 2–9 when the sample size is n = 256.

In Table 2, for each of the eight target distributions (i = 1, 2, . . . , 8) and each of the
two sample sizes (n = 256, 1000), a cell represents the mean of the ISE(k)

i,j,n, k = 1, 2, . . . , M,
minus the lowest ISE mean for that line (i.e., minus the ISE mean of the best estimator for
that specific target distribution and sample size). For each estimator (j = 1, 2, . . . , 10) and
each sample size, the total of those differences to the best ISE means is calculated on the line
called “total”. For each sample size, the lowest totals are highlighted in cyan. We see that
Table 2 paints a nice picture of the asymmetric kernel c.d.f. estimators’ performance. Indeed,
it shows that for each sample size (n = 256, 1000), the total of the differences to the best
ISE means is significantly lower for the LogNormal (LN) and Birnbaum–Saunders (B–S)
kernel c.d.f. estimators compared to all the other alternatives. For instance, the boundary
kernel (BK) c.d.f. estimator would have been the go-to method in the past, but our results
show that the total (over the eight target distributions) of the ISE mean differences to the
best ISE means is more than three times lower for the LN and B–S kernel c.d.f. estimators
compared to the BK c.d.f. estimator when n = 256, and similarly, it is more than two times
lower for the LN and B–S kernel c.d.f. estimators compared to the BK c.d.f. estimator when
n = 1000. Even if we put aside the best asymmetric kernel c.d.f. estimators, the totals of
the ISE mean differences to the best ISE means for all the other asymmetric kernel c.d.f.
estimators are also lower than for the BK c.d.f. estimator when n = 256, and they are in
the same range (or better in the case of LN and B–S) when n = 1000. This means that all
the asymmetric kernel estimators are overall better alternatives (or at least always remain
competitive) compared to the BK estimator, although the advantage seems to dissipate
(except for LN and B–S) when n increases.

10. Conclusions

In this paper, we considered five new asymmetric kernel c.d.f. estimators, namely
the Gamma (Gam), inverse Gamma (IGam), LogNormal (LN), inverse Gaussian (IGau)
and reciprocal inverse Gaussian (RIG) kernel c.d.f. estimators. We proved the asymptotic
normality of these estimators and we also found asymptotic expressions for their bias,
variance, mean squared error and mean integrated squared error. The expressions for
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the optimal bandwidth under the mean integrated squared error were used in each case
to implement a bandwidth selection procedure in our simulation study. With the same
experimental design as Mombeni et al. [41] (but with an improved approximation of the
integrals involved in the bandwidth selection procedures and the computation of the ISE’s),
our results show that the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators
perform the best overall. The results also show that all seven asymmetric kernel c.d.f.
estimators are better in some cases and always at least competitive against the boundary
kernel alternative presented by Tenreiro [57]. In that sense, all seven asymmetric kernel
c.d.f. estimators are safe to use in place of more traditional methods. We recommend using
the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators in the future.
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Appendix A. Proof of the Results for the Gam Kernel

Proof of Lemma 1. If T denotes a random variable with the density

kGam(t | α, θ) =
tα−1e−t/θ

θαΓ(α)
, with (α, θ) = (b−1x + 1, b), (A1)

then integration by parts yields

E[F̂Gam
n,b (x)]− F(x) = E[F(T)]− F(x)

= f (x) ·E[T − x] +
1
2

f ′(x) ·E[(T − x)2] + ox
(
E[(T − x)2]

)
(A2)

= f (x) · b + 1
2

f ′(x) · b(2b + x) + ox(b)

= b · ( f (x) +
x
2

f ′(x)) + ox(b).

Now, we want to compute the expression for the variance. Let S be a random variable
with density t 7→ 2kGam(t | b−1x + 1, b)KGam(t | b−1x + 1, b) and note that min{T1, T2} has
that particular distribution if T1, T2 ∼ Gam(b−1x + 1, b) are independent. Then, integration
by parts and Corollary A1 yield, for any given x ∈ (0, ∞),
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E
[
K2

Gam(X1, b−1x + 1, b)
]
= E[F(S)]

= F(x) + f (x) ·E[S− x] +Ox
(
E[(S− x)2]

)
= F(x) + f (x) ·

[
−
√

bx
π

+Ox(b)
]
+Ox(b) (A3)

= F(x)− b1/2 ·
√

x f (x)√
π

+Ox(b),

so that

Var(F̂Gam
n,b (x)) = n−1E

[
K2

Gam(X1, b−1x + 1, b)
]
− n−1(E[F̂Gam

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 ·
√

x f (x)√
π

+Ox(n−1b). (A4)

This ends the proof.

Proof of Proposition 1. Note that F̂Gam
n,b (x)−E[F̂Gam

n,b (x)] = 1
n ∑n

i=1 Zi,b, where

Zi,b := KGam(Xi | b−1x + 1, b)−E[KGam(Xi | b−1x + 1, b)], 1 ≤ i ≤ n, (A5)

are i.i.d. and centered random variables. It suffices to show the following Lindeberg
condition for double arrays (see, e.g., Section 1.9.3 in [62]): for every ε > 0,

s−2
b E

[
Z2

1,b1{|Z1,b |>εn1/2sb}
]
−→ 0, as n→ ∞, (A6)

where s2
b := E[Z2

1,b] and b = b(n) → 0. This follows from the fact that |Z1,b| ≤ 2 for all
b > 0, and sb = (nVar(F̂Gam

n,b ))1/2 → F(x)(1− F(x)) as n→ ∞ by Lemma 1.

Appendix B. Proof of the Results for the IGam Kernel

Proof of Lemma 2. If T denotes a random variable with the density

kIGam(t | α, θ) =
t−α−1e−1/(tθ)

θαΓ(α)
, with (α, θ) = (b−1 + 1, x−1b), (A7)

then integration by parts yields (assuming 0 < b < 1/2)

E[F̂IGam
n,b (x)]− F(x) = E[F(T)]− F(x)

= f (x) ·E[T − x] +
1
2

f ′(x) ·E[(T − x)2] + ox
(
E[(T − x)2]

)
(A8)

= f (x) · 0 + 1
2

f ′(x) · bx2

1− b
+ ox(b)

= b · x2

2
f ′(x) + ox(b).

Now, we want to compute the expression for the variance. Let S be a random
variable with density t 7→ 2kIGam(t | b−1 + 1, x−1b)KIGam(t | b−1 + 1, x−1b) and note that
min{T1, T2} has that particular distribution if T1, T2 ∼ IGam(b−1 + 1, x−1b) are indepen-
dent. Then, integration by parts and Corollary A2, for any given x ∈ (0, ∞),
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E
[
K2

IGam(X1, b−1 + 1, x−1b)
]
= E[F(S)]

= F(x) + f (x) ·E[S− x] +Ox
(
E[(S− x)2]

)
(A9)

= F(x) + f (x) ·
[
− x

√
b
π

+Ox(b)
]
+Ox(b)

= F(x)− b1/2 · x f (x)√
π

+Ox(b),

so that

Var(F̂IGam
n,b (x)) = n−1E

[
K2

IGam(X1, b−1 + 1, x−1b)
]
− n−1(E[F̂IGam

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√
π

+Ox(n−1b). (A10)

This ends the proof.

Proof of Proposition 3. Note that F̂IGam
n,b (x)−E[F̂IGam

n,b (x)] = 1
n ∑n

i=1 Zi,b, where

Zi,b := KIGam(Xi | b−1 + 1, x−1b)−E[KIGam(Xi | b−1 + 1, x−1b)], 1 ≤ i ≤ n, (A11)

are i.i.d. and centered random variables. It suffices to show the following Lindeberg
condition for double arrays (see, e.g., Section 1.9.3 in [62]): for every ε > 0,

s−2
b E

[
Z2

1,b1{|Z1,b |>εn1/2sb}
]
−→ 0, as n→ ∞, (A12)

where s2
b := E[Z2

1,b] and b = b(n) → 0. This follows from the fact that |Z1,b| ≤ 2 for all
b > 0, and sb = (nVar(F̂IGam

n,b ))1/2 → F(x)(1− F(x)) as n→ ∞ by Lemma 2.

Appendix C. Proof of the Results for the LN Kernel

Proof of Lemma 3. If T denotes a random variable with the density

kLN(t | µ, σ) =
1

t
√

2πσ2
exp

(
− (log t− µ)2

2σ2

)
, with (µ, σ) = (log x,

√
b), (A13)

then integration by parts yields

E[F̂LN
n,b (x)]− F(x) = E[F(T)]− F(x)

= f (x) ·E[T − x] +
1
2

f ′(x) ·E[(T − x)2] + ox
(
E[(T − x)2]

)
(A14)

= f (x) · x(eb/2 − 1) +
1
2

f ′(x) · x2(e2b − 2eb/2 + 1) + ox(b)

= b · x
2
( f (x) + x f ′(x)) + ox(b).

Now, we want to compute the expression for the variance. Let S be a random variable
with density t 7→ 2kLN(t | log x,

√
b)KLN(t | log x,

√
b) and note that min{T1, T2} has that

particular distribution if T1, T2 ∼ LN(log x,
√

b) are independent. Then, integration by
parts and Corollary A3 yield, for any given x ∈ (0, ∞),
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E
[
K2

LN(X1, log x,
√

b)
]
= E[F(S)]

= F(x) + f (x) ·E[S− x] +Ox
(
E[(S− x)2]

)
(A15)

= F(x) + f (x) ·
[
b1/2 · −x√

π
+Ox(b)

]
+Ox(b)

= F(x)− b1/2 · x f (x)√
π

+Ox(b),

so that

Var(F̂LN
n,b (x)) = n−1E

[
K2

LN(X1, log x,
√

b)
]
− n−1(E[F̂LN

n,b (x)]
)2

= n−1F(x)(1− F(x))− n−1b1/2 · x f (x)√
π

+Ox(n−1b). (A16)

This ends the proof.

Proof of Proposition 5. Note that F̂LN
n,b (x)−E[F̂LN

n,b (x)] = 1
n ∑n

i=1 Zi,b, where

Zi,b := KLN(Xi | log x,
√

b)−E[KLN(Xi | log x,
√

b)], 1 ≤ i ≤ n, (A17)

are i.i.d. and centered random variables. It suffices to show the following Lindeberg
condition for double arrays (see, e.g., Section 1.9.3 in [62]): for every ε > 0,

s−2
b E

[
Z2

1,b1{|Z1,b |>εn1/2sb}
]
−→ 0, as n→ ∞, (A18)

where s2
b := E[Z2

1,b] and b = b(n) → 0. This follows from the fact that |Z1,b| ≤ 2 for all
b > 0, and sb = (nVar(F̂LN

n,b ))
1/2 → F(x)(1− F(x)) as n→ ∞ by Lemma 3.

Appendix D. Proof of the Results for the IGau Kernel

Proof of Lemma 4. If T denotes a random variable with the density

kIGau(t | µ, λ) =

√
λ

2πt3 exp
(
− λ

(t− µ)2

2µ2t

)
, with (µ, λ) = (x, b−1x), (A19)

then integration by parts yields

E[F̂IGau
n,b (x)]− F(x) = E[F(T)]− F(x)

= f (x) ·E[T − x] +
1
2

f ′(x) ·E[(T − x)2] + ox
(
E[(T − x)2]

)
(A20)

= f (x) · 0 + 1
2

f ′(x) · x2b + ox(b)

= b · x2

2
f ′(x) + ox(b).

Now, we want to compute the expression for the variance. Let S be a random variable
with density t 7→ 2kIGau(t | x, b−1x)KIGau(t | x, b−1x) and note that min{T1, T2}, which
can also be written as 1

2 (T1 + T2)− 1
2 |T1 − T2|, has that particular distribution if T1, T2 ∼

IGau(x, b−1x) are independent. Then, integration by parts together with the fact that
E[T1] = E[T2] = x yield, for any given x ∈ (0, ∞),



Mathematics 2021, 9, 2605 29 of 35

E
[
K2

IGau(X1, x, b−1x)
]
= E[F(S)]

= F(x) + f (x) ·E[S− x] +Ox
(
E[(S− x)2]

)
= F(x) + f (x) ·

{
− 1

2
E[|T1 − T2|]

}
+Ox(b)

= F(x)− b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
+Ox(b), (A21)

so that

Var(F̂IGau
n,b (x)) = n−1E

[
K2

IGau(X1, x, b−1x)
]
− n−1(E[F̂IGau

n,b (x)]
)2

= n−1F(x)(1− F(x))

− n−1b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
+Ox(n−1b). (A22)

This ends the proof.

Proof of Proposition 7. Note that F̂IGau
n,b (x)−E[F̂IGau

n,b (x)] = 1
n ∑n

i=1 Zi,b, where

Zi,b := KIGau(Xi | x, b−1x)−E[KIGau(Xi | x, b−1x)], 1 ≤ i ≤ n, (A23)

are i.i.d. and centered random variables. It suffices to show the following Lindeberg
condition for double arrays (see, e.g., Section 1.9.3 in [62]): for every ε > 0,

s−2
b E

[
Z2

1,b1{|Z1,b |>εn1/2sb}
]
−→ 0, as n→ ∞, (A24)

where s2
b := E[Z2

1,b] and b = b(n) → 0. This follows from the fact that |Z1,b| ≤ 2 for all
b > 0, and sb = (nVar(F̂IGau

n,b ))1/2 → F(x)(1− F(x)) as n→ ∞ by Lemma 4.

Appendix E. Proof of the Results for the RIG Kernel

Proof of Lemma 5. If T denotes a random variable with the density

kRIG(t | µ, λ) =
√

λ
2πt exp

(
− λ

(1−µt)2

2µ2t

)
, with (µ, λ) = (x−1(1− b)−1, x−1b−1), (A25)

then integration by parts yields

E[F̂RIG
n,b (x)]− F(x) = E[F(T)]− F(x)

= f (x) ·E[T − x] +
1
2

f ′(x) ·E[(T − x)2] + ox
(
E[(T − x)2]

)
(A26)

= f (x) · 0 + 1
2

f ′(x) · x2b(1 + b) + ox(b)

= b · 1
2

x2 f ′(x) + ox(b).

Now, we want to compute the expression for the variance. Let S be a random variable
with density t 7→ 2kRIG(t | x−1(1− b)−1, x−1b−1)KRIG(t | x−1(1− b)−1, x−1b−1) and note
that min{T1, T2}, which can also be written as 1

2 (T1 + T2)− 1
2 |T1 − T2|, has that particular

distribution if T1, T2 ∼ RIG(x−1(1− b)−1, x−1b−1) are independent. Then, integration by
parts together with the fact that E[T1] = E[T2] = x yield, for any given x ∈ (0, ∞),
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E
[
K2

RIG(X1, x−1(1− b)−1, x−1b−1)
]
= E[F(S)]

= F(x) + f (x) ·E[S− x] +Ox
(
E[(S− x)2]

)
= F(x) + f (x) ·

{
− 1

2
E[|T1 − T2|]

}
+Ox(b)

= F(x)− b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
+Ox(b), (A27)

so that

Var(F̂RIG
n,b (x)) = n−1E

[
K2

RIG(X1, x−1(1− b)−1, x−1b−1)
]
− n−1(E[F̂RIG

n,b (x)]
)2

= n−1F(x)(1− F(x))

− n−1b1/2 · f (x)
2

[
lim
b→0

b−1/2 E[|T1 − T2|]
]
+Ox(n−1b). (A28)

This ends the proof.

Proof of Proposition 9. Note that F̂RIG
n,b (x)−E[F̂RIG

n,b (x)] = 1
n ∑n

i=1 Zi,b, where

Zi,b := KRIG(Xi | x−1(1− b)−1, x−1b−1)

−E[KRIG(Xi | x−1(1− b)−1, x−1b−1)], 1 ≤ i ≤ n,
(A29)

are i.i.d. and centered random variables. It suffices to show the following Lindeberg
condition for double arrays (see, e.g., Section 1.9.3 in [62]): for every ε > 0,

s−2
b E

[
Z2

1,b1{|Z1,b |>εn1/2sb}
]
−→ 0, as n→ ∞, (A30)

where s2
b := E[Z2

1,b] and b = b(n) → 0. This follows from the fact that |Z1,b| ≤ 2 for all
b > 0, and sb = (nVar(F̂RIG

n,b ))1/2 → F(x)(1− F(x)) as n→ ∞ by Lemma 5.

Appendix F. Technical Lemmas

The lemma below computes the first two moments for the minimum of two i.i.d.
random variables with a Gamma distribution. The proof is a slight generalization of the
answer provided by Felix Marin in the following MathStackExchange post (https://math.
stackexchange.com/questions/3910094/how-to-compute-this-double-integral-involving-
the-gamma-function) (accessed on 15 September 2021).

Lemma A1. Let X, Y i.i.d.∼ Gamma(α, θ), then

E[(min{X, Y})j] =
θ jΓ(α + j)

Γ(α)
− jθ j
√

π
· Γ(α + j− 1/2)

Γ(α)
, j ∈ {1, 2}, (A31)

where Γ(α) :=
∫ ∞

0 tα−1e−tdt denotes the gamma function. In particular, for all x ∈ R,

E[(min{X, Y} − x)] = θα− θ√
π
· Γ(α + 1/2)

Γ(α)
− x, (A32)

E[(min{X, Y} − x)2] = θ2α(α + 1)− 2θ2
√

π
· Γ(α + 3/2)

Γ(α)

− 2x
[

θα− θ√
π
· Γ(α + 1/2)

Γ(α)

]
+ x2. (A33)

https://math.stackexchange.com/questions/3910094/how-to-compute-this-double-integral-involving-the-gamma-function
https://math.stackexchange.com/questions/3910094/how-to-compute-this-double-integral-involving-the-gamma-function
https://math.stackexchange.com/questions/3910094/how-to-compute-this-double-integral-involving-the-gamma-function
https://math.stackexchange.com/questions/3910094/how-to-compute-this-double-integral-involving-the-gamma-function
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Proof. Assume throughout the proof that j ∈ {1, 2}. By the simple change of variables
(u, v) = (x/θ, y/θ), we have

E[(min{X, Y})j] = 2
∫ ∞

0

∫ ∞

0
yj (xy)α−1e−(x+y)/θ

θ2αΓ2(α)
1[0,∞)(x− y)dxdy

=
2θ j

Γ2(α)

∫ ∞

0

∫ ∞

0
uα−1e−uvα+j−1e−v 1[0,∞)(u− v)dudv. (A34)

By the integral representation of the Heaviside function

1[0,∞)(x) = lim
ε→0+

1
2πi

∫ ∞

−∞

1
τ − iε

eixτdτ, (A35)

the above is

=
2θ j

Γ2(α)
lim

ε→0+

1
2πi

∫ ∞

−∞

1
τ − iε

∫ ∞

0
uα−1e−(1−iτ)udu︸ ︷︷ ︸
= (1−iτ)−αΓ(α)

∫ ∞

0
vα+j−1e−(1+iτ)vdv︸ ︷︷ ︸

= (1+iτ)−α−jΓ(α+j)

dτ

=
2θ jΓ(α + j)

Γ(α)
lim

ε→0+

1
2πi

∫ ∞

−∞

(1 + τ2)−α(1 + iτ)−j

τ − iε
dτ

=
2θ jΓ(α + j)

Γ(α)

{
P.V. 1

2πi

∫ ∞
−∞

(1+τ2)−α(1+iτ)−j

τ dτ

+ 1
2πi

∫ ∞
−∞(1 + τ2)−α(1 + iτ)−j · iπδ(τ)dτ

}
, (A36)

where δ denotes the Dirac delta function. The second term in the last brace is 1/2 and the
principal value is

=
1

2πi

∫ ∞

0

(1 + τ2)−α

τ

[
1

(1 + iτ)j −
1

(1− iτ)j

]
dτ

= − j
π

∫ ∞

0
(1 + τ2)−α−jdτ, (A37)

where we crucially used the fact that j ∈ {1, 2} to obtain the last equality. Putting all the
work back in (A36), we obtain

E[(min{X, Y})j] =
2θ jΓ(α + j)

Γ(α)

{
− j

π

∫ ∞

0
(1 + τ2)−α−jdτ +

1
2

}
=

2θ jΓ(α + j)
Γ(α)

{
− j

2π

∫ ∞

0
t1/2−1(1 + t)−α−jdt +

1
2

}
. (A38)

The remaining integral can be evaluated using Ramanujan’s master theorem. Indeed,
note that

(1 + t)−α−j =
∞

∑
k=0

(
−α− j

k

)
tk =

∞

∑
k=0

(
α + j + k− 1

k

)
(−t)k

=
∞

∑
k=0

ϕ(k)
(−t)k

k!
, with ϕ(z) :=

Γ(α + j + z)
Γ(α + j)

. (A39)

Therefore,∫ ∞

0
t1/2−1(1 + t)−α−jdt = Γ(1/2)ϕ(−1/2) =

√
π Γ(α + j− 1/2)

Γ(α + j)
. (A40)
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By putting this result in (A38), we obtain

E[(min{X, Y})j] =
θ jΓ(α + j)

Γ(α)
− jθ j
√

π
· Γ(α + j− 1/2)

Γ(α)
. (A41)

This ends the proof.

Corollary A1. Let X, Y i.i.d.∼ Gamma(b−1x + 1, b) for some x, b ∈ (0, ∞), then

E[(min{X, Y} − x)] = b
( x

b
+ 1
)
− b√

π
·

Γ( x
b + 3/2)

Γ( x
b + 1)

− x

= −
√

bx
π

+ b +Ox(b3/2), (A42)

E[(min{X, Y} − x)2] = b2
( x

b
+ 1
)( x

b
+ 2
)
− 2b2
√

π
·

Γ( x
b + 5/2)

Γ( x
b + 1)

− 2x
[

x−
√

bx
π

+ b +Ox(b3/2)

]
+ x2

= bx +Ox(b3/2). (A43)

The lemma below computes the first two moments for the minimum of two i.i.d.
random variables with an inverse Gamma distribution.

Lemma A2. Let X, Y i.i.d.∼ InverseGamma(α, θ) and assume α > 2, then

E[(min{X, Y})j] =
θ−jΓ(α− j)

Γ(α)
− jθ−j
√

π
· Γ(α− j)Γ(α− 1/2)

Γ2(α)
, j ∈ {1, 2}, (A44)

where Φ denotes the c.d.f. of the standard normal distribution. In particular, for all x ∈ R,

E[(min{X, Y} − x)] =
θ−1

α− 1

[
1− 1√

π
· Γ(α− 1/2)

Γ(α)

]
− x, (A45)

E[(min{X, Y} − x)2] =
θ−2

(α− 1)(α− 2)

[
1− 2√

π
· Γ(α− 1/2)

Γ(α)

]
− 2x

θ−1

α− 1

[
1− 1√

π
· Γ(α− 1/2)

Γ(α)

]
+ x2. (A46)

Proof. Assume throughout the proof that j ∈ {1, 2}. By the simple change of variables
(u, v) = (x−1/θ, y−1/θ) and the reparametrization α̃ := α− j > 0, we have

E[(min{X, Y})j] = 2
∫ ∞

0

∫ ∞

0
yj (xy)−α−1e−(x−1+y−1)/θ

θ2αΓ2(α)
1[0,∞)(x− y)dxdy

=
2θ−j

Γ2(α)

∫ ∞

0

∫ ∞

0
uα−1e−uvα−j−1e−v 1[0,∞)(v− u)dudv

=
2θ−j

Γ2(α)

∫ ∞

0

∫ ∞

0
uα̃+j−1e−uvα̃−1e−v 1[0,∞)(v− u)dudv. (A47)

We already evaluated this double integral in the proof of Lemma A1 (with α instead
of α̃). The above is

=
2θ−j

Γ2(α)
· Γ(α̃)

2

[
Γ(α̃ + j)− j

2
√

π
· Γ(α̃ + j− 1/2)

]
. (A48)

This ends the proof.
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Corollary A2. Let X, Y i.i.d.∼ InverseGamma(b−1 + 1, x−1b) for some x ∈ (0, ∞) and b ∈
(0, 1), then

E[(min{X, Y} − x)] = − x√
π
· Γ(b−1 + 1/2)

Γ(b−1 + 1)

= −x

√
b
π

+Ox(b3/2), (A49)

E[(min{X, Y} − x)2] = x2
[

1
1− b

− 1
]
− 2x2
√

π

Γ(b−1 + 1/2)
Γ(b−1 + 1)

[
1

1− b
− 1
]

= bx2 +Ox(b3/2). (A50)

The lemma below computes the first two moments for the minimum of two i.i.d.
random variables with a LogNormal distribution.

Lemma A3. Let X, Y i.i.d.∼ LogNormal(µ, σ), then

E[(min{X, Y})a] = 2eaµ+ (aσ)2
2 Φ

(
− aσ√

2

)
, a > 0, (A51)

where Φ denotes the c.d.f. of the standard normal distribution. In particular, for all x ∈ R,

E[(min{X, Y} − x)] = 2eµ+ σ2
2 Φ
(
− σ√

2

)
− x,

E[(min{X, Y} − x)2] = 2e2µ+2σ2
Φ
(
−
√

2 σ
)
− 4xeµ+ σ2

2 Φ
(
− σ√

2

)
+ x2.

Proof. With the change of variables(
u
v

)
=

1√
2

(
1 −1
1 1

)(
x
y

)
,

∣∣∣∣d(u, v)
d(x, y)

∣∣∣∣ = 1, (A52)

we have

E[(min{X, Y})a] = 2
∫ ∞

−∞

∫ ∞

y
ea(µ+σy) 1

2π
e−

x2+y2
2 dxdy

= 2
∫ ∞

−∞

∫ ∞

0
ea(µ+σ·−u+v√

2
) 1
2π

e−
u2+v2

2 dudv

= 2eaµ+ (aσ)2
2

∫ ∞

−∞

∫ ∞

0

1√
2π

e−
(u+ aσ√

2
)2

2
1√
2π

e−
(v− aσ√

2
)2

2 dudv (A53)

= 2eaµ+ (aσ)2
2 Φ

(
− aσ√

2

)
.

This ends the proof.

Corollary A3. Let X, Y i.i.d.∼ LogNormal(log x,
√

b) for some x, b ∈ (0, ∞), then

E[(min{X, Y} − x)] = x
[
2eb/2Φ

(
−
√

b
2

)
− 1
]

= −x

√
b
π

+
bx
2

+Ox(b3/2),

E[(min{X, Y} − x)2] = x2
[
2e2bΦ

(
−
√

2b
)
− 4eb/2Φ

(
−
√

b
2

)
+ 1
]

= bx2 +Ox(b3/2).
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