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Abstract: We solve the Pauli tomography problem for Gaussian signals using the notion of Schur
complement. We relate our results and method to a notion from convex geometry, polar duality. In
our context polar duality can be seen as a sort of geometric Fourier transform and allows a geometric
interpretation of the uncertainty principle and allows to apprehend the Pauli problem in a rather
simple way.
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1. The Pauli Problem and Quantum Tomography

The problem goes back to Pauli’s question [1]:

The mathematical problem as to whether, for given probability densities W(p) and W(x),
wave function ψ (...) is always uniquely determined, has still not been investigated in its
generality.

The answer to Pauli’s question is negative [2]; there is a general nonuniqueness of the
solution (for a detailed discussion of the Pauli problem and its applications, see [3]). The
problem can actually be formulated as from statistical quantum mechanics as follows: can
we estimate the density matrix of the said state using repeated measurements on identical
quantum systems? After having obtained measurements on these identical systems, can
we make a statistical inference about their probability distributions (e.g., [4])? Such a
procedure is an instance of quantum state tomography, and is practically implemented
using a set of measurements of a so-called quorum of observables. It can be performed
using various mathematical techniques, for instance the Radon–Wigner transform that we
discussed in [5]; the latter has important applications in medical imaging [6]. For details
and explicit constructions, see [7–14], and [15] by Man’ko and Man’ko.

Remark 1. Everything in this paper extends mutatis mutandis to time-frequency analysis, replac-
ing the notion of wave function by that of a signal. In this case, one takes h̄ = 1/2π and replaces
phase-space variables (x, p) with time-frequency variables (x, ω).

2. A Simple Example

Let us discuss the Pauli problem on the simplest possible example, that of a Gaussian
wave function in one spatial dimension. Assuming for simplicity, it is centered at the origin
and is given by formula

ψ(x) =
(

1
2πσxx

)1/4
e−

x2
4σxx e

iσxp
2h̄σxx

x2
(1)

where σxx is the variance in the position variable, and σxp the covariance in the position
and momentum variables. Fourier transform

ψ̂(p) =
1√
2πh̄

∫ ∞

−∞
e−

i
h̄ pxψ(x)dx
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of the ψ is explicitly given by

ψ̂(p) =
(

1
2πσpp

)1/4
e
− p2

4σpp e
−

iσxp
2h̄σpp

p2

(2)

hence, the knowledge of σxx and of σpp, that is, of moduli |ψ(x)|2 and |ψ̂(p)|2, determines
covariance σxp up to a sign because state ψ saturates the Robertson–Schrödinger inequality;
so, we have

σxxσpp − σ2
xp = 1

4 h̄2 (3)

This identity can be solved in σxp yielding σxp = ±(σxxσpp − 1
4 h̄2)1/2. The state and its

Fourier transform are given by formulas

ψ±(x) =
(

1
2πσxx

)1/4
e−

x2
4σxx e±

iσxp
2h̄σxx

x2
(4)

and

ψ̂±(p) =
(

1
2πσpp

)1/4
e
− p2

4σpp e
∓ iσxp

2h̄σpp
p2

. (5)

Both functions ψ+ and ψ− = ψ∗+ and their Fourier transforms ψ̂+ and ψ̂− satisfy conditions
|ψ+(x)|2 = |ψ−(x)|2 and |ψ̂+(p)|2 = |ψ̂−(p)|2 showing that the Pauli problem does not
have a unique solution. In Corbett’s [16] terminology ψ+ and ψ− are “Pauli partners”. Let
us now have a look at these things from the perspective of the Wigner transform

Wψ(x, p) =
1

2πh̄

∫ ∞

−∞
e−

i
h̄ pyψ(x + 1

2 y)ψ∗(x− 1
2 y)dy

of Gaussian ψ. A straightforward calculation involving Gaussian integrals [17] yields,
setting z = (x, p), normal distribution

Wψ±(z) =
1

2π
√

det Σ±
e−

1
2 Σ−1
± z·z (6)

where covariance matrix

Σ± =

(
σxx ±σxp
±σpx σpp

)
has determinant det Σ± = 1

4 h̄2 in view of equality (3); hence,

Wψ±(z) =
1

πh̄
e−

1
2 Σ−1
± z·z . (7)

Associated covariance matrices are thus

Ω± = {z :
1
2

Σ−1
± z · z ≤ 1 .}

3. Multivariate Case: Asking the Right Questions

We generalize the discussion to the multivariate case where the real variables x and p
are replaced with real vectors x = (x1, ..., xn), p = (p1, ..., pn).

The Wigner function cannot be directly measured, but its marginal distributions can
(they are classical probability densities). In analogy with Formula (6) we determine a
(centered) Gaussian, ψ such that

Wψ(z) =
(

1
2π

)n 1√
det Σ

e−
1
2 Σ−1z·z (8)
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where z = (x, p), and the covariance matrix is

Σ =

(
ΣXX ΣXP
ΣPX ΣPP

)
, ΣPX = ΣT

XP . (9)

Here, the the n-dimensional Wigner transform Wψ is defined by

Wψ(x, p) =
(

1
2πh̄

)n ∫
e−

i
h̄ p·yψ(x + 1

2 y)ψ∗(x− 1
2 y)dny .

The most straightforward way to determine this state is to use the properties of the Wigner
transform itself. Let us start with the marginal properties [17]:∫

Wψ(x, p)dn p = |ψ(x)|2 (10)∫
Wψ(x, p)dnx = |ψ̂(p)|2 (11)

where the n-dimensional Fourier transform ψ̂ is given by

ψ̂(p) =
(

1
2πh̄

)n/2 ∫
e−

i
h̄ pxψ(x)dnx .

These formulas hold as soon as both ψ and ψ̂ are in L1(Rn) ∩ L2(Rn) [17]. These quantities
allow for determining matrices

ΣXX = (σxjxk )1≤j,k≤n and ΣPP = (σpj pk )1≤j,k≤n

by usual formulas

σxjxk =
∫

xjxk|ψ(x)|2dnx , σpj pk =
∫

pj pk|ψ̂(p)|2dn p

and an elementary calculation of Gaussian integrals yields the values

|ψ(x)| =
(

1
2π

)n/4
(det ΣXX)

−1/4e−
1
4 Σ−1

XX x·x (12)

|ψ̂(p)| =
(

1
2π

)n/4
(det ΣPP)

−1/4e−
1
4 Σ−1

PP p·p . (13)

Here, we are exactly in the situation discussed by Pauli: |ψ(x)| and |ψ̂(p)| are what we can
measure, so we can determine covariance blocks ΣXX and ΣPP, but not covariance ΣXP:
knowledge of the latter (and hence of ΣPX = ΣT

XP) is necessary to entirely determine state
ψ. In the previous section, the problem was solved: in case n = 1, blocks ΣXX, ΣPP, and
ΣXP were scalars σxx, σpp, and σxp, and these are related by the uncertainty principle in
the form of σxxσpp − σ2

xp = 1
4 h̄2 yielding two possible values σxp = ±(σxxσpp − 1

4 h̄2)1/2,
and hence the two states (5). In the multidimensional, case we also have a simple (but not
immediately obvious) formula connecting the blocks of the covariance matrix. The way
out of this problem consists in using a general formula [17–19], which was initially proved
by Bastiaans [20] in connection with first-order optics. Let X and Y be real n× n matrices,
such that X = XT > 0 and Y = YT , and set

ψX,Y(x) =
(

1
πh̄

)n/4
(det X)1/4e−

1
2h̄ (X+iY)x·x . (14)

This function is normalized to unity: ||ψX,Y||L2 = 1, and its Wigner transform is given by

WψX,Y(z) =
(

1
πh̄

)n
e−

1
h̄ Gz·z (15)
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where G is the symmetric matrix

G =

(
X + YX−1Y YX−1

X−1Y X−1

)
. (16)

A fundamental fact, which is related to the uncertainty principle, is that G is a symplectic
matrix, i.e., it belongs to symplectic group Sp(n). Equivalently, since G = GT ,

GT JG = GJG = J

where

J =
(

0n×n In×n
−In×n 0n×n

)
the standard symplectic matrix. We have G = STS, where

S =

(
X1/2 0

X−1/2Y X−1/2

)
(17)

is clearly symplectic. Assuming that function ψ for which we are looking is a Gaussian,
comparing Formulas (8) and (15) leads to identification

Σ =
h̄
2

G−1 .

Since GJG = J the inverse G−1 is −JGJ, explicit formula

G−1 =

(
X−1 −X−1Y
−YX−1 X + YX−1Y,

)
so that there remains to solve matrix equation(

ΣXX ΣXP
ΣPX ΣPP

)
=

h̄
2

(
X−1 −X−1Y
−YX−1 X + YX−1Y

)
. (18)

It immediately follows that we have X = h̄
2 Σ−1

XX and Y = − 2
h̄ ΣXPΣ−1

XX, so the unknown
Gaussian for which we were looking is

ψ(x) =
(

1
2π

)n/4
(det ΣXX)

−1/4 exp
[
−
(

1
4

Σ−1
XX +

i
2h̄

ΣXPΣ−1
XX

)
x · x

]
, (19)

which is the n-dimensional variant of (1), replacing σxx with ΣXX and σxp with ΣXP. This
does not solve completely our problem, however, because we do not know matrix ΣXP.
The crucial step is to notice that, as a bonus, we obtained from (18) the matrix form of the
saturated Robertson–Schrödinger equality, namely,

ΣPPΣXX − Σ2
XP = 1

4 h̄2 In×n . (20)

From this formula we can deduce Σ2
XP, and one finds two Pauli partners

ψ±(x) =
(

1
2π

)n/4
(det ΣXX)

−1/4 exp
[
−
(

1
4

Σ−1
XX ±

i
2h̄

ΣXPΣ−1
XX

)
x · x

]
(21)

once a value of ΣXP is determined (even if Σ2
XP = 0, we can have ΣXP 6= 0). Here, we

solved a so-called “phase retrieval problem” (see Klibanov et al. [21] for a good review of
the topic): in view of Formula (12), we know that

ψ(x) = eiΦ(x)
(

1
2π

)n/4
(det ΣXX)

−1/4e−
1
4 Σ−1

XX x·x (22)
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where Φ is an unknown real function of the position variable. We identified this phase here
as being function

Φ(x) = −
(

1
2h̄

ΣXPΣ−1
XX

)
x · x .

4. Geometric Interlude

We introduce the notion of h̄-polarity and duality; we see in the next section that
this notion from convex geometry is quite unexpectedly related to the Pauli problem, of
which it gives a limpid geometric interpretation. For a very detailed study of polarity, see
Charalambos and Aliprantis [22]. In both sources, alternative competing definitions are
also described; the one we use here is the most common and the best fitted to our needs.

Let X be a nonempty subset of n-dimensional configuration space Rn
x ; this may be,

for instance, a set of position measurements performed on some physical system with n
degrees of freedom. One defines the polar set of X as the set Xo of all points p = (p1, ..., pn)
in the momentum space Rn

p, such that

px = p1x1 + · · ·+ pnxn ≤ 1

for all points x = (x1, ..., xn) in X. Similarly, if P is a subset of Rn
p, one defines its polar Po

as the set of all x in Rn
x , such that px ≤ 1 for all p in P. We use a rescaled variant of the

notion of polarity here, which we call h̄ polarity. By definition, the h̄-polar Xh̄ of X is the
set of all p, such that

px = p1x1 + · · ·+ pnxn ≤ h̄

for all points x in X. We have Xh̄ = h̄Xo and Ph̄ = h̄Po likewise.
From now on, we assume for simplicity that X and P are convex bodies, i.e., they are

convex, compact, and with a nonempty interior; we also assume that they are symmetric
(i.e., X = −X), which implies, by convexity, that they contain 0 in their interior. Simple
examples of such sets are balls and ellipsoids centered at the origin. Polar duals have the
following remarkable properties:

• Biduality: (Xh̄)h̄ = X
• Antimonotonicity: X ⊂ Y =⇒ Yh̄ ⊂ Xh̄

• Scaling property: L ∈ GL(n,R) =⇒ (LX)h̄ = (LT)−1Xh̄.

Let Bn
X(R) (resp. Bn

P(R)) be the ball {x : |x| ≤ R} in Rn
x (resp. {p : |p| ≤ R} in Rn

p).
We have

Bn
X(
√

h̄)h̄ = Bn
P(
√

h̄) (23)

and one can show that Bn
X(
√

h̄) is the only self h̄-dual set in Rn
x . Let us extend this to the

case of ellipsoids. An ellipsoid in Rn
x centered at the origin (which is just an ordinary plane

ellipse when n = 1) can always be viewed as the image of ball Bn
X(
√

h̄) by some invertible
linear transformation L, in which case, it is given by inequality

L−1x · L−1x = (LLT)−1x · x ≤ h̄ .

Conversely, if A is a positive definite symmetric matrix, inequality Ax · x ≤ h̄ always
defines an ellipsoid, since it is equivalent to the above inequality, taking for L inverse
square root A−1/2 of A. It immediately follows from the scaling property that the h̄-polar
of the ellipsoid is obtained by inverting the matrix of the ellipsoid:

X : Ax2 ≤ h̄⇐⇒ Xh̄ : A−1 p · p ≤ h̄ (24)

(that we have an equivalence follows from biduality property (Xh̄)h̄ = X).
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5. The Pauli Problem and Polar Duality

Let us return to the Wigner transform of Gaussian states; using Formula (15), we can
explicitly calculate Wψ±, and one finds

Wψ±(z) = (πh̄)−ne−
1
2 Σ−1
± z·z

where covariance matrices Σ± are given by

Σ± =

(
ΣXX ±ΣXP
±ΣPX ΣPP

)
,

with ΣPX = ΣT
XP. Two ellipsoids Ω± centered at the origin correspond to Σ±. Let us

determine orthogonal projections ΩX,± and ΩP± of Ω± on the position and momentum
spaces Rn

x and Rn
p.

5.1. Case n = 1

We begin with case n = 1, and projections are line segments. Here, ΣXX = σxx,
ΣPP = σpp, and ΣXP = ΣPX = σxp and covariance ellipses Ω± are defined by

σpp

2D
x2 ∓

σxp

D
px +

σxx

2D
p2 ≤ 1 (25)

where D = σxxσpp − σ2
xp = 1

4 h̄2 (cf. Formula (3)). Orthogonal projections ΩX,± and ΩP± of
Ω± on the x and p axes are the same:

ΩX = [−
√

2σxx,
√

2σxx] , ΩP = [−
√

2σpp,
√

2σpp] . (26)

Let Ωh̄
X be the polar dual of ΩX: it is the set of all numbers p, such that px ≤ h̄ for

−
√

2σxx ≤ x ≤
√

2σxx and is thus the interval

Ωh̄
X = [−h̄/

√
2σxx, h̄/

√
2σxx] .

Since σxxσpp ≥ 1
2 h̄, we have inclusion

Ωh̄
X ⊂ ΩP (27)

and this inclusion reduces to equality Ωh̄
X = ΩP if and only if the Heisenberg inequality is

saturated, i.e., σxxσpp = 1
4 h̄2, which is equivalent to σxp = 0.

5.2. General Case

We have similar properties in arbitrary dimension n. To study this case, we first must
find the orthogonal projections of covariance ellipsoid Ω on the position and momentum
spaces. Ellipsoid Ω is given by equation Mz · z ≤ h̄ where M = h̄

2 Σ−1 is symmetric and
positive definite (M > 0). Writing M in block form

M =

(
MXX MXP
MPX MPP

)
where MXX = MT

XX, MPP = MT
PP, and MXP = MT

XP are n× n matrices; since M > 0, we
also have MXX > 0 and MPP > 0. Then, the projections of Ω on Rn

x and Rn
p are ellipsoids

given by, respectively [23],

ΩX : (M/MPP)x · x ≤ h̄} , ΩP = (M/MXX)p · p ≤ h̄ (28)



Mathematics 2021, 9, 2578 7 of 9

where symmetric matrices

M/MPP = MXX −MXP M−1
PP MPX (29)

M/MXX = MPP −MPX M−1
XX MXP (30)

are Schur complements in M of MPP and MXX; we have M/MPP > 0 and M/MXX > 0
so that ΩX and ΩP are nondegenerate (see Zhang’s treatise [24] for a detailed study of
the Schur complement). To prove that inclusion Ωh̄

X ⊂ ΩP holds, we must show that cf.
implication (24)) that

(M/MPP)(M/MXX) ≤ In×n , (31)

that is, that the eigenvalues of (M/MPP)(M/MXX) must be smaller than 1. To prove
this, we use the following essential remark: we showed above that matrix M = h̄

2 Σ−1

is symplectic; therefore, its entries obey some constraints. Considering that M is also
symmetric, these constraints are

MXX MPP −M2
XP = In×n (32)

MXX MPX = MXP MXX (33)

MPX MPP = MPP MXP . (34)

Using Identities (33) and (34), it follows that Schur complements (29) and (30) can be
rewritten as

M/MPP = MXX −M−1
PP M2

PX

= M−1
PP(MPP MXX −M2

PX)

= M−1
PP

the last equality by using the transpose of Identity (32). Similarly,

M/MXX = MPP −M−1
XX M2

XP = M−1
XX

So, summarizing, Schur complements are given by

M/MPP = M−1
PP , M/MXX = M−1

XX . (35)

It follows that

(M/MPP)(M/MXX) = M−1
PP M−1

XX = (MXX MPP)
−1 .

We show that (M/MPP)(M/MXX) ≤ In×n; equivalently, MXX MPP ≥ In×n. Now, since
M = h̄

2 Σ−1 is symplectic, so is matrix

M−1 =
2
h̄

Σ =

( 2
h̄ ΣXX

2
h̄ ΣXP

2
h̄ ΣPX

2
h̄ ΣPP;

)
hence, reinverting,

M =

( 2
h̄ ΣPP − 2

h̄ ΣPX
− 2

h̄ ΣXP
2
h̄ ΣXX

)
(36)

so that MXX MPP = 4
h̄2 ΣPPΣXX . In view of the generalized RSUP (20), we have

ΣPPΣXX − Σ2
XP = 1

4 h̄2 In×n (37)

hence
MXX MPP = In×n +

4
h̄2 Σ2

XP (38)
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and we are finished, provided that we can prove that Σ2
XP ≥ 0 (which is obvious if

n = 1), or, which amounts to the same M2
XP ≥ 0. For this, since MXX MPX = MXP MXX

(Formula (33)), we have
MXP = MXX MPX M−1

XX ; (39)

hence, MXP and MPX have the same eigenvalues; since MPX = MT
XP, these eigenvalues

must be real, and those of M2
XP must be ≥ 0.

For completeness, we still need to discuss what happens when Ωh̄
X = ΩP. In view of

Formulas (28) and Equivalence (24), this means that (31) reduces to equality

(M/MPP)(M/MXX) = In×n

that is, by (35), MXX MPP = In×n. Taking (38) into account, we must thus have M2
XP = 0,

which does not imply that MXP = 0. We are in the presence of states (21) in this case,
saturating the Heisenberg inequalities.

6. Discussion and Outlook

Our discussion of polar duality suggests that a quantum system localized in the
position representation in a set X cannot be localized in the momentum representation
in a set smaller than that of its polar dual Xh̄. The notion of polar duality thus appears
informally as a generalization of the uncertainty principle of quantum mechanics, as
expressed in terms of variances and covariances (see [23]). The idea of such generalizations
is not new, and can already be found in the work of Uffink and Hilgevoord [25,26]; see
Butterfield’s discussion in [27]. It would certainly be interesting to explore the connection
between convex geometry and quantum mechanics, but very little work has been conducted
so far.
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