. mathematics

Article

ZPiE: Zero-Knowledge Proofs in Embedded Systems

Xavier Salleras *

check for

updates
Citation: Salleras, X.; Daza, V. ZPiE:
Zero-Knowledge Proofs in Embedded
Systems. Mathematics 2021, 9, 2569.
https:/ /doi.org/10.3390/math9202569

Academic Editors: Ioana Boureanu

and Liqun Chen

Received: 9 September 2021
Accepted: 2 October 2021
Published: 13 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Vanesa Daza

Department of Information and Communication Technologies, Universitat Pompeu Fabra,
08002 Barcelona, Spain; vanesa.daza@upf.edu
* Correspondence: xavier.salleras@upf.edu

Abstract: Zero-Knowledge Proofs (ZKPs) are cryptographic primitives allowing a party to prove to
another party that the former knows some information while keeping it secret. Such a premise can
lead to the development of numerous privacy-preserving protocols in different scenarios, like proving
knowledge of some credentials to a server without leaking the identity of the user. Even when the
applications of ZKPs were endless, they were not exploited in the wild for a couple of decades due
to the fact that computing and verifying proofs was too computationally expensive. However, the
advent of efficient schemes (in particular, zk-SNARKSs) made this primitive to break into the scene in
fields like cryptocurrencies, smart-contracts, and more recently, self-sovereign scenarios: private-by-
design identity management and authentication. Nevertheless, its adoption in environments like
the Internet of Things (IoT) remains unexplored due to the computational limitations of embedded
systems. In this paper, we introduce ZPiE, a C library intended to create ZKP applications to be
executed in embedded systems. Its main feature is portability: it can be compiled, executed, and
used out-of-the-box in a wide variety of devices. Moreover, our proof-of-concept has been proved to
work smoothly in different devices with limited resources, which can execute state-of-the-art ZKP
authentication protocols.

Keywords: Zero-Knowledge Proofs; SNARKSs; embedded systems; applied cryptography

1. Introduction

The inclusion of 5G communications [1] involves the deployment of network slices ,
dedicated physical and logical networks for different use cases such as the Internet of Things
(IoT) [2]. In this scenario, 5G grants a large bandwidth and a low latency to be able to handle
a large density of IoT devices. This fact has a big impact on the evolution of the smart-
cities paradigm, where the amount of IoT devices is growing exponentially [3]. In that
regard, exposure to cyberattacks like identity spoofing [4] is a big concern. To prevent this
specific issue, several solutions have been designed, for instance, using physical unclonable
functions [5], which has been proved to be a secure way to identify IoT devices. However,
such authentication mechanisms cannot be completed with a single-message protocol,
which introduces some latency to the scheme. Other solutions like in [6] present a way
to authenticate IoT devices using Blockchains [7], distributed networks sharing a unique
ledger containing transactions made by different nodes in the network. This builds a
decentralized way to authenticate devices, which is also lightweight and applicable to a
large number of scenarios.

However, even when most authentication mechanisms are secure against spoofing
attacks, users’ privacy is still an issue to be addressed. Examples of this are medical devices
exchanging patients’ private information, or autonomous cars sharing their location with a
server. The common point between all these devices is that they need to share sensitive data
over the network, data which should not be traced by any Internet Service Provider (ISP) or
eavesdropper. Self-sovereign identity systems [8] become an essential feature to implement
in this scenario: systems where users can control, access, and transparently consent their
identities, preventing entities to track and collect their data. Research integrating such

Mathematics 2021, 9, 2569. https:/ /doi.org/10.3390 /math9202569

https://www.mdpi.com/journal /mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0013-3132
https://orcid.org/0000-0003-0583-7929
https://doi.org/10.3390/math9202569
https://doi.org/10.3390/math9202569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202569
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202569?type=check_update&version=2

Mathematics 2021, 9, 2569

20f 17

features into IoT environments has been conducted, like in [9], where the authors combine
self-sovereign identity systems with distributed ledger technologies. The main elements
required to get these features are Zero-Knowledge Proofs (ZKPs).

ZKDPs are cryptographic primitives gaining a lot of momentum thanks to technologies
such as Blockchain. While cryptocurrencies like Bitcoin [10] allow any node to review the
transactions, knowing the sender, receiver, and the amount of exchanged money (among
all the information involving the transaction), cryptocurrencies such as Zcash [11] use a
specific ZKP scheme that allows its users to make anonymous payments. ZKPs allow a
party (the prover) to prove to another party (the verifier) that he knows some information
while keeping it secret. In other words, the sender, the receiver, and the amount of
exchanged money is kept secret while everyone in the network agrees on the correctness of
the transaction.

1.1. Motivation

Beyond cryptocurrencies, ZKPs are also used in protocols such as SANS [12], a privacy-
preserving authentication scheme where users prove their right to access a service, based
on some previously granted attributes. On the other hand, blockchains like Ethereum [13]
provide an architecture capable of executing programs on-chain. These programs, called
smart-contracts, can be combined with ZKP schemes to grant more privacy to its users: for
instance, issuing a payment after using some service, while keeping the identity of the user
secret. Protocols based on such approaches would be desirable in IoT scenarios, where
many services are used, and most of them (such as medical applications) collect sensitive
data. However, ZKP schemes require high computational resources, especially when the
proof is generated. Even when current ZKP implementations do a great job in terms of
efficiency, they are far from being portable, especially for embedded systems, as most of
them focus on web applications, with the usage of programming languages like JavaScript,
Webassembly, or Python. Some solutions [14] try to distribute the operations to be done to
generate the proof between trusted servers. However, such approaches require a trusted
environment and a persistent and fast connection with the server. Optimal solutions would
be novel implementations focused on devices with low resources.

1.2. Contributions

We introduce ZPiE, a portable C library for generating and verifying ZKPs. As an
initial proof-of-concept, ZPiE implements the specific ZKP construction called zk-SNARK.
Our library provides a clear API to create proofs, and to verify them. Upon doing several
tests on different devices, we have proved that, unlike other state-of-the-art solutions,
ZPiE can be executed in x86, x86_64, aarch64 and arm32 CPU architectures out-of-the-
box. In addition, after performing several experiments using a x86_64 CPU (compatible
with other state-of-the-art libraries) and comparing the results with other solutions, we
have proved that ZPiE has similar performance. Furthermore, our solution can be easily
integrated with existing implementations to be used in smart-contracts.

1.3. Roadmap

In Section 2 we survey the relevant use cases and libraries developed to work with
ZKPs. In Section 3 we expose the building blocks required to understand the primitive we
are implementing. In Section 4 we present ZPiE with all details. In Section 5 we include the
performed experiments and their results. Conclusions and future work are provided in
Section 6.

2. Related Work

In this section, we first introduce the main use cases of ZKPs. Later, we explain the
different ZKP schemes and libraries used in real scenarios.

Mathematics 2021, 9, 2569

30f17

2.1. ZKP Use Cases

One of the main uses of ZKPs is enhancing privacy in cryptocurrencies. Along with
the previously stated Zcash, other cryptocurrencies like Monero (https:/ /www.getmonero.
org/, accessed on 12 October 2021) use ZKPs to provide anonymous transactions when
sending and receiving money over its network. Far from being limited to cryptocurrencies,
ZKPs are used in Self-Sovereign Identity (SSI) systems as well, where users can control,
consent, and widely use their identities among different services, along with other proper-
ties. A recent example of this is the solution introduced in [15], where authors introduce a
Blockchain-based protocol combined with ZKPs, for enabling privacy-preserving authen-
tication while removing the need for a central authority. They apply such an approach
in electric vehicles scenarios, specifically when the vehicles need to charge the battery,
and identification is requested by a charging provider.

Another recent research topic is introduced in SANS [12], where ZKPs could be used
to authenticate users in scenarios like in 5G services. Such a protocol works as follows:
upon signing up for using a 5G service, the service provider grants the user a digital
signature signed by him, along with other parameters. Later, each time the user wants
to use the service, he can do it anonymously: he computes a ZKP to demonstrate that
he possesses a valid signature computed by the service provider, without leaking any
other information. The service provider can validate the proof and grant the service
without learning the identity of the user. Moreover, such an approach enhances privacy in
distributed applications (DApps) as well. DApps are blockchain applications built using
smart-contracts, which are binaries executed on-chain. For instance in Ethereum, such
binaries are the result of compiling Solidity code (https:/ /solidity.readthedocs.io/en/v0
5.3/, accessed on 12 October 2021) . Like this, a program that verifies proofs could be
executed on-chain. This technology can grant more privacy to users using different kinds of
DApps, not solely using ZKPs but also using approaches like the one introduced in [16].
However, as stated, even when the verification is executed on-chain, the proof still needs to
be computed by the proving device. As such, it is still hard to use DApps based on ZKPs
on IoT devices due to its hardware limitations.

2.2. ZKP Schemes

Currently, there are several ZKP constructions used in the wild, each with its ad-
vantages and drawbacks. As shown in Table 1, one of the first efficient schemes was
a zk-SNARK introduced in BSCTV’13 [17]. Such a scheme was later improved by the
zk-SNARK introduced in Groth’16 [18], which is still one of the most efficient zk-SNARK
schemes, especially when it comes to the verification algorithm. One of the main drawbacks
of this kind of construction is the need for a trusted party that performs a trusted setup: a
phase where some public parameters are generated, which will be used to generate and
verify proofs. In this regard, Sonic [19] is a zk-SNARK that introduces a scheme where the
setup can be updated for different circuits without the need to repeat the trusted setup
generation. Another efficient zk-SNARK is Libra [20], which prover is guaranteed to out-
perform, even when the verifier does not have constant complexity. The most recent work
on this topic was done by the authors in [21]. They introduce PlonK, a scheme with the
same advantages that Sonic has, but improving the speed of the prover. Finally, recent re-
search such as [22] shows a way to design a more efficient prover, while not compromising
the verifier.

https://www.getmonero.org/
https://www.getmonero.org/
https://solidity.readthedocs.io/en/v0.5.3/
https://solidity.readthedocs.io/en/v0.5.3/

Mathematics 2021, 9, 2569

40f17

Table 1. Comparison of different ZKP constructions, in regards to their asymptotic efficiency, where # is the number of

gates of the circuit and d its depth. (TS = trusted setup, PQS = post-quantum secure, | 77| = proof size, © = per-statement,

A = updatable).

Scheme TS PQS Prove Verify || Security Assumption
BSCTV’13 [17] ® no O(nlogn) o(1) O(1) q-PKE
Groth’16 [18] O] no O(nlogn) 0o(1) O(1) q-PKE

Sonic [19] A no O(nlogn) 0(1) Oo(1) AGM

Libra [20] A no O(n) O(dlogn) O(dlogn) g-SBDH, g-PKE

Bulletproofs [23] no no O(n) O(n) O(logn) DLP
zk-STARKS [24] no yes O(n log2 n) O(log2 n) O(log2 n) CRHF

On the other hand, and beyond zk-SNARKSs, we can find other ZKP schemes like
Bulletproofs [23], which have the main advantage of not requiring a trusted setup. They
are especially useful when the prover needs to compute a range proof [25], instead of an
arithmetic circuit. Moreover, other concerns like post-quantum security have also arisen
in the Zero-Knowledge field, and in this regard we have a scheme supposed to be post-
quantum secure, called zk-STARKSs (Zero-Knowledge Succinct Transparent ARgument of
Knowledge) [24]. Post-quantum security is not a property of zk-SNARKSs or Bulletproofs.

Finally, the soundness property of each of the schemes described relies on different
security assumptions [26]. Most of the zk-SNARK constructions use a strong assumption
called g-Power Knowledge of Exponent (4-PKE), which is not the best solution. On the
other hand, Bulletproofs or zk-STARKSs use better assumptions: the Discrete Logarithm
Problem (DLP) and Collision Resistant Hash Functions (CRHF), respectively.

To develop ZKP applications, libraries like the one provided in this paper are required.
One of the main libraries to accomplish this purpose is libsnark (https://github.com/
scipr-lab/libsnark, accessed on 12 October 2021) a C++ library for constructing zk-SNARKs,
which was used for some time by Zcash [11], based on the specific zk-SNARK construction
introduced in [17], but supporting [18] as well, among others. Even when this library
provides excellent benchmarks, one of the main drawbacks of this library, as the authors
state, is not being well-optimized for ARM architectures.

Another library with similar benchmarks is bellman (https://github.com/zkcrypto/
bellman/, accessed on 12 October 2021) implemented in Rust and meant for constructing
zk-SNARKSs, developed and currently used by Zcash.

Moreover, when it comes to developing DApps for the Ethereum blockchain, we
previously stated that a verifier coded in Solidity is required. ZoKrates (https://github.
com/Zokrates/ZoKrates, accessed on 12 October 2021) is a python toolbox for zk-SNARKs
intended to generate Solidity verifiers, to be deployed into the Ethereum blockchain.
Furthermore, a similar approach is snarkjs (https://github.com/iden3/snarkjs, accessed
on 12 October 2021) a JavaScript library for constructing zk-SNARKSs. It includes a clear
API for generating trusted setups using a fairly secure MPC protocol, for generating proofs,
and for verifying them. Plus, it also provides an easy way to export the verifier in Solidity,
to deploy it into the Ethereum blockchain.

3. Building Blocks: zk-SNARKSs

In this section, we introduce the required building blocks in regards to our solution.
We do a high-level overview of how to construct a zk-SNARK (based on the construction
introduced in [18]), which is also the scheme used in our proof-of-concept.

3.1. Preliminaries

A Zero-Knowledge Proof (ZKP) [27] is a cryptographic primitive which allows a
prover P to convince a verifier V that a statement is true, without leaking any secret
information. A statement is a set of elements known by both parties, defined as u € L,
where L is a Language. We have a witness w (the secret information only known by P)

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/zkcrypto/bellman/
https://github.com/zkcrypto/bellman/
https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates
https://github.com/iden3/snarkjs

Mathematics 2021, 9, 2569

50f17

for a statement u if (1, w) € R, where R is a polynomial-time decidable binary relation
associated with £. Formally speaking, ZKPs must satisfy 3 properties:

e Completeness: If the statement is true, P must be able to convince V.

e Soundness: If the statement is false, P must not be able to convince V that the
statement is true, except with negligible probability.

* Zero-knowledge: V must not learn any information from the proof beyond the fact
that the statement is true.

Moreover, V might request a proof of knowledge, a property to guarantee that P knows a
witness w. Such a witness is a vector of elements for which a set of operations hold. These
operations are defined by a graph composed of different wires and gates called circuit.
Such a circuit leads to a set of equations representing the inputs and the outputs of these
gates. The equations are also called constraints.

Even when first schemes required P and V to interact several times, Non-Interactive
ZKPs (NIZKDPs) [28] emerged, allowing P to prove statements to V by sending him a
single message.

zk-SNARKSs are Zero-Knowledge Succinct and Non-interactive ARguments of Knowl-
edge [17]. They are the most used ZKPs, because they are short and succinct: the proofs can
be verified in a few milliseconds. However, they require a trusted setup where some public
parameters are generated. These parameters, called the Common Reference String (CRS),
are used either by P and V to generate and verify proofs. In the process of generating
the CRS, a secret randomness T is used, and such a randmoness should be destroyed
afterwards. If an attacker gets 7, the soundness property of the scheme breaks: the attacker
would be able to compute false proofs that anyone could verify as if they were correct.
As such, the CRS is commonly computed using a secure Multi-Party Computation (MPC)
protocol [29], where T can only be leaked if all the participants are malicious. Therefore,
zk-SNARKSs are composed of three main algorithms: setup, prove and verify. The computing
complexity of these algorithms depends on the number of operations that we do in the
circuit, which is also the the number of gates n.

Regarding the security of zk-SNARKSs, it mainly relies on the security of elliptic curves.
Breaking the security of the elliptic curve used by a specific construction would lead to
being able to generate false proofs and thus, breaking the soundness property of the scheme.
Among the most used curves in ZKPs we have a Barreto-Naehrig curve [30] called BN128,
which security level in practice is estimated to be 110-bits [31]. Another common curve in
this scenario is BLS12-381 [11], which has around 128-bits of security, with the drawback of
heavier group operations. More recent research is introduced in [32], where a new curve
called BW6-761 is introduced. As stated by its authors, verification of proofs is at least
five times faster than other state-of-the-art curves.

The zk-SNARK construction we will work on requires a pairing-friendly elliptic curve
E over a finite field IF;, where g is a prime number, with the bilinear groups (G1, G, Gt) of
prime order r and a pairing ¢ : G X G, — G being a bilinear map. We need the following
generators: an element g being a generator for G, an element being a generator for G,
and e(g, h) being a generator for Gr. In order to represent group elements, we use the
widely used additive notation: we write [a]; for g, [b], for g*, and [c]T for e(g, h)°.

Arithmetic circuit. A circuit is a directed acyclic graph composed of different wires
and gates, which lead to a set of equations relating the inputs and the outputs of these
gates. The inputs and the output of this circuit, as well as the operations defined in the
gates, are elements over a prime field F,, where r is the order of E.

Rank 1 Constraint System. A Rank 1 Constraint System (R1CS) is a system of equa-
tions which checks the correctness of all the operations in our circuit, by grouping them in
constraints. Each constraint is composed of a multiplicative gate with its two inputs and its
output. Having a statement u and a witness w such that (1, w) € R, a R1CS is defined as a

Mathematics 2021, 9, 2569

60of 17

set of vectors (a, b, ¢) defining our circuit, whose solution is a vector s = (1, w) such that
the following equation is satisfied:

<a,s>-<bs>—-—<c¢s>=0 1

Quadratic Arithmetic Program. A Quadratic Arithmetic Program (QAP) is a polyno-
mial representation of the R1CS, which bundles all its constraints into one. It is a tuple of the
polynomials (A, B,C,Z(x)), where Z(x) divides A;(x) - Bi(x) — C;(x) without remainder.
They satisfy the following equation:

m m

Y siAi(x)) - isi3i<x> Y sCilx) = Hx)Z(x) @

i=0 i=0

3.2. Protocol

Let R be a relation composed of the elliptic curve E over [, the pairing ¢ and a
QAP (A, B,C, Z(x)) representing a circuit. The Groth’16 construction is divided into three
algorithms (further details can be found in Appendix A), as depicted in Figure 1:

e pk,vk < Setup(R): given the relation R, the first step of the protocol generates a
common reference string (CRS) ¢ = ([01]1, [02]2). From the CRS, some elements will
be extracted into what we call the proving key pk, sent to the prover P to generate
proofs. Moreover, other required elements will be taken into the verifying key vk,
and sent to the verifier V to verify the proofs generated by P. In order to generate the
CRS (i.e., pk and vk), a random set of values T is used. This 7, also known as trapdoor,
should be destroyed after performing the setup, as any party having T would be able
to generate false proofs. To solve this last drawback, the setup must be generated by a
trusted party (i.e., a set of entities performing a secure MPC protocol). In scenarios
such as cryptocurrencies using zk-SNARKSs (i.e., Zcash), an untrusty setup could
lead to malicious parties using T to create false transactions, thus leading to losses
of money.

e 7 < Prove(R,pk,u,w): the prover generates a proof © = ([mal1, [7s]2, [7Tc]1),
by multiplying u and w by some polynomials provided in ¢. The prover also needs
to compute the coefficients h of H(x), which can be achieved in O(n log n) using Fast
Fourier Transform (FFT) techniques, as explained in detail in Appendix B. Then, i
is multiplied by a polynomial provided in ¢. The number of multi-exponentiations
required to compute 7t are (note that multi-exponentiations in G, are more expensive
than multi-exponentiations in G1):

- tocompute [7T4]1: |u| + |w| multi-exponentiations in G;.
- to compute [7tg]y: |u| + |w| multi-exponentiations in Gy.
- tocompute [7tc]i: |u| 4+ 2 - |w| + |h| multi-exponentiations in G1.

. 0/1 « Verify(R, vk, u, r): the verifier accepts the proof (1) if an equation composed
of three pairings [33] holds. Otherwise, the proof is rejected (0). Moreover, modifying
a single bit of the proof leads to a proof that cannot be verified.

As such, the workflow of these algorithms in real applications would work as follows:
we first need to compute the setup by means of a trusted party (step 1 in Figure 1). Later,
this party shall share the required values with each of the involved parties, the prover and
the verifier (step 2 in Figure 1). As shown in the steps 3 and 4, the prover computes the
proof 7t and sends it to the verifier, who verifies it (step 5 in Figure 1). Steps 1 and 2 are
performed only once, and later, the prover can compute as many proofs as he wants using
the same values computed during the setup.

Mathematics 2021, 9, 2569

7 of 17

{

o4 Setup Ko

[o %
R.ph pk, vk + Setup(R) &k

u,w—3 Prover ® LIS >»| Verifier
[o 4 Lo ¢
7 < Prove(R, pk, u,w) 0/1 + Verify(R,vk,u,m)

Figure 1. Zero-Knowledge Proof System.
4. Our Solution: ZPiE

In this section, we provide all details regarding ZPiE. We start with a comprehensive
explanation about how it was designed, to later move to the technical details. We later
provide the techniques used to improve the efficiency of the code. Finally, we provide an
explanation on how to use the library.

4.1. Design

Our solution (https:/ /github.com/xevisalle/zpie, accessed on 12 October 2021) has
been designed to provide a clear interface for developing ZKP applications. As such, it
provides an API to design circuits, perform the setup phase, generate proofs, and verify
them. Furthermore, our solution can easily integrate the verifier in Solidity applications
(i.e., using ZoKrates or snarkjs), in order to deploy smart-contracts into the Ethereum
network. ZPiE can be used in devices with very low resources like a Raspberry Pi Zero,
and in a wide variety of CPU architectures: x86, x86_64, aarch64, and arm32.

4.2. Implementation

Our solution has been designed with portability and scalability in mind. For such a
reason, we decided to use C to code it, which is still widely used in embedded systems,
and allows us full control over the hardware resources. For dealing with big numbers we
use GNU GMP (https://gmplib.org/, accessed on 12 October 2021) which is one of the
fastest approaches to do operations with large numbers in C. For the group operations over
elliptic curves, and pairings, we rely on the MCL library (https://github.com /herumi/mcl,
accessed on 12 October 2021) , a well-optimized set of functions that offer us support
for all the operations we need to perform. Both GMP and MCL offer support for x86,
x86_64, aarch64, and arm32 CPU architectures. Moreover, all the code has been designed
to split the workload into threads, to increase the performance especially when the prover
is executed in a multicore CPU. Regarding the circuit design, either the circuit parser and
the circuit’ code developed by the user are coded in pure C, so they are both compiled
altogether along with all the other code for maximum performance.

4.3. Efficiency

The first step to being able to use our proof system is to generate the CRS through
the setup algorithm. Using Groth’16, the setup has a complexity of O(n), so we need to
compute a number of elements that depends only on the size of the circuit. Regarding
the verifier, where the complexity time is constant (O(1)), he only needs to compute
3 pairings and verify that an equation holds, which is not expensive in terms of power
consumption. Plus, the operations which require more power consumption are done by
the prover when computing the proof. That is computing the & coefficients, and doing the
multi-exponentiations in G and Go.

https://github.com/xevisalle/zpie
https://gmplib.org/
https://github.com/herumi/mcl

Mathematics 2021, 9, 2569

8of 17

4.3.1. Computing h Coefficients

As stated in Appendix B, we rely on a FFT function to compute the coefficients in
O(nlogn). Our FFT function has been designed to be as efficient as possible. The size of
the domain used for the FFTs in N, = 2!, where [is a big integer, so |[h| = N,. In total,
the prover has to perform 3 inverse FFTs over a domain S, 3 FFTs over a shifted domain
T, and one last inverse FFT over T. As depicted in Figure 2, this set of operations is,
for any number of constraints, the same small percentage of all the operations performed
to generate the proof.

4.3.2. Multi-Exponentiations

Our solution uses three different multi-exponentiation approaches: the naive multi-
exponentiation (which is a serial approach), the multi-exponentiation function provided
MCL, and a Bos-Coster multi-exponentiation algorithm (further details provided in
Appendix C). While the former achieves the worst results, MCL gets better marks. How-
ever, our Bos-Coster implementation achieves the best results. We split the Bos-Coster
operations into chunks to increase the performance when using multithreading. As de-
picted in Figure 2, the multi-exponentiations represent a huge percentage of the operations
to be done. In addition, the heap sorting, a step required after each Bos-Coster execution,
increases exponentially in terms of global percentage.

ZPiE proving operations comparison

™ M Heap sorting

'g Bos-Coster multi-exponentiations

8 0.8 ® h coefficients

Q

)

<

c

o 06

S

©

£

2

o 04

o i
o

-

% []
-4 0.2

n —

£ e

= 0 ||

512 1024 2048 4096 8192 16384
of constraints

Figure 2. CPUs proving operations workload comparison of ZPiE executed in a i7-11370H CPU in
single-thread mode. The used zk-SNARK is Groth’16, and the elliptic curve BN128.

4.4. Applications

Some of the use cases of ZKPs involve proving to another party that we know the
preimage of a hashed value, or that we have a valid signature for a secret message. We
implemented both approaches using ZPiE, and provide an API to easily use them.

To use our library, we need to write a circuit which will be parsed later. To do so,
Listing 1 shows an example on how to compute the MiMC [34] hash of a preimage x;n.
As can be seen, we set a public output /, the hash of the secret preimage x;n (in such a
process some randomness k is used as well). In other words, this circuit will compute a
proof that, once verified, the verifier will be sure that who computed the proof knows x;n.
As can be seen in Listing 2, ZPiE can compute the setup, the proof, and verify it by simply
executing each algorithm as shown in the snippet.

In addition, and as shown in Listing 3, ZPiE can easily verify an EADSA [35] signature
by calling the function verify_eddsa(\dots), providing the required parameters as shown
in the snippet. In this scenario, the prover is proving to the verifier that he knows a valid
signature for some secret message. In such regard, the code can be modified depending on
the use case, to select which values are public or secret.

Mathematics 2021, 9, 2569

9of 17

Listing 1. Circuit example for computing the MiMC hash of a preimage.

#include "../circuits/mimc.c"

// main function called by the circuit parser
void circuit ()
{

element h, x_in, k;

// we init the public output h, and~private inputs x_in and k

init_public (&h);
init (&x_in);
init (&k) ;

// we manually set preimage and randomness values

input (&x_in, "1234");
input (&k, "112233445566");

// compute a MiMC hash
mimc7 (&h, &x_in, &k);

Listing 2. Program execution example.

#include "../src/zpie.h"

int main ()

{
// we perform the setup (../data/provingkey.params and
// ../data/verifyingkey.params)
init_setup();
perform_setup () ;
// we generate a proof (../data/proof.params)
init_prover ();
generate_proof () ;
// we verify the proof (../data/proof.params)
init_verifier();
if (verify_proof()) printf("Proof verified.\n");
else printf ("Proof cannot be verified.\n");

i

Listing 3. Circuit example for computing 16,384 constraints.

#include "../circuits/eddsa.c"

// main function called by the circuit parser
void circuit ()
{

element out [4];

// we init the public output
for (int i = 0; i < 4; ++i)
{

init_public (&out[i]);
}

// we provide some example values

char *B1 = "52996192406415512816348655835182970302

82874472190772894086521144482721001553";

char *B2 = "16950150798460657717958625567821834550

301663161624707787222815936182638968203";

char *R1 = "12629481114452250573734381948187634057

00457487429548371463214326190311895864";

char *R2 = "12533500305127747239777484416561675628

195562065959201739446841668623540883587";

Mathematics 2021, 9, 2569

10 of 17

char *A1 = "21629779320182474195265732521833299809
982444552305142529409236301104997786342";

char *A2 = "90118124453810306641426220662183318451
40881847034934166630871421746105699091";

char *msg = "1234";

char *signature = "2674591880888862378688383832785
447197125897205360861957116147165712709455207";

// we verify the signature
verify_eddsa(out, B1, B2, R1, R2, A1, A2, msg, signature);

5. Experiments and Results

In this section, we perform several experiments to prove the efficiency of our solution.
In order to do so, we implemented a circuit composed of 16,384 constraints as shown in
Listing 4.

Listing 4. Circuit example for computing 16,384 constraints.

// main function called by the circuit parser
void circuit ()

5 {

element out;
// we init the public output
init_public (&out);

int mulsize = 16384;
element arr[mulsize];

// we init an array of secret elements
init_array (arr, mulsize);

// we manually set a value
input (&arr [0], "12345678");

// do x multiplications
for (int i = 1; i < mulsize; i++)
{
mul (&arr[i], &arr[1], &arr([i-1]);

mul (&out, &arr[0], &arr[mulsize-1]);

As stated previously, zk-SNARKSs are composed of three algorithms. The setup is
performed only once, so the performance of this algorithm is not of big importance in
practice. However, using ZPiE, the setup of a circuit of 16,384 constraints can be performed
in 17 s using a laptop CPU in single-thread. Regarding the proof verification, our zk-SNARK
construction has a succinct verifier which verifies any proof in just 0.0011 s.

Moreover, we performed several experiments to prove the performance of ZPiE
when computing proofs. First, we compared our solution with a well-optimized library
intended to generate proofs in desktop applications, libsnark. As depicted in Figure 3,
ZPiE achieves great results, similar to the ones achieved by libsnark, either in single or
multi-thread modes.

Then, as depicted in Figure 4, we executed our solution with different constraint
amounts in two different processors, either in single and multi-thread modes. As can be
seen, the laptop processor i7-11370H (x86_64) achieves excellent results either in single or
multi-thread modes. Regarding the mobile processor Snapdragon 845 (aarch64), the results
are still excellent in multi-thread. In single-thread mode, the difference is bigger, yet the
proofs can still be executed in a fairly small amount of time.

Mathematics 2021, 9, 2569 11 of 17

zk-SNARK libraries proving times comparison

== ZPiE singlethread

0.9 . .
ZPiE multithread

0.8 | === libsnark singlethread
== libsnark multithread

proving time (seconds)

512 1024 2048 4096 8192 16384
of constraints

Figure 3. ZPiE and libsnark proving times comparison using different constraint amounts, single-

thread and multi-thread modes. All the tests are executed using a i7-11370H CPU. The used zk-

SNARK is Groth’16, and the elliptic curve BN128.

ZPiE proving times comparison

=4 Snapdragon 845 singlethread

Snapdragon 845 multithread
5 || == i7-11370H singlethread
=P 7-11370H multithread

proving time (seconds)

—
— > —

0 P »>- L
512 1024 2048 4096 8102 16384

of constraints

Figure 4. CPUs proving times comparison of ZPiE using different constraint amounts, single-thread
and multi-thread modes. The used zk-SNARK is Groth"16, and the elliptic curve BN128.

Furthermore, we successfully computed proofs using a Raspberry Pi Zero W, which
CPU architecture is ARM6I (arm32) and has a very low clock frequency (700 MHz). As de-
picted in Figure 5, the results are much higher than using mobile or desktop processors, yet
the proofs can still be executed. As such, ZKP applications could be executed in embedded
devices, at least when speed is not of paramount importance. For instance, protocols such
as SANS, which needs around 5000 constraints, could be executed in less than a minute
using a Raspberry Pi Zero W. This allows IoT devices to use privacy-preserving protocols
based on zk-SNARKSs.

Mathematics 2021, 9, 2569

12 of 17

ZPiE prover benchmarks (Raspberry Pi Zero W)

of constraints

0 20 40 60 80 100 120

proving time (seconds)

Figure 5. CPUs proving times of ZPiE executed in a Raspberry Pi Zero W. The used zk-SNARK is
Groth’16, and the elliptic curve BN128.

6. Conclusions

In this paper, we introduced a novel library intended to generate Zero-Knowledge
Proofs in devices with low computing resources. After performing several experiments,
the results prove how zk-SNARKSs can be computed using processors such as the ARM11
of a Raspberry Pi Zero W. After stating the need for privacy-preserving protocols that use
zk-SNARKSs in IoT scenarios, we demonstrated that their development and execution in
such devices is feasible.

ZPiE allows us to develop ZKP applications in embedded devices, by using the
specific Groth’16 zk-SNARK. However, we have seen how other schemes exist, each
having different features. Implementing other schemes for embedded devices would be
an interesting future work to do, in order to expand the uses cases of ZKPs in IoT devices.
Overall, being able to use ZKPs in IoT devices should open the door to designing and
implementing more protocols for IoT devices based on ZKPs, not solely for authentication
purposes but also for any other privacy matter where ZKPs could be useful.

Moreover, even when we get excellent results, there is still room for improvement. It
would be interesting to work on boosting even further the performance of ZPiE, by testing
other elliptic curve libraries rather than MCL, or by designing new algorithms to reduce
the overhead of the executions. Moreover, allowing users to speed up the library using
GPUs would be another interesting feature to implement, to allow the usage of our library
in scenarios other than IoT devices.

Author Contributions: Conceptualization, X.S.; methodology, X.S.; software, X.S.; investigation, X.S.;
writing—original draft preparation, X.S.; writing—review and editing, X.S. and V.D.; supervision,
V.D.; project administration, V.D.; funding acquisition, V.D. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Project RT12018-102112-B-100 (AEI/FEDER, UE) and H2020
PRESENT Grant Agreement N° 856879.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 2569

13 0f 17

Abbreviations

The following abbreviations are used in this manuscript:

ZKP Zero-Knowledge Proof

IoT Internet of Things

ISP Internet Service Provider

DApps Distributed Applications

DLP Discrete Logarithm Problem
CRHF Collision-Resistant Hash Functions
NIZKP Non-Interactive Zero-Knowledge Proofs
CRS Common Reference String

MPC Multi-Party Computation

R1CS Rank 1 Constraint System

QAP Quadratic Arithmetic Program
FFT Fast Fourier Transform

List of Mathematical Symbols

The following mathematical symbols are used in this manuscript:

—3 YT S AS HmA ¥E N

S

Statement

Language

Witness

Relation

Secret randomness

Elliptic curve

Finite field

Prime number

Group

Pairing

Generator of Gy

Generator of G,

Order of the elliptic curve group
Elements of the Common Reference String
Proof

Big integer

Size of the domain used for the FFTs
Shifted domain

Appendix A. Groth’16

Let R be a relation composed of the elliptic curve E over Fy, the pairing e and a
QAP (A,B,C,Z(x)) representing a circuit. The Groth’16 construction is divided into

three

e 0 « Setup(R):

algorithms:

To perform the setup, we pick «,f,7,d,x from F, and define

T = («,B,7,96,x). Later we compute ¢ = ([01]1, [02]2):

ok — {ﬁAi(x)+“Bi(x)+Ci(x) !

i=0

Y
Pk = {,BAi(x) + "‘E;i(x) + Ci(x) m (A1)

01 = (B0, (Y, o i {21 2y
o= (8,716, {x'}=)) (A2)

Mathematics 2021, 9, 2569

14 of 17

* 711 < Prove(R,0,s) The prover randomly picks 7, ¢ in F, and computes 7w = ([714]1,
[7t8]2, [tchh):

m
g =+) siAi(x)+7r6
i=0

m
g =P+ Y siBi(x)+co
i=0

ity 18i(BAi(x) +aBi(x) + Ci(x)) + h(x)t(x)
0

(A3)

e =

Tic = TG + 7AC + TIpr — 1cd

* 0/1+« Verify(R,o,u,): the verifier accepts the proof iff the following equation holds:
[p1lr = [mal - [718]2
[p2]r = [a]1 - [Bl2

! X XD;|l X (X
[palr = Zsi[ﬁAl() ¥ 1,3;()Gl >]1 72 (A4)
i=0
[palT = [C]1 - [9]2
[p1lr = [p2lr + [p3lT + [palT

Appendix B. FFT Techniques for Computing h Coefficients

Our QAP is a 3-matrix set of size N x M. Working on FF,, where r is a prime number
and the order of the used elliptic curve, we find a generator g for our field. Having this,
we find two values k and an extended size for N, called N, = 2! (where [is an integer
‘large enough’) such that r = kN, + 1. As can be seen, N, is a power of 2, as 2-addicity is a
desirable property for more efficient FFT algorithms. With this, now we can find our N,th
primitive root of unity:

w= gk mod 7 (A5)

This generates our domain:
S={lLw,..., N1} (A6)

Now we need to compute three polynomials A(z) = {Ay, ..., Am—1},B(z) = {Bo, ...,
Byi—1},C(z) = {Cy,...,Cpm—1}, where z is our toxic waste x defined in the Groth setup:

Ai(z) = Ij;: L ng_’(s])
BiE) = A,]gol Rif- m (A7)
Ci(z) = ljgl 0, jﬂgg((zrj))
where
bosi(z) = ZN;v: : (A8)

Lagji(2) = wLag;(2)

Mathematics 2021, 9, 2569

150f 17

As such, the setup has defined three polynomials A(x), B(x), C(x). Now, using a

solution to our circuit w the prover computes the following values:

T:

M-1
A= 2 Ai - Wi
i=0
M-1
B=) Bi-w; (A9)
i=0
M-1
C= Z Ci * Wi
i=0
And we can check:
AxB—C=0 (A10)

Now, the prover computes the evaluation of three polynomials:

M-1

A= L by
i=0
M-1
i=0
M—-1
C] = O,'/j - w;
i=0

Now, the prover will use A(z), B(z), C(z) to compute the coefficients h of H(x):

H(x) = A(x)Bé’EL; Cx) (A12)

In order to do so, the prover selects a random ¢ and computes a shifted domain
{o,00,...,00wNe"1} He also sets Z = ™ — 1 and does what follows:

Computes 3 IFFTs in our domain S:

Ag = IFFT(A,S)
Bg = IFFT(B,S) (A13)
Cg = IFFT(C,S)

Computes 3 FFTs in our domain T:

Ar = FFT(As, T)
Br = FFT(Bs, T) (A14)
Cr =FFT(Cs, T)

ArBT —

%CT point by point.

Computes the shifted coefficients ht = IFFT(H, T) and it finally gets h = hy /o point
by point.

Computes H =

Appendix C. Bos-Coster

Let the pairs (s, P1), (s2, P2), - .., (Sn, Pn) be the elements of the multi-exponentiations

to perform. We sort the list from large to small s;, by means of a well-optimised binary
heap. Then, while the list is larger than 1:

(51,P1) = (s1 —s2,P1)
(s2,P2) = (52, P1 + P2)

Mathematics 2021, 9, 2569 16 of 17

e ifs; =0, we remove this pair
* Wesort the list again

When only one pair remains, 51 P; is our solution.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Shafi, M.; Molisch, A.F.; Smith, PJ.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial
Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE . Sel. Areas Commun. 2017, 35, 1201-1221. [CrossRef]
He, K.; Wang, Z.; Li, D.; Zhu, E; Fan, L. Ultra-reliable MU-MIMO detector based on deep learning for 5G/B5G-enabled IoT.
Phys. Commun. 2020, 43, 101181. [CrossRef]

Painuly, S.; Kohli, P.; Matta, P.; Sharma, S. Advance applications and future challenges of 5G IoT. In Proceedings of the 2020
3rd International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 3-5 December 2020; pp. 1381-1384.
[CrossRef]

Mohammadnia, H.; Slimane, S.B. IoT-NETZ: Practical spoofing attack mitigation approach in SDWN network. In Proceedings
of the 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 30 June-3 July 2020; pp. 5-13.
[CrossRef]

Kim, B.; Yoon, S.; Kang, Y.; Choi, D. PUF based IoT device authentication scheme. In Proceedings of the 2019 International
Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16-18 October 2019;
pp. 1460-1462. [CrossRef]

Khalid, U.; Asim, M.; Baker, T.; Hung, P.C.; Tariq, M.A.; Rafferty, L. A decentralized lightweight blockchain-based authentication
mechanism for IoT systems. Clust. Comput. 2020, 1-21. [CrossRef]

Leible, S.; Schlager, S.; Schubotz, M.; Gipp, B. A Review on Blockchain Technology and Blockchain Projects Fostering Open
Science. Front. Blockchain 2019, 2, 16. [CrossRef]

Sovrin Foundation. Sovrin: A Protocol and Token for Self-Sovereign Identity and Decentralized Trust. 2018. Available online:
https:/ /sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf (accessed on 28 September 2021).
Luecking, M.; Fries, C.; Lamberti, R.; Stork, W. Decentralized identity and trust management framework for internet of things. In
Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2-6
May 2020; pp. 1-9. [CrossRef]

Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009. Available online: https:/ /papers.ssrn.com/sol3/papers.cfm?
abstract_id=3440802 (accessed on 20 August 2021).

Hopwood, D.; Bowe, S.; Hornby, T.; Wilcox, N. Zcash Protocol Specification— Version 2019.0.2. 2019. Available online:
https:/ / github.com /zcash/zips/blob /master /protocol / protocol.pdf (accessed on 28 September 2021).

Salleras, X.; Daza, V. SANS: Self-Sovereign Authentication for Network Slices. Secur. Commun. Netw. 2020, 2020. [CrossRef]
Wood, D. Ethereum: A Secure Decentralised Generalised Transaction Ledger. 2014. Available online: https://files.gitter.im/
ethereum/yellowpaper/VIyt/Paper.pdf (accessed on 16 April 2021).

Wu, H.; Zheng, W.; Chiesa, A.; Popa, R.A; Stoica, I. DIZK: A distributed zero knowledge proof system. In Proceedings of the
27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15-17 August 2018; pp. 675-692.

Gabay, D.; Akkaya, K.; Cebe, M. Privacy-Preserving Authentication Scheme for Connected Electric Vehicles Using Blockchain
and Zero Knowledge Proofs. IEEE Trans. Veh. Technol. 2020, 69, 5760-5772. [CrossRef]

Sestrem Ochoa, I.; Reis Quietinho Leithardt, V.; Calbusch, L.; De Paz Santana, J.E; Delcio Parreira, W.; Oriel Seman, L.;
Albenes Zeferino, C. Performance and Security Evaluation on a Blockchain Architecture for License Plate Recognition Systems.
Appl. Sci. 2021, 11, 1255. [CrossRef]

Ben-Sasson, E.; Chiesa, A.; Tromer, E.; Virza, M. Succinct non-interactive zero knowledge for a von neumann architecture.
In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 2022 August 2014;
pp- 781-796.

Groth, J. On the size of pairing-based non-interactive arguments. In Advances in Cryptology—EUROCRYPT 2016; Fischlin, M.,
Coron, |.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 305-326.

Maller, M.; Bowe, S.; Kohlweiss, M.; Meiklejohn, S. Sonic: Zero-knowledge SNARKSs from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
London, UK, 11-15 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2111-2128. [CrossRef]
Xie, T.; Zhang, J.; Zhang, Y.; Papamanthou, C.; Song, D. Libra: Succinct zero-knowledge proofs with optimal prover computation.
In Advances in Cryptology—CRYPTO 2019; Boldyreva, A., Micciancio, D., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 733-764.

Gabizon, A.; Williamson, Z.J.; Ciobotaru, O. PLONK: Permutations over Lagrange-Bases for Oecumenical Noninteractive
Arguments of Knowledge. Cryptology ePrint Archive, Report 2019/953. 2019. Available online: https:/ /ia.cr/2019/953
(accessed on 28 September 2021).

Lee, J.; Setty, S.; Thaler, J.; Wahby, R. Linear-Time and Post-Quantum Zero-Knowledge SNARKSs for R1CS. Cryptology ePrint
Archive, Report 2021/030. 2021. Available online: https:/ /ia.cr/2021/030 (accessed on 28 September 2021).

http://doi.org/10.1109/JSAC.2017.2692307
http://dx.doi.org/10.1016/j.phycom.2020.101181
http://dx.doi.org/10.1109/ICISS49785.2020.9316004
http://dx.doi.org/10.1109/SDS49854.2020.9143903
http://dx.doi.org/10.1109/ICTC46691.2019.8939751
http://dx.doi.org/10.1007/s10586-020-03058-6
http://dx.doi.org/10.3389/fbloc.2019.00016
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
http://dx.doi.org/10.1109/ICBC48266.2020.9169411
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3440802
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3440802
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
http://dx.doi.org/10.1155/2020/8823573
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
http://dx.doi.org/10.1109/TVT.2020.2977361
http://dx.doi.org/10.3390/app11031255
http://dx.doi.org/10.1145/3319535.3339817
https://ia.cr/2019/953
https://ia.cr/2021/030

Mathematics 2021, 9, 2569 17 of 17

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Biinz, B.; Bootle, J.; Boneh, D.; Poelstra, A.; Wuille, P.; Maxwell, G. Bulletproofs: Short proofs for confidential transactions and
more. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21-23 May 2018;
pp. 315-334. [CrossRef]

Ben-Sasson, E.; Bentov, I.; Horesh, Y.; Riabzev, M. Scalable, Transparent, and Post-Quantum Secure Computational Integrity.
Cryptology ePrint Archive, Report 2018/046. 2018. Available online: https://eprint.iacr.org/2018/046 (accessed on 28
September 2021).

Morais, E.; Koens, T.; Van Wijk, C.; Koren, A. A survey on zero knowledge range proofs and applications. SN Appl. Sci. 2019,
1,1-17. [CrossRef]

Goldwasser, S.; Tauman Kalai, Y. Cryptographic assumptions: A position paper. In Theory of Cryptography; Kushilevitz, E.,
Malkin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 505-522.

Goldwasser, S.; Micali, S.; Rackoff, C. The knowledge complexity of interactive proof-systems. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, Providence, RI, USA, 6-8 May 1985; ACM: New York, NY, USA, 1985; pp.
291-304. [CrossRef]

Blum, M.; Feldman, P.; Micali, S. Non-interactive zero-knowledge and its applications. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, 2—-4 May 1988; ACM: New York, NY, USA, 1988; pp. 103-112.
[CrossRef]

Bowe, S.; Gabizon, A.; Miers, I. Scalable Multi-Party Computation for zk-SNARK Parameters in the Random Beacon Model.
Cryptology ePrint Archive, Report 2017/1050. 2017. Available online: https://eprint.iacr.org/2017/1050 (accessed on 28
September 2021).

Barreto, P.5.L.M.; Naehrig, M. Pairing-friendly elliptic curves of prime order. In Selected Areas in Cryptography; Preneel, B.,
Tavares, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 319-331.

Menezes, A.; Sarkar, P.; Singh, S. Challenges with Assessing the Impact of NFS Advances on the Security of Pairing-Based
Cryptography. Cryptology ePrint Archive, Report 2016/1102. 2016. Awvailable online: https://eprint.iacr.org/2016/1102
(accessed on 28 September 2021).

El Housni, Y.; Guillevic, A. Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition. In
Cryptology and Network Security; Krenn, S., Shulman, H., Vaudenay, S., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 259-279.

Beuchat, J.L.; Gonzalez-Diaz, J.E.; Mitsunari, S.; Okamoto, E.; Rodriguez-Henriquez, F; Teruya, T. High-speed software
implementation of the optimal ate pairing over Barreto-Naehrig curves. In Pairing-Based Cryptography—Pairing 2010; Joye, M.,
Miyaji, A., Otsuka, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21-39.

Albrecht, M.; Grassi, L.; Rechberger, C.; Roy, A.; Tiessen, T. MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In Advances in Cryptology—ASIACRYPT 2016; Cheon,].H., Takagi, T., Eds.; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 191-219.

Bernstein, D.J.; Duif, N.; Lange, T.; Schwabe, P,; Yang, B.Y. High-Speed High-Security Signatures. |. Cryptogr. Eng. 2012, 2.
Available online: https://cr.yp.to/papers.html#ed25519 (accessed on 28 September 2021). [CrossRef]

http://dx.doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2018/046
http://dx.doi.org/10.1007/s42452-019-0989-z
http://dx.doi.org/10.1145/22145.22178
http://dx.doi.org/10.1145/62212.62222
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2016/1102
https://cr.yp.to/papers.html#ed25519
http://dx.doi.org/10.1007/s13389-012-0027-1

	Introduction
	Motivation
	Contributions
	Roadmap

	Related Work
	ZKP Use Cases
	ZKP Schemes

	Building Blocks: zk-SNARKs
	Preliminaries
	Protocol

	Our Solution: ZPiE
	Design
	Implementation
	Efficiency
	Computing h Coefficients
	Multi-Exponentiations

	Applications

	Experiments and Results
	Conclusions
	Groth'16
	FFT Techniques for Computing h Coefficients
	Bos-Coster
	References

