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Abstract: The response of ferrofluids to a high-amplitude AC magnetic field is important for several
applications including magnetic hyperthermia and biodetection. In computer simulations of the
dynamic susceptibility of a ferrofluid outside the linear response region, there are several problems
associated with the fact that an increase in the frequency of the AC field leads to the appearance
of additional computational errors, which can even lead to unphysical results. In this article, we
study the dependence of the computational error arising in the computer simulation of the dynamic
susceptibility on the input parameters of the numerical algorithm: the length of the time step, the total
number of computer simulation periods, and averaging period. Computer simulation is carried out
using the Langevin dynamics method and takes Brownian rotational relaxation of magnetic particles
and interparticle interactions into account. The reference theory [Yoshida T.; Enpuku K. Jap. J. Ap.
Phys. 2009] is used to estimate computational error. As a result, we give practical recommendations
for choosing the optimal input parameters of the numerical algorithm, which make it possible to
obtain reliable results of the dynamic susceptibility of a ferrofluid in a high-amplitude AC field in a
wide frequency range.

Keywords: ferrofluid; dynamic magnetic susceptibility; Langevin dynamics; interparticle interac-
tions; computational error; computer simulations

1. Introduction

In recent years, there has been growing interest in smart materials that can be con-
trolled by external stimuli such as light, temperature, mechanical force, electrical field,
and magnetic field. These materials usually contain active fillers or microstructures in
various types of soft or liquid matrices [1–3]. Colloidal suspensions of magnetized nanopar-
ticles in liquid nonmagnetic carriers are known as ferrofluids. The ability of ferrofluids
to respond to external magnetic fields makes them useful in many areas, ranging from
engineering [4], to biomedical applications [5,6]. Such materials can be used as an active
medium in devices (sealants, heat conduction media, media for hydraulic suspensions) and
in materials processing (separation media, gas-fluidized beds). They can also be adapted
for biomedical uses such as targeted drug delivery, diagnosis, and localized treatment
by hyperthermia [7–9] as well as noninvasive tomographic techniques such as magnetic
particle imaging (MPI) [10–12]. The main characteristic that describes the dynamic mag-
netic response of a ferrofluid to an AC field is the dynamic susceptibility. Most of the
known theoretical models of the dynamic magnetic response of ferrofluids concern non-
interacting samples [13–21]. For example, the dynamic susceptibility of a ferrofluid in a
weak AC magnetic field is described by the well-known Debye formula [15,16]. Yoshida
and Enpuku proposed simple analytical expressions for determining the dynamic response
of a ferrofluid to an AC field with arbitrary amplitude [17]. The dynamic susceptibility of
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ferrofluids under magnetic fields of various configurations was considered in [18–20]. The
aforementioned theoretical models successfully describe experimental results for diluted
ferrofluids; however, they cannot describe the behavior of concentrated samples. In concen-
trated ferrofluids, interparticle interactions play an important role and significantly change
the magnetic susceptibility of the samples [22,23]. The influence of interparticle interactions
on the dynamic response of a ferrofluid was investigated in theoretical models [24–27]. In
these works, two different approaches were used to take interparticle interactions into
account: modified mean field theory and virial expansion. Theories [24–26] show a good
agreement with computer simulation results for dynamic susceptibility of moderately
concentrated ferrlfluids in AC field with low amplitude. In [27], a theory of the dynamic
response of a ferrofluid to an AC magnetic field that includes both the effects of interparticle
dipole–dipole interactions and the dependence on field amplitude is obtained.

Computer simulation of the dynamic response of a ferrofluid is usually based on linear
response theory and the magnetic susceptibility is expressed in terms of the equilibrium
(zero-field) magnetization autocorrelation function [28]. Using this approach, the dynamic
response of a ferrofluid can predict reliably only for weak AC fields, as detailed in [29,30],
for example. The response of ferrofluids to an AC magnetic field outside the linear response
region is important for several applications including magnetic hyperthermia, magnetic
particle imaging (MPI), and biodetection. The problem is that when we deal with the
high-amplitude AC fields in computer simulations, an increase in the frequency of the AC
field leads to the appearance of additional computational errors, which can even lead to
physically incorrect results (for example, a negative value of the magnetic susceptibility).
However, these errors must be corrected by carefully adjusting the input parameters
of the numerical algorithm: decreasing the time step, increasing the total number of
computational periods, complicating the calculation method, etc. In the literature, there
are no studies and practical recommendations about the subject of how to choose the input
parameters of the numerical algorithm to minimize computational errors and correctly
determine the dynamic susceptibility in a high-frequency region. In this regard, obtaining
reliable results of computer simulation of the dynamic susceptibility of a ferrofluid under a
high-amplitude AC field in a wide frequency range is still a challenge.

In this article, we carry out the Langevin dynamic (LD) simulation of the dynamic
susceptibility of a ferrofluid in a high-amplitude AC field using different time steps in the
numerical scheme, changing the number of calculated periods. We compare the simulation
results with the known Yoshida–Enpuku theory [17] in order to determine the optimal
input parameters of the numerical algorithm, which make it possible to obtain reliable
data of the dynamic susceptibility of a ferrofluid in a high-amplitude AC field in a wide
frequency range. We also analyze the dependence of the time step inputted into the
numerical algorithm on the magnitude of the computational error arising in the computer
simulation of the dynamic susceptibility for various frequencies and amplitudes of the
AC field and give practical recommendations for carrying out the calculations. Using
these data, the dynamic susceptibility of a ferrofluid with different viscosity, concentration,
and intensity of interparticle dipole–dipole interactions is calculated in a wide range of
amplitudes and frequencies of the AC field.

2. Model and Methods
2.1. Model

Ferrofluid is modeled as a system consisting of N spherical particles of mass m in a
three-dimensional volume V at temperature T. We assume that the ith particle exhibits a
permanent point dipole moment µi = µµ̂i at its center (where µ is a length of a point dipole
moment vector and µ̂i is a unit vector of a point dipole moment), which can freely rotate
in 3D. The interaction potential between particles i and j is a sum of shot-range Weeks–
Chandler–Andersen (WCA) potential uWCA

ij and the long-range dipolar (d) potential ud
ij.

The WCA potential is
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uWCA
ij =


ε

1− 2

(
σ

rij

)6
2

, rij ≤ rmin

0, rij > rmin

, (1)

where rij is a distance between the ith and jth ferroparticles, rmin = 21/6σ is the mini-
mum of the Lennard–Jones (LJ) potential, ε and σ are the LJ energy and range parameter,
respectively. The magnetic dipole interaction is

ud
ij =

µ0µ2

4πr3
ij

[(
µ̂i · µ̂j

)
− 3
(
µ̂i · r̂ij

)(
µ̂j · r̂ij

)]
, (2)

where r̂ij is a unit vector of the interparticle separation vector rij = rij r̂ij, µ0 is the vac-
uum magnetic permeability. The interaction energy uH

i between the ith particle magnetic
moment and the magnetic field H = H cos(ωt)Ĥ can be written in the Zeeman form:

uH
i = −µ0(µi ·H) = −µ0µi H cos(ωt)(µ̂i · Ĥ), (3)

where t denotes time, Ĥ stands for the unit vector, and ω and H are AC field angular
frequency and amplitude, respectively. As usual, reduced units are employed: the reduced
concentration is ρ∗ = ρσ3, where ρ = N/V; the reduced magnetic moment is µ∗ =√

µ0µ2/(4πσ3ε); the reduced temperature is T∗ = kBT/ε (where kB is the Boltzmann
constant); the dipolar coupling constant is λ = (µ∗)2/T∗; and the reduced time t∗ = t/t0,
which is measured in units of t0 =

√
σ2m/ε.

2.2. Simulation Details

The translational and rotational movement of the ith particle is determined by the
Langevin equations of motions [31]:

m
dvi
dt

=
N

∑
j,j 6=i

FLJ
ij +

N

∑
j,j 6=i

Fd
ij − ΓTvi + ξT

i , (4)

I
dΩi
dt

= ∑
j,j 6=i

rij × Fd
ij + µ0µi × H − ΓRΩi + ξR

i , (5)

where I is the particle moment of inertia, and vi and Ωi are its translational and angular
velocities, correspondingly. The resulting forces acting on the ith particle include LJ force
FLJ

ij , the force of dipole–dipole interaction Fd
ij , and particle–field force µ0µi × H. The

symbols ΓT and ΓR stand for the translational and rotational friction constants, respectively.
Gaussian distributed random forces ξT

i and torques ξR
i have the properties that the first

moments vanish 〈
ξT

iφ(t)
〉
= 0,

〈
ξR

iφ(t)
〉
= 0,

while the second moments satisfy〈
ξT

iφ(t)ξ
T
jψ(s)

〉
= 2kBTΓTδijδφψδ(t− s),

〈
ξR

iφ(t)ξ
R
jψ(s)

〉
= 2kBTΓRδijδφψδ(t− s),

where φ ∈ {x, y, z} and ψ ∈ {x, y, z}, {x, y, z} are components in the Cartesian coordinates,
t and s denote time moments, δij and δϕψ are the Kronecker delta, and δ(t− s) is the Dirac
delta function.

In actual LD simulations, we use the reduced variables

v∗i = vi
t0

σ
, F∗i =

t2
0

mσ

N

∑
j,j 6=i

(
FLJ

ij + Fd
ij

)
, Γ∗T =

t0ΓT
m

, ξT∗
i =

t2
0

mσ
ξT

i ,
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I∗ =
I

σ2m
, Ω∗i =

Ωi
t0

, τ∗i =
1
ε

(
∑

j,j 6=i
rij × Fd

ij + µ0µi × H

)
, Γ∗R =

ΓR

σ
√

mε
, ξR∗

i =
ξR

i
ε

,

where v∗i is the reduced translational velocity of the ith particle, F∗i is the reduced force
of the ith particle, Γ∗T is the reduced translational friction constant, ξT∗

i is the reduced
Gaussian distributed random force for the ith particle, I∗ is the reduced particle moment
of inertia, Ω∗i is the reduced angular velocity of the ith particle, τ∗i is the reduced torque
of the ith particle, Γ∗R is the reduced rotational friction constant, and ξR∗

i is the reduced
Gaussian distributed random torque for the ith particle. Therefore, Equations (4) and (5)
can be rewritten in reduced form

dv∗i
dt∗

= F∗i − Γ∗Tv∗i + ξT∗
i , (6)

I∗
dΩ∗i
dt∗

= τ∗i − Γ∗RΩ∗i + ξR∗
i . (7)

For the computer simulation of ferrofluids, Equations (6) and (7) are augmented by an
equation of the motion of magnetic moments

dµ̂i

dt∗
= Ω∗

i × µ̂i . (8)

It should be noted that the model (6)–(8) corresponds to a monodisperse ferrofluid.
The direct application of this model to experimental results is complicated by the polydis-
persity of real ferrofluids. Nevertheless, the extension of this model to the polydisperse
case is possible by using the discrete ferroparticle diameter distribution. In general, the
set of Equations (6)–(8) can be solved using various numerical methods. For translational
equations of motion (6), the velocity Verlet algorithm is widely used, which is an example
of a second-order integrator [32]. The problems with solving Equations (7) and (8) are
that the direct application of integration methods involves using Euler angles to represent
rotational degrees of freedom, which leads to singularities when the azimuthal angle of the
particle is 0 or π [31,33]. Another problem is that the value of the magnetic moment must be
kept constant during numerical integration. To overcome the difficulties mentioned above,
the velocity-Verlet-like algorithm is used for the quaternions [34]. For a system of noninter-
acting magnetic particles, the above-mentioned algorithms for solving Equations (6)–(8)
are implemented in ESPResSo [35], which we used for LD simulations. We included the
interparticle dipole–dipole interactions in the numerical scheme of ESPResSo with help of
the dipolar-P3M algorithm [36].

The rotational motion of the particles can be described by two time scales. They are
the inertial time τI = I/ ΓR and the Brownian time τB = ΓR/ 2kBT. First, τI describes
how long a particle resists any change in its angular velocity. Second, τB is connected with
thermal fluctuations. For ferrofluids, the ratio τI � τB must be fulfilled. To satisfy this
condition, we set I∗ = 1, T∗ = 1 and Γ∗R from the range 20 to 80. A cubic simulation box
with periodic boundary conditions was used for simulations. The volume fraction ϕ was
varied from 0.01 to 0.125. The strength of the dipole–dipole interaction was defined by
λ = 1.

The reduced normalized magnetization is defined as

M∗(t) =
1
N ∑

i
µ̂i.

M∗(t) was calculated until the moment of time that corresponds to 22 periods of the
external magnetic field. The results were averaged over 18 periods, while the first four
periods were omitted. The average value of the magnetization M∗H(t) in the direction of
the field was used to calculate the dynamic susceptibility. The real χ′(ω) and imaginary
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χ′′(ω) parts of the dynamic susceptibility are defined as the first term in the Fourier series
of M∗H(t):

χ′(ω) = 3χL
ω

πα

2π
ω∫

0

M∗H(t) cos(ωt)dt, (9)

χ′′(ω) = 3χL
ω

πα

2π
ω∫

0

M∗H(t) sin(ωt)dt,

where χL = µ0µ2ρ/3kBT is the Langevin susceptibility and α = mH/kBT is the Langevin
parameter characterizing the AC field amplitude. χL is a complex characteristic of ferrofluid
density and the intensity of interparticle dipole–dipole interactions. Integrals (9) are
calculated numerically using the trapezoidal rule.

2.3. Theory

In order to validate the LD simulation methodology, we first consider a system of
noninteracting particles. For this system, computer simulation results are compared with
the Yoshida–Enpuku theory [17], which is a modification of the Debye theory for the high
field amplitudes

χid(ω) = χ′id(ω) + iχ′′id(ω), (10)

χ′id(ω) =
χid(0)

1 + (ωτid)2 ,

χ′′id(ω) = kid
χid(0)ωτid
1 + (ωτid)2 ,

χid(0)
χL

= 1− 0.0636α2

1 + 0.18α + 0.0659α2 ,

τid =
τB√

1 + 0.07α2
,

kid = 1 +
0.024α2

1 + 0.18α + 0.033α2 ,

where χid(0) is the susceptibility in the quasistatic case (when the frequency approaches
zero), τid is the effective relaxation time, which can be obtained as τid = 1/ωp (ωp is the
frequency at which the imaginary part of the dynamic susceptibility χ′′id has a peak), and
kid denotes the factor. Subscript id denotes the ideal system, i.e., the system without dipolar
interactions between magnetic particles. Expressions (10) were obtained by approximating
the numerical solutions of the Fokker–Planck equation [37] for a single dipole particle in
an AC magnetic field. Real and imaginary parts of the susceptibility (10) reliably describe
the susceptibility of a noninteracting particles, at least for α ≤ 10 [17].

3. Results and Discussion

Figure 1 shows dynamic magnetization curves for the systems of noninteracting parti-
cles in the AC field with amplitude α = 5 and angular frequencies ωτB = 0.1 (Figure 1a)
and ωτB = 20.0 (Figure 1b). Each magnetization curve contains 22 periods of the AC
field. For the low frequency ωτB = 0.1, magnetization immediately goes into a steady
state and the values of the magnetization is similar in each period, whereas for the high
frequency ωτB = 20.0, the magnetization reaches the steady state slowly. Therefore, in
the high-frequency region, it is necessary to omit several initial periods to obtain good
statistical data. It is worth to note that the number of periods that should be omitted for
each system is different and depends on the time when the system achieves the steady state.
In this work, to calculate the dynamic susceptibility using Equation (9), the magnetization
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was averaged over 18 periods (the first four periods were omitted). This is the minimum
number of calculation periods that made it possible to obtain the best agreement between
the computer simulation results and the reference Yoshida–Enpuku theory (10) in the whole
range of considered parameters ωτB ≤ 102, 5 ≤ α ≤ 10. The deviation of the computer
simulation results from the theoretical data (10) for the real and imaginary parts of the
susceptibility depending on the number of computational periods is presented in Figure 2.
The vertical axis shows the number of periods of the AC field over which the averaging
of the magnetization was carried out for calculating the susceptibility; the horizontal axis
is the number of the first periods of the calculation, which are omitted during averaging.
Colors show the absolute difference between the results of the computer simulation and
the Yoshida–Enpuku theory for the system with ωτB = 20.0, α = 5, Γ∗R = 40. When the
total number of calculation periods is less than 20, the averaging result is sensitive to the
number of omitted periods; there is an intermittent color change in this region, which is
more pronounced for the imaginary part. An increase in calculation periods over 20 leads
to a smoother change in colors on the diagram, and the dependence on omitted periods
becomes weak, that is, the results of computer simulations are stabilized. Nevertheless,
in order to exclude the influence of the unstable behavior of magnetization at small t∗

(Figure 1b), we omitted the first four periods when calculating the susceptibilities.
The magnetization curves averaged over 18 periods are used to calculate the dynamic

susceptibility (9). Figure 3 shows the comparison of the Yoshida–Enpuku theory (10)
with LD simulation results for dynamic susceptibility of noninteracting particles in the
AC field with amplitudes α = 5 (Figure 3a) and α = 10 (Figure 3b). Lines are from the
Yoshida–Enpuku theory (10); symbols show the computer simulation data. Filled symbols
correspond to the real part of a dynamic susceptibility; unfilled ones are the imaginary
part. Computer simulations were performed with different time steps ht, so squares are
chosen for ht = 0.01, circles are used for ht = 0.0025, rhombi correspond to ht = 0.001, and
triangles stand for ht = 0.00025.

The maximum deviation of the LD simulation results from the theoretical data is
observed in the frequency range ωτB ∈ (2, 100) at ht = 0.01, where the real part of the
susceptibility in computer simulation demonstrates nonphysical negative values. Note
that at the same time step, ht = 0.01 for the frequencies ωτB ∈ (10−2, 2), the results of the
computer simulations are in satisfactory agreement with the theory. Decreasing the time
step up to ht = 0.00025 allows us to achieve the quantitative agreement between theoretical
curves (solid and dashed lines) and computer simulation results (triangles) in the wide
frequency range ωτB ≤ 102.
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Figure 1. Dynamic magnetization of noninteracting magnetic particles under AC field with the
amplitude α = 5. The rotational friction constant is Γ∗R = 40, and the AC field angular frequencies
ωτB are: (a)—ωτB = 0.1; (b)—ωτB = 20.0. Each magnetization curve contains 22 periods of the AC
field.
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Figure 2. Absolute difference between theoretical χT and computer simulation χCS data of the (a) real
and (b) imaginary parts of the dynamic susceptibility at the AC field angular frequency ωτB = 20.0
for the system with α = 5, Γ∗R = 40 in dependence on the number of computational periods. The last
period shows the number of periods of the AC field over which the averaging of the magnetization
was carried out for calculating the susceptibility; the start period is the number of the first periods of
the calculation, which are omitted during averaging. Computer simulations were performed with
the time step ht = 0.00025. Theoretical values of the dynamic susceptibility were calculated from
Equation (10): χ′T(ωτB) = 0.004, χ′′T(ωτB) = 0.055.
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Figure 3. Dynamic susceptibility χ/χL as a function of a reduced field frequency ωτB for AC field
amplitudes (a) α = 5 and (b) α = 10. Lines are from the Yoshida–Enpuku theory [17] (Equation (10)),
symbols are computer simulation results. Computer simulations were performed with time steps
ht = 0.01, ht = 0.0025, ht = 0.001 and ht = 0.00025.

In Figure 4, the difference between theoretical and computer simulation results is
shown for different time steps. For all time steps ht presented in Figure 4, the computer
simulation results χ′CS and χ′′CS have the same deviation from theoretical data χ′T and χ′′T
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for frequencies ωτB . 1. The error begins to behave differently with increasing frequency,
which is most noticeable in the range of ωτB > 10. As it is seen, the maximum difference
is observed for the biggest time step ht = 0.01. For the high frequency ωτB, the smallest
difference is reached for the smallest time step ht = 0.00025. In other words, decreasing the
time step in the high-frequency region allows us to reduce statistical errors.
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Figure 4. Difference between theoretical χ′T and computer simulation χ′CS data of the (a) real and (b)
imaginary parts of the dynamic susceptibility from the Figure 3b for the AC field amplitude α = 10.
Different colors and shapes of symbols correspond to different time steps ht = 0.01, ht = 0.0025,
ht = 0.001, and ht = 0.00025.

The step size ht is not the only parameter that affects the accuracy of the obtained
computer simulation data of the dynamic susceptibility. Another characteristic is related to
the calculation of the integral Equation (9). This integral was calculated using the trapezoid
rule [38]

χ′(ω)πα

3χLω
=

2π
ω∫

0

M∗H(t) cos(ωt)dt ≈

≈ 0.5hint(M∗H(t̄0) cos(ωt̄0) + M∗H(t̄K) cos(ωt̄K)) + hint

K−1

∑
k=1

M∗H(t̄k) cos(ωt̄k),

where {t̄k : t̄0 = 0, t̄k = t̄k−1 + hint ∀k ∈ {1, .., K− 1}, t̄K = 2π/ω}. Discrete time points
{tk} from the numerical solution of Equations (6) and (7) and the points {t̄k} for calculating
Equation (9) do not have to coincide surely. If {tk}={t̄k}, then the saving of the magnetiza-
tion value should be at each step of solving Equations (6) and (7). This approach is more
accurate, but it is slower, and it leads to increased memory consumption for storing data.
We performed calculations for hint = Sht, where S is the aspect ratio between these sets
of points. It is worth to note that in Figures 2 and 3, hint = 5ht. The influence hint on the
accuracy of the computer simulation results is clearly pronounced in Figure 5 for the time
step ht = 0.001. The results are presented for different magnetic field amplitudes α = 5 in
Figure 5a and α = 10 in Figure 5b. Blue squares are chosen for hint = 0.1; green circles are
for hint = 0.005. It is clearly seen that the difference between the computer simulation data
for different hint can reach the value 0.1, which corresponds to the order of hint.
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Figure 5. Dynamic susceptibility χ/χL as a function of a reduced field frequency ωτB for AC field
amplitudes (a) α = 5 and (b) α = 10. Lines are from the Yoshida–Enpuku theory (10); symbols are
computer simulation results. The integral (9) is calculated by different time steps hint = 0.1 (blue
squares) and hint = 0.005 (green circles); ht = 0.001.

From the practical point of view, the convergence of the numerical solution of stochas-
tic equations and integration in the susceptibility calculation can be estimated by the
absolute error ∆χ′(h1, h2) = |χ′(h1)− χ′(h2)|, ∆χ′′(h1, h2) = |χ′′(h1)− χ′′(h2)|, where h1
and h2 are adjacent time steps ht (Figure 6 ). The average value of the absolute deviation is
additionally shown by horizontal dashed lines in Figure 6. The average error decreases
monotonically, taking the values 0.005, 0.002, and 0.001 (the values are rounded to three
decimal places).
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Figure 6. The modulus of the difference between the (a) real and (b) imaginary parts of the sus-
ceptibility calculated from LD simulations for different time steps h1 and h2: (a) ∆χ′(h1, h2) =

|χ′(h1)− χ′(h2)|, (b) ∆χ′′(h1, h2) = |χ′′(h1)− χ′′(h2)|. The absolute deviation is shown by horizon-
tal dashed lines. Susceptibility values correspond to the system from Figure 3b, hint,i = 5hi, i ∈ {1, 2}.

Thus, Figures 4 and 6 show a detailed analysis of the computational error versus
a field frequency and time steps. Since LD simulations are time-consuming, based on
Figures 4 and 6, the following practical recommendations can be given for calculating the
dynamic susceptibility of a ferrofluid in a high-amplitude AC field.

1. The Langevin dynamics equations should be solved until the time moment that
corresponds to at least 22 periods of the AC magnetic field. Obtained dynamic
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magnetization should be averaged over all calculated periods, excluding at least the
first four ones.

2. It is necessary to use different time steps in different frequency ranges : ht = 0.0025 if
ωτB ∈ [10−2, 10−1), ht = 0.001 if ωτB ∈ [10−1, 1), ht = 0.00025 if ωτB ∈ [1, 102].

3. The step size hint has to be the same order as ht—for example, hint = 5ht.

These recommendations with a time step decrement starting from a certain frequency
were used to determine the dynamic susceptibility of an ensemble of noninteracting
magnetic particles distributed in a medium with different viscosities of a carrier liquid. The
viscosity is modeled by friction constant Γ∗R in Equations (6)–(8). The results for different
friction constants are shown in Figure 7. The results for α = 5 can be found in Figure 7a;
Figure 7b shows the data for α = 10. Lines correspond to the theoretical results obtained
using Equation (10); symbols are chosen for the computer simulation data. Blue squares
and lines correspond to the real and imaginary susceptibility for the friction constant
Γ∗R = 20. For Γ∗R = 40, we used green circles and lines, and red rhombi and lines are
chosen for the real and imaginary susceptibility for Γ∗R = 80. Increasing viscosity of the
medium leads to a shift in the maximum of the imaginary part of the susceptibility to the
low-frequency region; the value of the maximum does not depend on the medium viscosity.
The plateau in the region of low frequencies of the real part of the susceptibility is longer
for systems with lower viscosity. An increase of the amplitude of the AC field leads to a
decrease in the values of the real and imaginary parts of the susceptibility, and hence to
a decrease in the dynamic magnetic response of the system. The latter is confirmed by
experimental data [39].
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Figure 7. Dynamic susceptibility χ/χL of noninteracting magnetic particles distributed in a medium
with different viscosities of a carrier liquid as a function of a field frequency ωt0 for AC field
amplitude (a) α = 5 and (b) α = 10. Symbols correspond to the computer simulation data; lines
are chosen for theoretical results (Equation (10)). Filled symbols and solid lines are the real part of
the susceptibility; unfilled symbols and dashed lines are the results for its imaginary part. Different
colors and shapes of symbols are chosen for different friction constants Γ∗R.

In Figure 8, the dynamic susceptibility of an ensemble of interacting magnetic particles
is shown. Computer simulation results plotted by symbols are shown in comparison with
the reference Yoshida–Enpuku theory (10) for noninteracting particles plotted by lines.
Blue circles correspond to the real part of the susceptibility; orange squares are chosen
for the imaginary part. Solid and dashed black lines are the real and imaginary parts of
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the susceptibility obtained in the reference theory correspondingly. Figure 8a contains
the data for the Langevin parameter α = 5; Figure 8b is for α = 10. In Figure 8b, it is
seen that the dipole–dipole interaction is suppressed by the dipole–field energy, and the
susceptibilities of the interacting and noninteracting systems almost coincide. A similar
behavior of the magnetic susceptibility at large amplitudes was described in the work for a
system of immobilized interacting superparamagnetic particles [40]. With an increase of
the amplitude of the AC field, dipole–dipole interactions begin to appear; that leads to an
increase of the susceptibility, which is demonstrated in Figure 8a.
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Figure 8. Dynamic susceptibility χ/χL as a function of a field frequency ωτB for the AC field
amplitude (a) α = 5 and (b) α = 10 obtained for the friction constant Γ∗R = 80. Lines correspond to
the Yoshida–Enpuku theory (10) for noninteracting particles; symbols are the computer simulation
data for interacting particles with χL = 1.

4. Conclusions

In this work, we have shown that the arising computational errors in the LD computer
simulation of the dynamic susceptibility of a ferrofluid in a high-amplitude alternating
magnetic field at high frequencies can be minimized by carefully adjusting the input
parameters of the numerical algorithm, namely the time step ht for the solution stochastic
Equations (6) and (7), the time step hint for calculation of integrals (9), and the number of
calculation periods. Despite the fact that the exact values of input parameters depend on
the system under consideration, we have given practical recommendations that make it
possible to obtain reliable results of the dynamic susceptibility of a ferrofluid in an AC
field of high amplitude 5 ≤ α ≤ 10 in a wide frequency range, at least ωτB ≤ 10−2. As a
criterion for assessing the reliability of the obtained computer simulation results, we chose
a good agreement between the computer simulation data of dynamic susceptibility and
the Yoshida–Enpuku theory (10). Recommendations are described in detail in the Results
and Discussion sections and include (1) using different time steps in different frequency
ranges for calculating dynamic magnetization, (2) solving the Langevin dynamics equations
until the moment of time that corresponds to at least 22 periods of the external magnetic
field, (3) using the averaged magnetization over all calculated periods, excluding the
first few periods, and (4) increasing the integration step hint in comparison with the step
ht. All of these recommendations allow us to accumulate reliable statistics. Using these
recommendations, we simulate the dynamic susceptibility of a ferrofluid with different
viscosity, concentration, and intensity of interparticle dipole–dipole interactions in a wide
range of amplitudes and frequencies of the AC field.
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Abbreviations
The following abbreviations are used in this manuscript:

WCA Weeks–Chandler–Andersen
LJ Lennard–Jones
AC Alternating current
N The number of spherical particles
m A mass of particles
V A system volume
T A temperature
µi A permanent point dipole moment of the ith particle
µ A length of a point dipole moment vector
µ̂i A unit vector of a point dipole moment
uWCA

ij The Weeks–Chandler–Andersen (WCA) potential
ud

ij The long-range dipolar potential
rij A distance between ith and jth ferroparticles
rmin The minimum of the Lennard–Jones (LJ) potential
ε The Lennard–Jones energy
σ The Lennard–Jones range parameter
r̂ij A unit vector of the interparticle separation vector
rij An interparticle separation vector
µ0 The vacuum magnetic permeability
uH

i The Zeeman energy
H The magnetic field
Ĥ A unit vector of the magnetic field
t Time
H The alternating field amplitude
ω The alternating field angular frequency
ρ∗ The reduced concentration
ρ A numerical concentration
µ∗ The reduced magnetic moment
T∗ The reduced temperature
kB The Boltzmann constant
λ The dipolar coupling constant
t∗ The reduced time
t0 The units for time
I The particle moment of inertia
vi The particle translational velocity
Ωi The particle angular velocity
FLJ

ij The Lennard–Jones force
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Fd
ij The dipole–dipole interaction force

ΓT The translational friction constant
ΓR The rotational friction constant
ξT

i The Gaussian distributed random force for the ith particle
ξR

i The Gaussian distributed random torque for the ith particle
ξT

iφ The Cartesian coordinate φ ∈ {x, y, z} of the Gaussian distributed
random force for the ith particle

ξR
iψ The Cartesian coordinate ψ ∈ {x, y, z} of the Gaussian distributed

random torque for the ith particle
s The time moment
v∗i The reduced translational velocity of the ith particle
F∗i The reduced force of the ith particle
Γ∗T The reduced translational friction constant
ξT∗

i The reduced Gaussian distributed random force for the ith particle
I∗ The reduced particle moment of inertia
Ω∗i The reduced angular velocity of the ith particle
τ∗i The reduced torque of the ith particle
Γ∗R The reduced rotational friction constant
ξR∗

i The reduced Gaussian distributed random torque for the ith particle
τI The inertial time
τB The Brownian time
M∗(t) The reduced normalized magnetization
M∗H(t) The average value of the magnetization in the direction of the field
χ Dynamic susceptibility
χ′(ω) The real part of the dynamic susceptibility
χ′′(ω) The imaginary part of the dynamic susceptibility
χL The Langevin susceptibility
α The Langevin parameter, the amplitude of the alternating magnetic field
χid(0) The susceptibility in the quasistatic case
τid The effective relaxation time
ωp The frequency at which the imaginary part of the dynamic susceptibility

has a peak
kid The factor
ht The time step in the computer simulations
h1, h2 Different time steps in the computer simulations
{tk} The time points in the computer simulations
hint The time step for calculating integral (9)
{t̄k} The time points for calculating integral (9)
K The number of segments for calculating integral (9)
S The aspect ratio between sets of points {t̄k} and {tk}
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