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Abstract: Let (X , d, µ) be a space of homogeneous type in the sense of Coifman and Weiss. In this
article, the author develops a partial theory of paraproducts {Πj}3

j=1 defined via approximations
of the identity with exponential decay (and integration 1), which are extensions of paraproducts
defined via regular wavelets. Precisely, the author first obtains the boundedness of Π3 on Hardy
spaces and then, via the methods of interpolation and the well-known T(1) theorem, establishes
the endpoint estimates for {Πj}3

j=1. The main novelty of this paper is the application of the Abel

summation formula to the establishment of some relations among the boundedness of {Πj}3
j=1,

which has independent interests. It is also remarked that, throughout this article, µ is not assumed to
satisfy the reverse doubling condition.
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1. Introduction

Classical paraproducts defined via convolutions are kinds of non-commutative bi-
linear operators, which are useful tools in the decompositions of products of functions.
The prototypes of paraproducts can be found, for examples, in the work of Fujita and
Kato [1] and Kato [2] on the study of mild solutions of Navier–Stokes equations and in the
investigation of pseudo-differential operators and para-differential operators by Meyer and
Coifman [3–5]. The formal notion of paraproducts has been introduced in 1981 by Bony for
the study of the nonlinear hyperbolic partial differential equations in [6]. Since then the
theory of papraproducts has been developed rapidly, which plays an essential role in both
harmonic analysis and partial differential equations. For applications of paraproducts in
harmonic analysis, we refer the reader to [7–16]. See also [17,18] for more applications of
paraproducts in mathematical physics. The paraproducts defined via wavelets was first
investigated by Grafakos and Torres [19] and then studied by Bonami et al. [20], which
play crucial roles in both the bilinear decompositions of products of functions in [20,21],
the (sub-)bilinear decompositions of commutators and the endpoint estimates of commuta-
tors in [22,23]. See the survey [24] and the monographs [25,26] for more information.

In 1970s, Coifman and Weiss [27,28] introduced the notion of the space of homoge-
neous type which has been proven to be a natural background for extensions of many
classical results on Euclidean spaces. Recall that a quasi-metric space (X , d) is a non-empty
set X equipped with a quasi-metric d such that, for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) the quasi-triangle inequality d(x, y) ≤ A0[d(x, z) + d(z, y)] holds true, where A0 ∈

[1, ∞) is called the quasi-triangle constant which is independent of x, y and z.

The triple (X , d, µ) is called a space of homogeneous type if µ is a non-negative measure
satisfying the following doubling condition: there exists a positive constant C(X ) ∈ [1, ∞),
depending on X , such that, for any r ∈ (0, ∞) and x ∈ X ,

µ(B(x, 2r)) ≤ C(X ) µ(B(x, r))
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or, equivalently, there exists a positive constant C such that, for any λ ∈ [1, ∞), r ∈ (0, ∞)
and x ∈ X ,

µ(B(x, λr)) ≤ Cλnµ(B(x, r)), (1)

where B(x, r) := {y ∈ X : d(y, x) < r} and n := log 2C(X ) represents the “upper
dimension” of X .

As in ([29], Section 1) (see also ([30], Section 1)), throughout the whole article, we
always assume that (X , d, µ) is a space of homogeneous type satisfying the following
additional assumptions:

(i) Suppose that, for any given x ∈ X , the sequence of balls, {B(x, r)}r∈(0,∞), in X is a
basis of open neighborhoods around x.

(ii) Assume that µ satisfies that all the open sets are measurable and, for any measurable
set A ⊂ X , there exists a Borel set E ⊃ A such that µ(A) = µ(E), which is called
Borel regular.

(iii) Suppose that, for any x ∈ X and r ∈ (0, ∞), µ(B(x, r)) ∈ (0, ∞).
(iv) For the sake of the presentation simplicity, without loss of generality, we always

assume that diam (X ) := sup{d(x, y) : x, y ∈ X} = ∞ and (X , d, µ) is non-atomic,
that is, for any x ∈ X , µ({x}) = 0.

It was shown in ([31], Lemma 5.1) or ([32], Lemma 8.1) (see also ([30], Section 1)) that,
under the above assumptions, diam (X ) = ∞ if and only if µ(X ) = ∞.

A space of homogeneous type, (X , d, µ), is called an RD-space introduced by Han
et al. [33] (see also [34]) if µ further satisfies the following reverse doubling condition (or,
for brevity, RD-condition): there exist positive constants a0, C̃(X ) ∈ (1, ∞), depending on X ,
such that, for any x ∈ X and r ∈ (0, diam (X )/a0),

µ(B(x, a0r)) ≥ C̃(X )µ(B(x, r)). (2)

Notice that the harmonic analysis on spaces of homogeneous type has a long history;
see, for example, [27,28,35,36]. We refer the reader to [33,34,37–46] for the real-variable
theory of some function spaces and Calderón–Zygmund operators on RD-spaces. Further-
more, for some recent developments on the real-variable theory of function spaces and its
applications on spaces of homogeneous type, please see [29,47–61].

Some progress is also made on the boundedness of paraproducts on metric measure
spaces. Let (X , d, µ) be an RD-space. Han et al. ([33], Theorem 5.56) extended the cele-
brated T(1)-theorem of David and Journé [11] to the RD-space via paraproducts. Later,
Grafakos et al. [43] introduced a kind of paraproducts on X , which extends the correspond-
ing notion of paraproducts in ([33], Theorem 5.56), and investigated their boundedness
from Hp(X )× Hq(X ) into Hr(X ) by (in)homogeneous Calderón reproducing formulae,
which also generalizes a classical result on Euclidean spaces obtained by Grafakos and
Kalton [14]. Grafakos et al. [43] also studied the endpoint estimates of paraproducts on
X via the theory of Calderón–Zygmund operators. Moreover, via the off-diagonal es-
timates of integral kernels, Grafakos et al. [42] showed that a kind of bilinear discrete
paraproducts on X via the theory of multilinear Calderón–Zygmund operators established
in [42], are bounded on weighted Lebesgue spaces, Triebel–Lizorkin spaces and Besov
spaces. Recently, Chang et al. [30,62] showed that the aforementioned boundedness of
paraproducts on RD-spaces remains true on spaces of homogeneous type, namely, without
having recourse to the RD-condition (2).

A space of homogeneous type, (X , d, µ), is called a metric measure space of homogeneous
type if the quasi-triangle constant A0 = 1. In this setting, Fu et al. [48] proved that f × g
of f ∈ H1

at(X ) and g ∈ BMO(X ) can be written into a sum of three bilinear operators
{Πj}3

j=1, which are also called paraproducts. These paraproducts play important roles in
the study on the endpoint boundedness of the (sub-)linear commutator [b, T] of a (sub-
)linear operator T and b ∈ BMO (X ) on (local) Hardy spaces in [29,57,58]; see also the
survey [63] for more details. A natural question is whether there exists a relatively complete
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boundedness theory for paraproducts {Πj}3
j=1 in [48] which enjoy the same boundedness

as the paraproducts in [30,62].
In this article, we give a partial affirmative answer to this question with the para-

products {Πj}3
j=1 in [48] replaced by more general forms via the exp-ATIs and 1-exp-ATIs

from [53]. We obtained the boundedness of Π3 on Hardy spaces and its endpoint estimates,
and the endpoint estimates for Π1 and Π2. The boundedness of Π1 and Π2 on Hardy
spaces may need different approaches and was left as an unsolved question.

In what follows, we always assume that (X , d, µ) is a space of homogeneous type. The
remainder of this article is organized as follows.

Section 2 is devoted to some preliminary notions and results which are needed to the
proof of the main results Theorems 2–4 below. In particular, we recall the T(1) theorem
from ([32], Section 12) (see Lemma 3 below), and use the Abel summation formula to build
some relations among the boundedness of {Πj}3

j=1 (see Theorem 1 below).
In Section 3, we prove Theorems 2–4 below. In precise, Theorem 2 is an easy conse-

quence of the Hölder inequality and the definition of Hp(X ). To show (i)–(iv) of Theorem 3,
we first fix an f ∈ BMO (X ) and express the paraproduct Π3 by an integral operator K(3)

f .
Then, via the methods of interpolation and the crucial estimates (11) and (12), we show
that K(3)

f has the weak boundedness property WBP(η) with η as in Lemma 2 below. Next

we prove that the kernel of K(3)
f is an η-Calderón–Zygmund kernel, which also relies

on estimates (11) and (12). Moreover, we point out that K(3)
f (1), (K(3)

f )∗(1) ∈ BMO (X ),
which, together with the T(1) theorem from ([32], Theorem 12.2) and the boundedness of
Calderón–Zygmund operators, we finally finish the proof of (i)-(iv) of Theorem 3. In order
to prove (v) and (vi) of Theorem 3, we first fix g ∈ L∞(X ) and write Π3 as an integral
operator K(3)

g . By the fact that L∞(X ) ⊂ BMO (X ) and some arguments used in the proof
of (i)–(iv) of Theorem 3, we obtain the desired results and finish the proof of Theorem 3.
The proof of (i)–(iv) of Theorem 4 is a consequence of the arguments and ideas from the
proof of (i)–(iv) of Theorem 3. The main novelty of this paper lies in the proof of (v)–
(vi) of Theorem 4, where we use the Abel summation formula to build some relations
among the boundedness of {Πj}3

j=1 and then transform the same boundedness of Π1 from

L2(X )× L∞(X ) into L2(X ) into the same boundedness of Π2 and Π3. We also remark that,
throughout this article, µ is not assumed to satisfy the reverse doubling condition (2).

Finally, we list some notation used throughout this article. Let N := {1, 2, . . .} and
Z+ := {0} ∪N. We use C or c to denote a positive constant which may be different from
line to line, but is independent of main parameters. In addition, we also use C(ρ, α, ...)
or c(ρ, α, ...) to denote a positive constant depending on the indicated parameters ρ, α, . . ..
For any two real functions f and g, we write f . g when f ≤ Cg and f ∼ g when
f . g . f . For any subset E of X , denote by 1E its characteristic function. For any x, y ∈ X ,
r, ρ ∈ (0, ∞) and ball B := B(x, r) := {y ∈ X : d(y, x) < r}, define ρB := B(x, ρr),
V(x, r) := µ(B(x, r)) =: Vr(x), and V(x, y) := µ(B(x, d(x, y))). For any p ∈ [1, ∞], let p′

denote its conjugate index, namely, 1/p + 1/p′ = 1. For any a, b ∈ R, let a ∧ b := min{a, b}
and a ∨ b := max{a, b}. Finally, for any linear integral operator T, we keep the notation T
for its integral kernel.

2. Preliminary Notions and Results

In this section, we mainly state some preliminary notions and results which are needed
to the proof of the main results Theorems 2–4 below. In particular, we investigate some
relations among the boundedness of {Πj}3

j=1.
We first recall the notions of some function spaces. Let q ∈ (0, ∞]. The Lebesgue space

Lq(X ) is defined to be the set of all µ-measurable functions f on X such that, if q ∈ (0, ∞),

‖ f ‖Lq(X ) :=
[∫
X
| f (x)|q dµ(x)

]1/q
< ∞;
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if q = ∞, ‖ f ‖L∞(X ) := ess sup
x∈X

| f (x)| < ∞, where ess sup
x∈X

| f (x)| denotes the essential

supremum of | f | on X . Denote by L1
loc (X ) the space of all locally integrable functions.

Let s ∈ (0, 1] and denote by C(X ) the space of all continuous functions on X . Then the
homogeneous and inhomogeneous spaces Cs(X ) and Ċs(X ) of s-Hölder continuous functions on
X are, respectively, defined by setting

Cs(X ) :=
{

f ∈ C(X ) : ‖ f ‖Cs(X ) < ∞
}

and Ċs(X ) :=
{

f ∈ C(X ) : ‖ f ‖Ċs(X ) < ∞
}

with

‖ f ‖Cs(X ) := ‖ f ‖L∞(X ) + ‖ f ‖Ċs(X ) and ‖ f ‖Ċs(X ) := sup
{(x, y)∈X×X : x 6=y}

| f (x)− f (y)|
[d(x, y)]s

.

Moreover, the space Cs
b(X ) of all s-Hölder continuous functions with bounded support on

X is defined by setting

Cs
b(X ) := { f ∈ Cs(X ) : f has bounded support},

where we equip Cs
b(X ) with the usual strict inductive limit topology (see, for instance, ([36],

p. 273) and ([33], p. 23)). A useful subspace C̊s
b(X ) of Cs

b(X ) is defined by setting C̊s
b(X ) :=

{ f ∈ Cs
b(X ) :

∫
X f (x) dµ(x) = 0}. Moreover, the dual space (Cs

b(X ))′ [resp., (C̊s
b(X ))′]

of Cs
b(X ) [resp., C̊s

b(X )] is defined to be the set of all linear functionals on Cs
b(X ) [resp.,

on C̊s
b(X )] equipped with the weak-∗ topology.

Definition 1 ([27,32,35]). Let s ∈ (0, 1]. A function K : (X ×X ) \ {(x, x) : x ∈ X} → C is
called an s-Calderón–Zygmund kernel if there exists a positive constant C(K), depending on K,
such that

(i) for any x, y ∈ X with x 6= y,

|K(x, y)| ≤ C(K)
1

V(x, y)
; (3)

(ii) for any x, x̃, y ∈ X satisfying d(x, x̃) ≤ (2A0)
−1d(x, y) with x 6= y,

|K(x, y)− K(x̃, y)| ≤ C(K)

[
d(x, x̃)
d(x, y)

]s 1
V(x, y)

(4)

and

|K(y, x)− K(y, x̃)| ≤ C(K)

[
d(x, x̃)
d(x, y)

]s 1
V(x, y)

. (5)

A linear operator T : Cs
b(X )→ (Cs

b(X ))′ is called an s-Calderón–Zygmund operator if T
can be extended to a bounded linear operator on L2(X ) and if there exists an s-Calderón–Zygmund
kernel K such that, for any f ∈ Cs

b(X ) and x /∈ supp f , T f (x) :=
∫
X K(x, y) f (y) dµ(y).

Definition 2 ([28]). Let p ∈ (0, 1] and q ∈ [1, ∞] ∩ (p, ∞]. A function a on X is called a
(p, q)-atom supported on a ball B if (i) supp a ⊂ B; (ii) ‖a‖Lq(X ) ≤ [µ(B)]1/q−1/p; (iii)∫
X a(x) dµ(x) = 0, here and thereafter, for any measurable function f , supp f := {x ∈ X :

f (x) 6= 0}.
A function f ∈ (Lip1/p−1(X ))′ when p ∈ (0, 1), or f ∈ L1(X ) when p = 1, is said

to belong to the atomic Hardy space Hp, q
at (X ) if there exist (p, q)-atoms {aj}∞

j=1 and numbers
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{λj}∞
j=1 ⊂ C such that ∑∞

j=1 |λj|p < ∞ and f = ∑∞
j=1 λjaj in (Lip1/p−1(X ))′ when p ∈ (0, 1),

or in L1(X ) when p = 1. Moreover, the quasi-norm of f in Hp, q
at (X ) is defined by setting

‖ f ‖Hp, q
at (X ) := inf


[

∞

∑
j=1
|λj|p

]1/p
,

where the infimum is taken over all decompositions of f as above.

Let p ∈ (0, 1]. It was shown in ([28], Theorem A) that Hp,q
at (X ) is independent of the

choice of q ∈ [1, ∞] ∩ (p, ∞] and hence simply denoted by Hp
at(X ).

Definition 3 (([34], Definition 2.2) and ([33], Definition 2.8)). Let x1 ∈ X be fixed, r, ϑ ∈
(0, ∞) and κ ∈ (0, 1]. The space G(x1, r, κ, ϑ) of test functions is defined to be the set of all
measurable functions f on X such that there exists a positive constant C such that

(T1) for any x ∈ X ,

| f (x)| ≤ C
1

µ(B(x1, r)) + V(x1, x)

[
r

r + d(x1, x)

]ϑ

;

(T2) for any x, y ∈ X with d(x, y) ≤ [r + d(x1, x)]/(2A0),

| f (x)− f (y)| ≤ C
[

d(x, y)
r + d(x1, x)

]κ 1
µ(B(x1, r)) + V(x1, x)

[
r

r + d(x1, x)

]ϑ

.

Moreover, the norm of f in G(x1, r, κ, ϑ) is defined by setting

‖ f ‖G(x1, r, κ, ϑ) := inf{C : C satisfies (T1) and (T2)}.

It was shown in ([33], pp. 18–20) that, for any x ∈ X and r ∈ (0, ∞),

G(x, r, κ, ϑ) = G(x1, 1, κ, ϑ)

with equivalent norms, but the positive equivalence constants may depend on x and r and that
G(x1, 1, κ, ϑ) is a Banach space. In what follows, for short, we write G(κ, ϑ) := G(x1, 1, κ, ϑ) and
let G̊(κ, ϑ) := { f ∈ G(κ, ϑ) :

∫
X f (x) dµ(x) = 0}.

Let ε ∈ (0, 1], κ, ϑ ∈ (0, ε] and Gε
0(κ, ϑ) [resp., G̊ε

0(κ, ϑ)] be the completion of the space
G(ε, ε) [resp., G̊(ε, ε)] in the G(κ, ϑ) norm. Moreover, if f ∈ Gε

0(κ, ϑ), we then let

‖ f ‖Gε
0(κ,ϑ) := ‖ f ‖G(κ,ϑ).

The dual space (Gε
0(κ, ϑ))′ [resp., (G̊ε

0(κ, ϑ))′] is defined to be the set of all continuous linear
functionals on Gε

0(κ, ϑ) [resp., G̊ε
0(κ, ϑ)] and equipped with the weak-∗ topology.

We then recall the following system of dyadic cubes given in ([64], Theorem 2.2),
which was formulated in ([53], Lemma 2.3).

Lemma 1. Fix constants c0, C0 and δ such that 0 < c0 ≤ C0 < ∞, δ ∈ (0, 1), and 12A3
0C0δ ≤ c0.

Assume that a set of points, {zk
α : k ∈ Z, α ∈ Ak} ⊂ X with

Ak being a countable set of indices for any k ∈ Z, (6)

satisfies the following properties: for any k ∈ Z, (i) d(zk
α, zk

β) ≥ c0δk when α 6= β; (ii) for any

x ∈ X , minα∈Ak
d(x, zk

α) ≤ C0δk.
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Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, which is called the system of

half-open dyadic cubes, satisfying

(iii) X =
⋃

α∈Ak
Qk

α with {Qk
α : α ∈ Ak} mutually disjoint;

(iv) if ` ≥ k, α ∈ Ak and β ∈ A`, then either Q`
β ⊂ Qk

α or Qk
α ∩Q`

β = ∅ holds true;

(v) for any α ∈ Ak, B(zk
α, c\δk) ⊂ Qk

α ⊂ B(zk
α, C\δk) with c\ := (3A2

0)
−1c0, C\ := 2A0C0 and

zk
α being called the “center" of Qk

α.

In what follows, for any k ∈ Z, let

X k := {zk
α}α∈Ak

, Gk := Ak+1 \Ak, Y k := X k+1 \ X k =: {yk
β}β∈Gk

, (7)

and, for any y ∈ X , let d(y,Y k) := infz∈Y k d(y, z).
Based on the set {zk

α}k∈Z, α∈Ak
[with Ak as in (6)] of points as in Lemma 1 and its

related dyadic cubes, Auscher and Hytönen ([32], Theorem 7.1) constructed the following
notable system {ψk

β}k∈Z, β∈Gk
of regular wavelets on X , which is an orthonormal basis of

L2(X ).

Lemma 2. There exist constants C, ν ∈ (0, ∞), a ∈ (0, 1], η ∈ (0, 1), and regular wavelets
{ψk

β}k∈Z, β∈Gk
, with Gk as in (7), satisfying

(i) for any k ∈ Z, β ∈ Gk and x ∈ X ,

∣∣∣ψk
β(x)

∣∣∣ ≤ C
1√

Vδk (yk
β)

exp

−ν

[
d(yk

β, x)

δk

]a
;

(ii) for any k ∈ Z, β ∈ Gk and x, y ∈ X with d(x, y) ≤ δk,

∣∣∣ψk
β(x)− ψk

β(y)
∣∣∣ ≤ C

[
d(x, y)

δk

]η 1√
Vδk (yk

β)
exp

−ν

[
d(yk

β, x)

δk

]a
;

(iii) for any k ∈ Z and β ∈ Gk,
∫
X ψk

β(x) dµ(x) = 0 with {yk
β}k∈Z, β∈Gk

as in (7).

Moreover, the system of regular wavelets {ψk
β}k∈Z, β∈Gk

is both an orthonormal basis of L2(X )

and an unconditional basis of Lp(X ) for any given p ∈ (1, ∞).

Definition 4 (([54], Definition 2.7), ([53], Definition 2.4) and ([30], Definition 2.3)). A se-
quence {Qk}k∈Z of bounded linear integral operators on L2(X ) is called an approximation of
the identity with exponential decay (for short, exp-ATI) if there exist constants C, ν ∈ (0, ∞),
a ∈ (0, 1] and η ∈ (0, 1) such that, for any k ∈ Z, the kernel of the operator Qk, which is still
denoted by Qk, satisfies

(i) (the identity condition) ∑∞
k=−∞ Qk = I in L2(X ), where I denotes the identity operator

on L2(X );
(ii) (the size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ CRk(x, y)

with

Rk(x, y) : =
1√

Vδk (x)Vδk (y)
exp

{
−ν

[
d(x, y)

δk

]a}

× exp

{
−ν

[
max {d(x,Y k), d(y,Y k)}

δk

]a}
;
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(iii) (the regularity condition) for any x, x̃, y ∈ X with d(x, x̃) ≤ δk,

|Qk(x, y)−Qk(x̃, y)|+ |Qk(y, x)−Qk(y, x̃)| ≤ C
[

d(x, x̃)
δk

]η

Rk(x, y);

(iv) (the second difference regularity condition) for any x, x̃, y, ỹ ∈ X with d(x, x̃) ≤ δk and
d(y, ỹ) ≤ δk,

|[Qk(x, y)−Qk(x̃, y)]− [Qk(x, ỹ)−Qk(x̃, ỹ)]| ≤ C
[

d(x, x̃)
δk

]η[d(y, ỹ)
δk

]η

Rk(x, y);

(v) (the cancellation condition) for any x, y ∈ X ,
∫
X Qk(x, y) dµ(y) = 0 =

∫
X Qk(x, y) dµ(x).

Remark 1. Let {ψk
β}k∈Z, β∈Gk

be as in Lemma 2. For any k ∈ Z and x, y ∈ X , let

Dk(x, y) := ∑
β∈Gk

ψk
β(x)ψk

β(y).

It was shown in ([54], p. 291) that the sequence {Dk}k∈Z of linear integral operators associated
with kernels {Dk(·, ·)}k∈Z satisfies all conditions (i)–(v) of Definition 4.

Definition 5 ([53], Definition 2.8). A sequence {Pk}k∈Z of bounded linear integral operators on
L2(X ) is called an approximation of the identity with exponential decay and integration 1
(for short, 1-exp-ATI) if {Pk}k∈Z has the following properties:

(i) for any k ∈ Z, Pk satisfies (ii), (iii), and (iv) of Definition 4, but without the exponential decay
factor

exp

{
−ν

[
max {d(x,Y k), d(y,Y k)}

δk

]a}

with Y k as in (7);
(ii)

∫
X Pk(x, y) dµ(y) = 1 =

∫
X Pk(y, x) dµ(y) for any k ∈ Z and x ∈ X ;

(iii) Let Qk := Pk − Pk−1 for any k ∈ Z. Then {Qk}k∈Z is an exp-ATI.

Remark 2.

(i) The existence of the 1-exp-ATI is ensured by ([32], Lemma 10.1) (see also ([53], Remark 2.9)).
(ii) For any given p ∈ [1, ∞], Pk and hence Qk are bounded on Lp(X ) uniformly in k ∈ Z; see,

for instance, ([54], Proposition 2.2(iii)).
(iii) It was shown that limk→∞ Pk = I on L2(X ); see, for example, ([53], Remark 2.9).

Definition 6 (([53], Section 3 and Theorem 5.10) and ([62], Definition 1.1)). Let κ, ϑ ∈ (0, η)
with η as in Lemma 2, {Pk}k∈Z be a 1-exp-ATI and Qk := Pk − Pk−1 for any k ∈ Z. Then, for any
f ∈ (Gη

0 (κ, ϑ))′, the non-tangential maximal functionMρ( f ) of f , with aperture ρ ∈ (0, ∞),
is defined by setting, for any x ∈ X ,

Mρ( f )(x) := sup
k∈Z

sup
y∈B(x,ρδk)

|Pk f (y)|.

Moreover, for any f ∈ (G̊η
0 (κ, ϑ))′, the Littlewood–Paley g-function g( f ) of f is defined by

setting, for any x ∈ X ,

g( f )(x) :=

[
∑
k∈Z
|Qk f (x)|2

]1/2

.
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Let p ∈ (0, ∞] and ρ ∈ (0, ∞). Then the Hardy spaces Hp
ρ (X ) and Hp(X ) are defined,

respectively, by setting

Hp
ρ (X ) :=

{
f ∈

(
Gη

0 (κ, ϑ)
)′

: ‖ f ‖Hp
ρ (X ) := ‖Mρ( f )‖Lp(X ) < ∞

}
and

Hp(X ) :=
{

f ∈
(
G̊η

0 (κ, ϑ)
)′

: ‖ f ‖Hp(X ) := ‖g( f )‖Lp(X ) < ∞
}

.

Remark 3. Let ρ ∈ (0, ∞), p ∈ (n/(n + η), 1] and κ, ϑ ∈ (n(1/p − 1), η). It was shown
in ([62], Remark 1.2) and ([60], Theorem 6.1) that

(i) Hp
ρ (X ) and Hp

at(X ) coincide with equivalent quasi-norms;
(ii) Hp(X ) = Hp

at(X ) with equivalent quasi-norms as subspaces of (G̊η
0 (κ, ϑ))′;

(ii) for any given p ∈ (1, ∞), Hp
ρ (X ) = Lp(X ) = Hp(X ) with equivalent norms.

We now introduce the following notion of paraproducts on X adapted from ([48], (3.2)).

Definition 7. Let κ, ϑ ∈ (0, η) with η as in Lemma 2. Let {Pj}j∈Z be a 1-exp-ATI and Qj :=
Pj − Pj−1 for any j ∈ Z. Then the paraproduct Π3 is formally defined by setting, for any

f ∈
(
G̊η

0 (κ, ϑ)
)′

, g ∈
(
G̊η

0 (κ, ϑ)
)′

and x ∈ X ,

Π3( f , g)(x) := ∑
j∈Z

Qj( f )(x)Qj(g)(x),

where the series converges in
(
Gη

0 (κ, ϑ)
)′

.

Remark 4. In Theorems 2 and 3 below, we prove that Π3( f , g) in Definition 7 is well defined for
any ( f , g) ∈ Hp(X )× Hq(X ) with p, q ∈ (0, ∞) and any ( f , g) ∈ BMO (X )× Cη

b (X ).

Definition 8. Let κ, ϑ ∈ (0, η) with η be as in Lemma 2. Let {Pj}j∈Z be a 1-exp-ATI and
Qj := Pj − Pj−1 for any j ∈ Z. Then the paraproducts Π1 and Π2 are formally defined,
respectively, by setting

(i) for any f ∈ (G̊η
0 (κ, ϑ))′, g ∈ (Gη

0 (κ, ϑ))′ and x ∈ X ,

Π1( f , g)(x) := ∑
j∈Z

Qj( f )(x)Pj(g)(x);

(ii) for any f ∈ (Gη
0 (κ, ϑ))′, g ∈ (G̊η

0 (κ, ϑ))′ and x ∈ X ,

Π2( f , g)(x) := ∑
j∈Z

Pj( f )(x)Qj(g)(x),

where the above two series converge in
(
Gη

0 (κ, ϑ)
)′

.

Remark 5.

(i) In Theorem 4 below, we show that Π1( f , g) in Definition 8 is well defined for any ( f , g) ∈
L∞(X )× Cη

b (X ).
(ii) Due to the fact that Π2( f , g) = Π1(g, f ) for any proper functions f and g , we conclude that

Π2 shares corresponding boundedness to Π1 as in Theorem 4 below.

To prove Theorem 3 below, we need to recall the T(1) theorem from ([32], Section 12).
Let σ ∈ (0, 1) and s ∈ (0, σ]. A linear continuous operator T : Cs

b(X ) → (Cs
b(X ))′ is
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said to have weak boundedness property WBP(σ) if there exists a positive constant C1such
that, for any f , g ∈ Cσ

b (X ) normalized by ‖ f ‖L∞(X ) + rσ‖ f ‖Ċσ(X ) ≤ 1 and ‖g‖L∞(X ) +

rσ‖g‖Ċσ(X ) ≤ 1, with support in some ball B(x, r) (x ∈ X and r ∈ (0, ∞)),

|(T f , g)| ≤ C1V(x, r).

As for T(1) with T associated with the s-Calderón–Zygmund kernel, it is defined as a
continuous linear functional on C̊s

b(X ) by setting

〈T(1), f 〉 := 〈T(g), f 〉+
∫
X
(1− g(x))T∗( f )(x) dµ(x), (8)

where g : X → R satisfies that there exists a ball B(x0, r) ⊃ supp f such that, for any
x ∈ X , 1B(x0,r)(x) ≤ g(x) ≤ 1B(x0,2A0r)(x). It is not difficult to show that both of the two
terms in the right hand side of (8) are well defined.

Lemma 3. Let σ ∈ (0, 1), s ∈ (0, σ], (X , d, µ) be any space of homogeneous type and T be
associated to an s-Calderón–Zygmund kernel. Then T can be extended to a bounded operator on
L2(X ) if and only if T has WBP(s) and T(1), T∗(1) ∈ BMO (X ).

At the end of this section, we use the Abel summation formula to make some links
among the boundedness of Π1, Π2 and Π3 in some sense, which plays an important role
in the proof of Theorem 4 below. In what follows, for any N ∈ Z and suitable functions f
and g,

Π(N)
1 ( f , g) :=

N

∑
j=−N

Pj( f )Qj(g), Π(N)
2 ( f , g) :=

N

∑
j=−N

Qj( f )Pj(g)

and Π(N)
3 ( f , g) := ∑N

j=−N Qj( f )Qj(g).

Theorem 1. Assume that there exists a positive constant C such that, for any N ∈ N, f ∈ L2(X )
and g ∈ L∞(X ),∥∥∥Π(N)

2 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
≤ C‖ f ‖L2(X )‖g‖L∞(X ). (9)

Then Π1 defined as in Definition 8 is bounded from L2(X )× L∞(X ) into L2(X ).

Proof. Let f ∈ L2(X ) and g ∈ L∞(X ). For any N ∈ N, by the Abel summation formula,
we know that

Π(N)
1 ( f , g) =

N

∑
j=−N

Pj( f )Qj(g) =
N

∑
j=−N

Pj( f )
[
Pj(g)− Pj−1(g)

]
=

N

∑
j=−N

Pj( f )Pj(g)−
N

∑
j=−N

Pj( f )Pj−1(g)

=
N

∑
j=−N

Pj( f )Pj(g)−
N−1

∑
j=−N−1

Pj+1( f )Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

+
N

∑
j=−N

[
Pj( f )− Pj+1( f )

]
Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)
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−
N

∑
j=−N

Qj+1( f )Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N

∑
j=−N

Qj+1( f )Pj+1(g) +
N

∑
j=−N

Qj+1( f )
[
Pj+1(g)− Pj(g)

]
= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N

∑
j=−N

Qj+1( f )Pj+1(g) +
N

∑
j=−N

Qj+1( f )Qj+1(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N+1

∑
j=−N+1

Qj( f )Pj(g) +
N+1

∑
j=−N+1

Qj( f )Qj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g) + Q−N( f )P−N(g)

−QN+1( f )PN+1(g) + QN+1( f )QN+1(g)−Q−N( f )Q−N(g)

−Π(N)
2 ( f , g) + Π(N)

3 ( f , g).

From this, (9) and Remark 2(ii), we deduce that∥∥∥Π(N)
1 ( f , g)

∥∥∥
L2(X )

≤ ‖PN+1( f )PN(g)‖L2(X ) + ‖P−N( f )P−N−1(g)‖L2(X )

+ ‖Q−N( f )P−N(g)‖L2(X ) + ‖QN+1( f )PN+1(g)‖L2(X )

+ ‖QN+1( f )QN+1(g)‖L2(X ) + ‖Q−N( f )Q−N(g)‖L2(X )

+
∥∥∥Π(N)

2 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )

. ‖ f ‖L2(X )‖g‖L∞(X ),

which, combined with the Fatou lemma, implies that

‖Π1( f , g)‖L2(X ) ≤ lim sup
N→∞

∥∥∥Π(N)
1 ( f , g)

∥∥∥
L2(X )

. ‖ f ‖L2(X )‖g‖L∞(X ).

This completes the proof of Theorem 1.

3. Boundedness of Paraproducts {Πj}3
j=1

This section is devoted to the proofs of the main results of this article on the bounded-
ness of paraproducts {Πj}3

j=1.
We now state the first main result of this article as follows.

Theorem 2. Let η be as in Lemma 2, p, q, r ∈ (n/(n + η), ∞) with 1/r = 1/p + 1/q, and
κ, ϑ ∈ (max{0, n(1/r− 1)}, η). Then the paraproduct Π3 as in Definition 7 is a bounded bilinear
operator from Hp(X )× Hq(X ) into Lr(X ).

Remark 6.

(i) Theorem 2 is an extension of ([48], Lemma 3.3).
(ii) It is still unclear whether Π1 and Π2 can be extended to bounded operators from Hp(X )×

Hq(X ) into Hr(X ) or not.

The following result is an easy consequence of Theorem 2, we omit the details here.

Corollary 1. Let q ∈ (1, ∞) and q′ := q/(q− 1). Then the paraproduct Π3 as in Definition 7 is
a bounded bilinear operator from Lq(X )× Lq′(X ) into L1(X ).
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Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let p, q, r, η, κ, ϑ, and Π3 be as in Theorem 2. For any ( f , g) ∈
Hp(X )× Hq(X ), we know that f , g ∈

(
G̊η

0 (κ, ϑ)
)′

. By the Hölder inequality, we immedi-
ately have

‖Π3( f , g)‖Lr(X ) ≤
∥∥∥∥∥∑

j∈Z
|Qj( f )Qj(g)|

∥∥∥∥∥
Lr(X )

≤

∥∥∥∥∥∥
[

∑
j∈Z
|Qj( f )|2

]1/2[
∑
j∈Z
|Qj(g)|2

]1/2
∥∥∥∥∥∥

Lr(X )

≤

∥∥∥∥∥∥
[

∑
j∈Z
|Qj( f )|2

]1/2
∥∥∥∥∥∥

Lp(X )

∥∥∥∥∥∥
[

∑
j∈Z
|Qj(g)|2

]1/2
∥∥∥∥∥∥

Lq(X )

= ‖ f ‖Hp(X )‖g‖Hq(X ),

which completes the proof of Theorem 2.

Then we state other two main results of this article, which give various endpoint
estimates of Π3 and Π1. In what follows, the weak Lebesgue space L1,∞(X ) is defined to be
the set of all µ-measurable functions f on X such that

‖ f ‖L1,∞(X ) := sup
λ∈(0,∞)

[λµ({x ∈ X : | f (x)| > λ})] < ∞,

and the space BMO (X ) the set of all locally integrable functions f on X such that

‖ f ‖BMO (X ) := sup
B⊂X

1
µ(B)

∫
B
| f (x)−mB( f )| dµ(x) < ∞,

where the supremum is taken over all balls of X and, here and thereafter, for any locally
integrable function f and a ball B ⊂ X , mB( f ) := 1

µ(B)

∫
B f (y) dµ(y).

Theorem 3. Let η be as in Lemma 2, q ∈ (1, ∞), κ, ϑ ∈ (max{0, n(1/q− 1)}, η), and Π3 be as
in Definition 7. Assume that the exp-ATI, {Qj}j∈Z, further satisfies

(a) Q∗j = Qj and Q2
j = Qj on L2(X ) for any j ∈ Z, namely, {Qj}j∈Z are projection operators

on L2(X ).
(b) ∑j∈Z Qj = I in H1

at(X ).

Then Π3 can be extended to a bounded bilinear operator

(i) from BMO (X )× Lq(X ) into Lq(X );
(ii) from BMO (X )× H1

at(X ) into L1(X );
(iii) from BMO (X )× L∞(X ) into BMO (X );
(iv) from BMO (X )× L1(X ) into L1,∞(X );
(v) from Lq(X )× L∞(X ) into Lq(X );
(vi) from L1(X )× L∞(X ) into L1,∞(X ).

Remark 7. From ([32], Section 10) and ([65], Theorem 3.10), it follows that the sequence {Dk}k∈Z
in Remark 1 still satisfies all the assumptions in Theorem 3. Thus, Theorem 3(ii) is an extension
of ([48], Theorem 4.9).

The following result is a variant of ([62], Theorem 7).
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Theorem 4. Let η be as in Lemma 2, q ∈ (1, ∞), p ∈ ( n
n+η , ∞), κ, ϑ ∈ (max{0, n(1/p −

1)}, η), and Π1 be as in Definition 8. Assume that the exp-ATI, {Qj}j∈Z, further satisfies, for any
f ∈ L∞(X ) and (1, 2)-atom h supported on some ball B0,∫

X
Π1( f , h)(x) dµ(x) = 0. (10)

Then Π1 can be extended to a bounded bilinear operator

(i) from L∞(X )× Hp(X ) into Hp(X );
(ii) from L∞(X )× H1

at(X ) into L1(X );
(iii) from L∞(X )× L∞(X ) into BMO (X );
(iv) from L∞(X )× L1(X ) into L1,∞(X ).
(v) from Lq(X )× L∞(X ) into Lq(X );
(vi) from L1(X )× L∞(X ) into L1,∞(X ).

Remark 8.

(i) Let f ∈ L∞(X ) ⊂ BMO (X ), h be a (1, 2)-atom and Qk := Dk (k ∈ Z) be as in Remark 1.
By ([48], p. 985, lines 1–3 from the bottom), we have Π1( f , h) = H + hmB0( f ) with H ∈
H1

at(X ), which, together with the fact that, for any G ∈ H1
at(X ),

∫
X G(x) dµ(x) = 0, further

implies that
∫
X Π1( f , h)(x) dµ(x) = 0. Therefore, the sequence {Dk}k∈Z in Remark 1 still

satisfies all the assumptions in Theorem 4.
(ii) It is still unknown what happens if we replace f ∈ L∞(X ) (resp., g ∈ L∞(X )) by f ∈

BMO (X ) (resp., g ∈ BMO (X )) in Theorem 4.

As in ([30], Remark 3.3) or ([62], Remark 1.8), the following estimates are important to
escape the dependence on the RD-condition (2). For any given a, c ∈ (0, ∞), and, for any
r ∈ (0, ∞) and x ∈ X ,

∑
{k∈Z: δk≥r}

1
Vδk (x)

exp

{
−c

[
d(x,Y k)

δk

]a}
.

1
Vr(x)

(11)

(see ([32], Lemma 8.3)) and, for any x, y ∈ X with x 6= y,

∑
k∈Z

1
Vδk (x)

exp
{
−c
[

d(x, y)
δk

]a}
exp

{
−c

[
d(x,Y k)

δk

]a}
.

1
V(x, y)

, (12)

where the implicit positive constant is independent of x and y (see ([54], Lemma 4.9)), which
essentially connect the geometrical properties of X expressed via its equipped quasi-metric
d, dyadic reference points and dyadic cubes.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Without loss of generality, we may assume that the sum ∑j∈Z in
Π3( f , g) is a finite sum ∑N

j=−N for any fixed N ∈ N, see ([66], pp. 302–305) for some details.
We first prove (i)–(iv) of this theorem. To this end, we temporarily fix an f ∈ BMO (X ).

For any x ∈ X , we write

Π3( f , g)(x) = ∑
j∈Z

Qj( f )(x)Qj(g)(x) =
∫
X

[
∑
j∈Z

Qj(x, y)Qj( f )(x)

]
g(y) dµ(y)

=:
∫
X

K(3)
f (x, y)g(y) dµ(y) =: K(3)

f (g)(x),
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where K(3)
f is an integral operator associated with the kernel defined by setting, for any

x, y ∈ X ,

K(3)
f (x, y) := ∑

j∈Z
Qj(x, y)Qj( f )(x).

To prove (i)–(iv) of this theorem, the key point is the proof of the boundedness of K(3)
f

on L2(X ), where we need some ideas from ([67], Remark 4.4.5).
We first claim that K(3)

f has WBP(η) and hence maps from Cη
b (X ) into (Cη

b (X ))′.

Indeed, let g, h ∈ Cη
b (X ), supported on some ball B(x0, r0) with x0 ∈ X and r0 ∈ (0, ∞),

be normalized by

‖g‖L∞(X ) + rη
0‖g‖Ċη

b (X ) ≤ 1 and ‖h‖L∞(X ) + rη
0‖h‖Ċη

b (X ) ≤ 1.

Then, by the fact from ([62], (2.3)) that

sup
j∈Z
‖Qj( f )‖L∞(X ) . ‖ f ‖BMO (X ) (13)

and the Hölder inequality, we conclude that∣∣∣〈K(3)
f (g), h

〉∣∣∣ = |〈Π3( f , g), h〉| =
∣∣∣∣∫X Π3( f , g)(x)h(x) dµ(x)

∣∣∣∣
≤ ∑

j∈Z

∫
X

∣∣Qj( f )(x)
∣∣∣∣Qj(g)(x)

∣∣|h(x)| dµ(x)

. ‖ f ‖BMO (X ) ∑
j∈Z

∫
X

∣∣Qj(g)(x)
∣∣|h(x)| dµ(x)

. ‖ f ‖BMO (X ) ∑
j∈Z
‖Qj(g)‖L2(X )‖h‖L2(X )

. ‖ f ‖BMO (X )[V(x0, r0)]
1/2 ∑

j∈Z
‖Qj(g)‖L2(X ).

Thus, to prove the above claim, it suffices to show that

∑
j∈Z
‖Qj(g)‖L2(X ) . [V(x0, r0)]

1/2. (14)

We further consider the following two cases.
(Case 1) δj ≥ r0. Choose a fixed x1 ∈ B(x0, 2r0) \ B(x0, r0). Then, by (v) and (ii) of

Definition 4 and (1), we have∣∣Qj(g)(x)
∣∣ (15)

=

∣∣∣∣∫B(x0,r0)
Qj(x, y)[g(y)− g(x1)] dµ(y)

∣∣∣∣
≤
∫

B(x0,r0)

∣∣Qj(x, y)
∥∥|g(y)− g(x1)| dµ(y)

.
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
[d(y, x1)]

η‖g‖Ċη
b (X ) dµ(y)

. rη
0‖g‖Ċη

b (X )

∫
B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

2

[
d(y, x0)

δj

]a}
× exp

{
−ν

[
d(y,Y j)

δj

]a}
exp

{
−ν

[
d(y, x0)

δj

]a}
dµ(y)
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.
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, x0)

A0δj

]a}
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
dµ(y)

.
V(x0, r0)

Vδj(x0)
exp

{
−ν

4

[
d(x, x0)

A0δj

]a}
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
,

which implies that

‖Qj(g)‖L∞(X ) .
V(x0, r0)

Vδj(x0)
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
.

On the other hand, from (15), we deduce that

‖Qj(g)‖L1(X ) . V(x0, r0)
∫
X

1
Vδj(x0)

exp
{
−ν

4

[
d(x, x0)

A0δj

]a}
dµ(x) exp

{
−ν

[
d(x0,Y j)

A0δj

]a}

. V(x0, r0) exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
.

Thus,

‖Qj(g)‖L2(X ) ≤ ‖Qj(g)‖1/2
L∞(X )

‖Qj(g)‖1/2
L1(X )

. V(x0, r0)
1√

Vδj(x0)
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
,

which, combined with (11), further implies that

∑
{j∈Z:δj≥r0}

‖Qj(g)‖L2(X ) . V(x0, r0) ∑
{j∈Z:δj≥r0}

1√
Vδj(x0)

exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
(16)

.
√

V(x0, r0).

(Case 2) δj < r0. In this case, for a fixed x ∈ X , by Definition 4(v), we first write

|Qj(g)(x)| ≤
∫
X
|Qj(x, y)||g(y)− g(x)| dµ(y)

=
∫

B(x,δj)
|Qj(x, y)||g(y)− g(x)| dµ(y) +

∫
X\B(x,δj)

· · · := I1 + I2.

Indeed, by Definition 4(ii) and (1), we have

I1 .
∫

B(x,δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
[d(y, x)]η‖g‖Ċη

b (X ) dµ(y)

.
(

δj

r0

)η ∫
B(x,δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
dµ(y) .

(
δj

r0

)η

.

and

I2 .
∞

∑
k=1

∫
B(x,2kδj)\B(x,2k−1δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
[d(y, x)]η‖g‖Ċη

b (X ) dµ(y)

.
∞

∑
k=1

2kη

(
δj

r0

)η

exp
{
−ν

4
2(k−1)a

} ∫
B(x,2kδj)

1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}
dµ(y)

.
∞

∑
k=1

2kη exp
{
−ν

4
2(k−1)a

}( δj

r0

)η

.
(

δj

r0

)η

.
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Combining the estimates of I1 and I2, we obtain

‖Qj(g)‖L∞(X ) .
(

δj

r0

)η

. (17)

Now we estimate ‖Qj(g)‖L1(X ). Indeed, we know that

|Qj(g)(x)| ≤
∫

B(x0,r0)
|Qj(x, y)||g(y)| dµ(y) ≤ ‖g‖L∞(X )

∫
B(x0,r0)

|Qj(x, y)| dµ(y)

≤
∫

B(x0,r0)
|Qj(x, y)| dµ(y).

For any fixed x ∈ X , we further consider the following two cases.
Case 1 d(x, x0) < 2A0r0. Observe that, by Definition 4(ii) and (1),

|Qj(g)(x)| . 1.

Case 2 d(x, x0) ≥ 2A0r0. In this case, we observe that, for any y ∈ B(x0, r0),

d(x, y) ≥ d(x, x0)

A0
− d(y, x0) ≥

d(x, x0)

2A0

and hence, by Definition 4(ii) and (1),

|Qj(g)(x)| .
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
dµ(y)

.
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, x0))

2A0δj

]a}
dµ(y)

.
V(x0, r0)

Vδj(x0)
exp

{
−ν

4

[
d(x, x0))

2A0δj

]a}
.

Combining Cases 1 and 2, we find that, for any x ∈ X ,

|Qj(g)(x)| . 1B(x0,2A0r0)
(x) + 1X\B(x0,2A0r0)

(x)
V(x0, r0)

Vδj(x0)
exp

{
−ν

4

[
d(x, x0))

2A0δj

]a}
,

which implies that

‖Qj(g)‖L1(X ) . V(x0, r0).

From this and and (17), it follows that

‖Qj(g)‖L2(X ) ≤ ‖Qj(g)‖1/2
L∞(X )

‖Qj(g)‖1/2
L1(X )

.
(

δj

r0

)η/2√
V(x0, r0),

which further implies that

∑
{j∈Z: δj<r0}

‖Qj(g)‖L2(X ) . r−η/2
0 ∑

{j∈Z: δj<r0}
δjη/2

√
V(x0, r0) .

√
V(x0, r0).

By this and (16), we conclude that

∑
j∈Z
‖Qj(g)‖L2(X ) .

√
V(x0, r0),

which further completes the proof of the above claim.
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Now we begin to show that K(3)
f (·, ·) satisfies (3) through (5). To achieve this, by (13),

Definition 4(ii), (1) and (12), we find that, for any x, y ∈ X with x 6= y,∣∣∣K(3)
f (x, y)

∣∣∣ ≤ ∑
j∈Z
|Qj(x, y)||Qj( f )(x)| . ‖ f ‖BMO (X ) ∑

j∈Z
|Qj(x, y)| (18)

. ‖ f ‖BMO (X ) ∑
j∈Z

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

2

[
d(x,Y j)

δj

]a}

. ‖ f ‖BMO (X )
1

V(x, y)
.

This shows that K(3)
f (·, ·) satisfies (3).

Then we prove that K(3)
f (·, ·) satisfies (4). Indeed, let x, x̃, y ∈ X with d(x, x̃) ≤

1
2A0

d(x, y) and x 6= y. We observe that

d(x̃, y) ≥ d(x, y)
A0

− d(x, x̃) ≥ d(x, y)
2A0

. (19)

From (13), it follows that∣∣∣K(3)
f (x, y)− K(3)

f (x̃, y)
∣∣∣ ≤ ∑

j∈Z
|Qj( f )(y)||Qj(x, y)−Qj(x̃, y)|

. ‖ f ‖BMO (X ) ∑
j∈Z
|Qj(x, y)−Qj(x̃, y)|.

We further consider the following two cases.
Case (1) d(x, x̃) ≤ δj. In this case, by Definition 4(iii) and (1), we have

|Qj(x, y)−Qj(x̃, y)| .
[

d(x, x̃)
δj

]η 1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(x,Y j)

δj

]a}

.
[

d(x, x̃)
d(x, y)

]η 1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}
exp

{
−ν

4

[
d(x,Y j)

δj

]a}
,

which, together with (12), implies that

∑
{j∈Z: δj≥d(x,x̃)}

|Qj(x, y)−Qj(x̃, y)| .
[

d(x, x̃)
d(x, y)

]η

∑
{j∈Z: δj≥d(x,x̃)}

1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}

× exp

{
−ν

4

[
d(x,Y j)

δj

]a}

.
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Case (2) d(x, x̃) > δj. In this case, from Definition 4(ii), (1) and (19), we deduce that

|Qj(x, y)−Qj(x̃, y)| ≤ |Qj(x, y)|+ |Qj(x̃, y)|

.
1

Vδj(y)
exp

{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

+
1

Vδj(y)
exp

{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
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.
1

Vδj(y)
exp

{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

.
[

d(x, x̃)
δj

]η 1
Vδj(y)

exp
{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

.
[

d(x, x̃)
d(x, y)

]η 1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}
.

Thus, by (12), we obtain

∑
{j∈Z: δj<d(x,x̃)}

|Qj(x, y)−Qj(x̃, y)|

.
[

d(x, x̃)
d(x, y)

]a

∑
{j∈Z: δj<d(x,x̃)}

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}

.
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Combining the Cases (1) and (2), we have

∑
j∈Z
|Qj(x, y)−Qj(x̃, y)| .

[
d(x, x̃)
d(x, y)

]η 1
V(x, y)

, (20)

which further proves that K(3)
f (·, ·) satisfies (4). By the arguments similar to those used in

the proof of (20), we conclude that

∑
{j∈Z}

|Qj(y, x)−Qj(y, x̃)| .
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

. (21)

We further show that K(3)
f (·, ·) satisfies (5). Indeed, let x, x̃, y ∈ X with d(x, x̃) ≤

1
2A0

d(x, y) and x 6= y. From (13), Definition 4(v), (1) and (21), we deduce that∣∣∣K(3)
f (y, x)− K(3)

f (y, x̃)
∣∣∣

≤ ∑
j∈Z

∣∣Qj(y, x)Qj( f )(x)−Qj(y, x̃)Qj( f )(x̃)
∣∣

≤ ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣|Qj( f )(x)|+ ∑

j∈Z
|Qj(y, x̃)|

∣∣Qj( f )(x)−Qj( f )(x̃)
∣∣

. ‖ f ‖BMO (X ) ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣

+ ∑
j∈Z
|Qj(y, x̃)|

∫
X

∣∣Qj(x, z)−Qj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

+ A,

where

A := ∑
j∈Z
|Qj(y, x̃)|

∫
X

∣∣Qj(x, z)−Qj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z).

To estimate A, we deal with the following two cases.
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Case (i) d(x, x̃) ≤ δj. By (ii) and (iii) of Definition 4, (1), (19), some arguments similar
to those used in the proof of ([62], (2.3)) and (12), we conclude that

A . ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η 1√
Vδj(x)Vδj(x̃)

exp
{
−ν

4

[
d(x, z)

δj

]a}
exp

{
−ν

4

[
d(x̃, z)

δj

]a}

×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

. ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η 1√
Vδj(x)Vδj(x̃)

exp
{
−ν

8

[
d(x, z)

δj

]a}
exp

{
−ν

8

[
d(x, x̃)
A0δj

]a}

×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

. ∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)
d(x, y)

]η 1
Vδj(x)

exp
{
−ν

8

[
d(x, z)

δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dµ(z)

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(x, y)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

.

Case (ii) d(x, x̃) > δj. From Definition 4(ii), (1), (19), some arguments similar to those
used in the proof of ([62], (2.3)) and (12), we deduce that

A . ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
(22)

×
∫
X

[
d(x, x̃)

δj

]η[ 1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}
+

1
Vδj(z)

exp
{
−ν

2

[
d(x̃, z)

δj

]a}]
×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

. ∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x̃, y)

δj

]a}
exp

{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η[ 1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}
+

1
Vδj(z)

exp
{
−ν

2

[
d(x̃, z)

δj

]a}]
×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

.
[

d(x, x̃)
d(y, x)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

8

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dµ(z)

+

[
d(x, x̃)
d(y, x)

]η

∑
j∈Z

1
Vδj(y)

exp
{
− ν

16

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
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×
∫
X

1
Vδj(z)

exp

{
− ν

16

[
d(x, z)
2A2

0δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dµ(z)

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(x, y)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

8

[
d(x, y)
2A0δj

]a}
exp

{
−ν

8

[
d(y,Y j)

2A0δj

]a}

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

.

Combining Cases (i) and (ii), we know that K(3)
f (·, ·) satisfies (5). These complete the

proof of (3) through (5) for K(3)
f (·, ·).

Next we show that K(3)
f (1), (K(3)

f )∗(1) ∈ BMO (X ). Obviously, K(3)
f (1) = 0 ∈

BMO (X ). Now we prove that (K(3)
f )∗(1) ∈ BMO (X ). It is easy to see that(

K(3)
f

)∗
(x, y) = K(3)

f (y, x) = ∑
j∈Z

Qj(y, x)Qj( f )(y).

For any h ∈ C̊η
b (X ) with supp h ⊂ B(x0, r0) and any N ∈ N, choose ηN ∈ Cη

b (X )
with ηN ≡ 1 on B(x0, 2A0Nr0), supp (ηN) ⊂ B(x0, 4A0Nr0), and 0 ≤ ηN ≤ 1. We write〈(

K(3)
f

)∗
(1), h

〉
=
〈(

K(3)
f

)∗
(ηN), h

〉
+
∫
X
[1− ηN(x)]K(3)

f (h)(x) dµ(x) =: IN + IIN .

By
∫
X h(y) dµ(y) = 0, we conclude that

IIN =
∫
X
[1− ηN(x)]

∫
X

K(3)
f (x, y)h(y) dµ(y)dµ(x)

=
∫
X

∫
B(x0,r0)

K(3)
f (x, y)[1− ηN(x)]h(y) dµ(y)dµ(x)

=
∫
X

∫
B(x0,r0)

[
K(3)

f (x, y)− K(3)
f (x, x0)

]
[1− ηN(x)]h(y) dµ(y)dµ(x).

We observe that if d(y, x0) < r0 and d(x, x0) ≥ 2A0Nr0, then d(x, x0) ≥ 2A0Nr0 ≥
2A0d(y, x0), which implies that

|IIN | ≤
∫
X\B(x0,2A0 Nr0)

∫
B(x0,r0)

∣∣∣K(3)
f (x, y)− K(3)

f (x, x0)
∣∣∣|1− ηN(x)||h(y)| dµ(y)dµ(x)

. ‖h‖L∞(X )

∫
X\B(x0,2A0 Nr0)

∫
B(x0,r0)

[
d(y, x0)

d(x, x0)

]η 1
V(x, x0)

dµ(y)dµ(x)

. ‖h‖L∞(X )r
η
0 V(x0, r0)

∫
X\B(x0,2A0 Nr0)

[
1

d(x, x0)

]η 1
V(x, x0)

dµ(x)→ 0, as N → ∞.

Then we need to prove limN→∞ IN = 〈 f , h〉. Indeed, for any h ∈ C̊η
b (X ), observe that,

by ([29], Corollary 3.14) and the boundedness of Qj on L2(X ), we know that Qj( f )ηN ∈
L2(X ), which, combined with the assumptions (a) and (b) in Theorem 3, the fact that h
is a multiple of a (1, 2)-atom, and the Lebesgue dominated convergence theorem, further
implies that

lim
N→∞

〈(
K(3)

f

)∗
(ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Q∗j (Qj( f )ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Qj( f )ηN , Qj(h)

〉
= lim

N→∞
∑
j∈Z

〈
ηN , Qj( f )Qj(h)

〉
= lim

N→∞

〈
ηN , ∑

j∈Z
Qj( f )Qj(h)

〉
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=

〈
1, ∑

j∈Z
Qj( f )Qj(h)

〉
= ∑

j∈Z

〈
Qj( f ), Qj(h)

〉
= ∑

j∈Z

〈
f , Q∗j Qj(h)

〉
=

〈
f , ∑

j∈Z
Qj(h)

〉
= 〈 f , h〉,

where in the fifth inequality of this equation, we need to show that the series ∑j∈Z Qj( f )Qj(h)
absolutely converges in L1(X ). Indeed, from (13), ([62], (2.4)) and the fact that Cη

b (X ) ⊂
G(x1, r, η, ϑ) for any given x1 ∈ X and r, ϑ ∈ (0, ∞) (see ([33], p. 19)), it follows that∥∥∥∥∥∑

j∈Z
|Qj( f )Qj(h)|

∥∥∥∥∥
L1(X )

≤ ∑
j∈Z

∥∥Qj( f )Qj(h)
∥∥

L1(X )
≤ ∑

j∈Z

∥∥Qj( f )
∥∥

L∞(X )

∥∥Qj(h)
∥∥

L1(X )

. ‖ f ‖BMO (X ) ∑
j∈Z

∥∥Qj(h)
∥∥

L1(X )
. ‖ f ‖BMO (X )‖h‖G(x1,r,η,ϑ) < ∞,

which proves the desired result. This shows limN→∞ IN = 〈 f , h〉, which, together with
the estimate of IIN , implies that (K(3)

f )∗(1) = f on (Cη
b (X ))′ and hence (K(3)

f )∗(1) = f ∈
BMO (X ).

Moreover, from the T(1) theorem (see Lemma 3) ([32], Theorem 12.2), we deduce that
K(3)

f is bounded on L2(X ). Then, by the boundedness of the Calderón–Zygmund operator
(see, for example, ([27], Theorem 2.4 in Chapter III), ([28], p. 599), ([35], Theorem 1.12),
and ([58], Theorem 3.4)), we find that (i)–(iv) of Theorem 3 hold true.

Now we begin to show (v) and (vi) of Theorem 3. To this end, we temporarily fix a
g ∈ L∞(X ). From the fact that g ∈ L∞(X ) ⊂ BMO (X ), and the arguments used in the
proof of (i)–(iv) of Theorem 3, it follows that the kernel of the operator K(3)

g (·) := Π(·, g),
defined by setting, for any (x, y) ∈ X ×X ,

K(3)
g (x, y) := ∑

j∈Z
Qj(x, y)Qj(g)(y)

satisfies (3) through (5) and WBP(η) with ‖ f ‖BMO (X ) replaced by ‖g‖L∞(X ), K(3)
g (1) = 0 ∈

BMO (X ), (K(3)
g )∗(1) = g ∈ L∞(X ) ⊂ BMO (X ) and K(3)

g is bounded on L2(X ).

Thus, K(3)
g is an η-Calderón–Zygmund operator, which, combined with the fact that

(K(3)
g )∗(1) = g ∈ L∞(X ) ⊂ BMO (X ) and the T(1) theorem (see Lemma 3) and ([27],

Theorem 2.4 in Chapter III), further completes the proof of (v) and (vi) of Theorem 3 and
hence of Theorem 3.

Proof of Theorem 4. Similar to the proof of Theorem 3, without loss of generality, we may
assume that the sum ∑j∈Z in Π1( f , g) is a finite sum ∑N

j=−N for any fixed N ∈ N.
We first prove (i) through (iv) of Theorem 4. Fix f ∈ L∞(X ), we consider the operator

K(1)
f and its kernel, which is still denoted by K(1)

f , defined by setting, for any x ∈ X ,

K(1)
f (g)(x) := Π1( f , g)(x) = ∑

j∈Z
Pj( f )(x)Qj(g)(x) =

∫
X

K(1)
f (x, y)g(y) dµ(y),

where K(1)
f (x, y) = ∑j∈Z Qj(x, y)Pj( f )(x).
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Now we show that K(1)
f (·, ·) satisfies (3) through (5). To this end, we first prove that

K(1)
f (·, ·) satisfies (3). From Remark 2(ii), it follows that there exists a positive constant C

such that, for any f ∈ L∞(X ),

sup
j∈Z
‖Pj( f )‖L∞(X ) ≤ C‖ f ‖L∞(X ), (23)

which, together with (13) and some arguments used in the proof of (18), further implies
that, for any x, y ∈ X ,∣∣∣K(1)

f (x, y)
∣∣∣ ≤ ∑

j∈Z
|Qj(x, y)||Pj( f )(x)| . ‖ f ‖L∞(X ) ∑

j∈Z
|Qj(x, y)| . ‖ f ‖L∞(X )

1
V(x, y)

,

which completes the proof of (3) for K(1)
f (·, ·).

Then we prove that K(1)
f (·, ·) satisfies (4). Let x, x̃, y ∈ X , d(x, x̃) ≤ 1

2A0
d(x, y) with

x 6= y. We write∣∣∣K(1)
f (x, y)− K(1)

f (x̃, y)
∣∣∣ ≤ ∑

j∈Z

∣∣Qj(x, y)−Qj(x̃, y)
∣∣|Pj( f )(x)|

+ ∑
j∈Z

∣∣Qj(x̃, y)
∣∣∣∣Pj( f )(x)− Pj( f )(x̃)

∣∣
=: A1 + A2.

From (20) and (23), we deduce that

A1 . ‖ f ‖L∞(X ) ∑
j∈Z

∣∣Qj(x, y)−Qj(x̃, y)
∣∣ . ‖ f ‖L∞(X )

[
d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Moreover, by the fact that L∞(X ) ⊂ BMO (X ) and some arguments similar to those
used in the proof of (22), we know that

A2 . ∑
j∈Z

∣∣Qj(x̃, y)
∣∣ ∫
X

∣∣Pj(x, z)− Pj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dµ(z)

. ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

. ‖ f ‖L∞(X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

,

which completes the proof of (4) for K(1)
f (·, ·).

Now we prove that K(1)
f (·, ·) satisfies (5). Let x, x̃, y ∈ X , d(x, x̃) ≤ 1

2A0
d(x, y) with

x 6= y. From (18) and (21), it follows that∣∣∣K(1)
f (y, x)− K(1)

f (y, x̃)
∣∣∣ ≤ ∑

j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣|Pj( f )(y)|

. ‖ f ‖L∞(X ) ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣

. ‖ f ‖L∞(X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

,

which completes the proof of (5) for K(1)
f (·, ·). This completes the proof of (3) through (5)

for K(1)
f (·, ·).
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Then we claim that K(1)
f has WBP(η) and hence maps from Cη

b (X ) into (Cη
b (X ))′.

Indeed, let g, h ∈ Cη
b (X ), supported on some ball B(x0, r0) with x0 ∈ X and r0 ∈ (0, ∞),

normalized by

‖g‖L∞(X ) + rη
0‖g‖Ċη

b (X ) ≤ 1 and ‖h‖L∞(X ) + rη
0‖h‖Ċη

b (X ) ≤ 1.

Then, by (23), the Hölder inequality and (14), we conclude that∣∣∣〈K(1)
f (g), h

〉∣∣∣ = |〈Π1( f , g), h〉| =
∣∣∣∣∫X Π1( f , g)(x)h(x) dµ(x)

∣∣∣∣
≤ ∑

j∈Z

∫
X

∣∣Pj( f )(x)
∣∣∣∣Qj(g)(x)

∣∣|h(x)| dµ(x)

. ‖ f ‖L∞(X ) ∑
j∈Z

∫
X

∣∣Qj(g)(x)
∣∣|h(x)| dµ(x)

. ‖ f ‖L∞(X ) ∑
j∈Z
‖Qj(g)‖L2(X )‖h‖L2(X )

. ‖ f ‖L∞(X )[V(x0, r0)]
1/2 ∑

j∈Z
‖Qj(g)‖L2(X ) . ‖ f ‖L∞(X )V(x0, r0).

Next we show that K(1)
f (1), (K(1)

f )∗(1) ∈ BMO (X ). Obviously, K(1)
f (1) = 0 ∈

BMO (X ). Now we prove that (K(1)
f )∗(1) = 0 ∈ BMO (X ). It is easy to see that(

K(1)
f

)∗
(x, y) = K(1)

f (y, x) = ∑
j∈Z

Qj(y, x)Pj( f )(y).

For any h ∈ C̊η
b (X ) with supp h ⊂ B(x0, r0) and any N ∈ N, choose ηN ∈ Cη

b (X )
with ηN ≡ 1 on B(x0, 2A0Nr0), supp (ηN) ⊂ B(x0, 4A0Nr0) and 0 ≤ ηN ≤ 1. We write〈(

K(1)
f

)∗
(1), h

〉
=
〈(

K(1)
f

)∗
(ηN), h

〉
+
∫
X
[1− ηN(x)]K(1)

f (h) dµ(x) =: IN + IIN .

By the same arguments used in the proof of (K(3)
f )∗(1) ∈ BMO (X ), we conclude

that limN→∞ IIN = 0. Then we show that limN→∞ IN = 0. Indeed, for any h ∈ C̊η
b (X ),

observe that, by ([29], Corollary 3.14) and the boundedness of Pj on L2(X ), we know that
Pj( f )ηN ∈ L2(X ), which, combined with the assumption (10), and the Lebesgue dominated
convergence theorem, further implies that

lim
N→∞

〈(
K(1)

f

)∗
(ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Q∗j (Pj( f )ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Pj( f )ηN , Qj(h)

〉
= lim

N→∞
∑
j∈Z

〈
ηN , Pj( f )Qj(h)

〉
= lim

N→∞

〈
ηN , ∑

j∈Z
Pj( f )Qj(h)

〉

=

〈
1, ∑

j∈Z
Pj( f )Qj(h)

〉
= 〈1, Π1( f , h)〉 = 0,

where in the third to the last inequality of this equation, we have used the fact that
the series ∑j∈Z Pj( f )Qj(h) absolutely converges in L1(X ), which is similar to that of
∑j∈Z Qj( f )Qj(h).

This shows limN→∞ IN = 0, which, together with the estimate of IIN , implies that
(K(1)

f )∗(1) = 0 on (Cη
b (X ))′ and hence (K(1)

f )∗(1) = 0 ∈ BMO (X ).
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Moreover, from the T(1) theorem (see Lemma 3), we deduce that K(1)
f is bounded on

L2(X ). Then, by the boundedness of the Calderón–Zygmund operator (see, for instance, ([27],
Theorem 2.4 in Chapter III)), we find that (i) through (iv) of Theorem 4 hold true.

Now we begin to prove (v) and (vi) of Theorem 4. To this end, we temporarily fix a
g ∈ L∞(X ). By the fact that L∞(X ) ⊂ BMO (X ) and checking the proofs of Theorem 3
and (i) and (ii) of Theorem 4 carefully, we conclude that there exists a positive constant C
such that, for any f ∈ L∞(X ), g ∈ L2(X ), and N ∈ N,∥∥∥Π(N)

1 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
≤ C‖ f ‖L∞(X )‖g‖L2(X ),

which, further implies that, for any g ∈ L∞(X ) and f ∈ L2(X ),∥∥∥Π(N)
2 ( f , g)

∥∥∥
L2(X )

+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
=
∥∥∥Π(N)

1 (g, f )
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 (g, f )
∥∥∥

L2(X )

. ‖g‖L∞(X )‖ f ‖L2(X ).

From this and Theorem 1, we deduce that Π1( f , g) is bounded from L2(X )× L∞(X )
into L2(X ), which, combined with the fact that L∞(X ) ⊂ BMO (X ) and some arguments
used in the proof of (i) through (iv) of Theorem 3, implies that the kernel of the operator
K(1)

g (·) := Π1(·, g), defined by setting, for any (x, y) ∈ X ×X ,

K(1)
g (x, y) := ∑

j∈Z
Pj(x, y)Qj(g)(x)

satisfies (3) through (5), and hence K(1)
g is an η-Calderón–Zygmund operator which is

bounded on L2(X ). By these and the boundedness of Calderón–Zygmund operators (see,
for example, ([27], Theorem 2.4 in Chapter III)), we finish the proof of (v) and (vi) of
Theorem 4 and hence of Theorem 4.

Remark 9. We observe that the proofs of Theorems 3 and 4 do not use the second difference
regularity condition of {Qj}j∈Z in Definition 4. Thus, the results in Theorems 3 and 4 hold true for
more general approximations of identity.
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