
mathematics

Article

Attribute Selecting in Tree-Augmented Naive Bayes by Cross
Validation Risk Minimization

Shenglei Chen 1,* , Zhonghui Zhang 2 and Linyuan Liu 1

����������
�������

Citation: Chen, S.; Zhang, Z.; Liu, L.

Attribute Selecting in Tree-Augmented

Naive Bayes by Cross Validation Risk

Minimization. Mathematics 2021, 9,

2564. https://doi.org/10.3390/

math9202564

Academic Editor: Liangxiao Jiang

Received: 5 September 2021

Accepted: 9 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of E-Commerce, Nanjing Audit University, Nanjing 211815, China; liulinyuang@nau.edu.cn
2 School of Finance, Nanjing Audit University, Nanjing 211815, China; zhonghui@nau.edu.cn
* Correspondence: shenglei.chen@nau.edu.cn

Abstract: As an important improvement to naive Bayes, Tree-Augmented Naive Bayes (TAN) exhibits
excellent classification performance and efficiency since it allows that every attribute depends on
at most one other attribute in addition to the class variable. However, its performance might be
lowered as some attributes might be redundant. In this paper, we propose an attribute Selective
Tree-Augmented Naive Bayes (STAN) algorithm which builds a sequence of approximate models
each involving only the top certain attributes and searches the model to minimize the cross validation
risk. Five different approaches to ranking the attributes have been explored. As the models can be
evaluated simultaneously in one pass learning through the data, it is efficient and can avoid local
optima in the model space. The extensive experiments on 70 UCI data sets demonstrated that STAN
achieves superior performance while maintaining the efficiency and simplicity.

Keywords: Tree-Augmented Naive Bayes; attribute selection; cross validation; mutual information

1. Introduction

Naive Bayes (NB) [1,2] has attracted considerable attention due to its computational
efficiency and competitive classification performance. Its efficiency originates in the inde-
pendence assumption among the attributes given the class. Figure 1a describes an example
of NB structure with 4 attributes, where X1, . . . , X4 are the attribute variables and Y is
the class variable. However, the independence assumption rarely holds in real world
applications. Although it has been demonstrated that some violations of the independence
assumption are not harmful to classification accuracy [3], it is clear that many are. Many
efforts have been done to allow specific dependence between attributes while retaining
naive Bayesisan classifiers’ desirable simplicity and efficiency [4–6].

Y

X1 X2 X3 X4

(a) NB

Y

X1 X2 X3 X4

(b) TAN

Figure 1. Structure of NB and TAN.

The Tree-Augmented Naive Bayes (TAN) [4] corresponds to the algorithm better im-
proving the accuracy of naive Bayesian classifiers by alleviating its attribute independence
assumption. TAN allows that every attribute depends on at most one attribute other than
the class. So the dependencies among the attributes can be described by a tree structure,
which can be found by a scoring measurement, called conditional mutual information.
Figure 1b describes an example of TAN structure with 4 attributes, where X2 depends only
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on X1, while X3 and X4 depend on X2. Since TAN exploits the first-order dependencies
among the attributes, the classification performance can be greatly improved compared to
NB at the cost of a search of tree structure.

However, TAN demands all attributes to be connected to the class, so it exploits all the
attributes regardless of whether it is redundant or not. As a result, there is an increasing
body of work to improve TAN since TAN was proposed [7]. Jiang et al. [8] presented
a Forest Augmented Naive Bayes (FAN) for better evaluating the ranking performance.
Alhussan et al. [9] proposed a fine-tuning stage in a Bayesian Network (BN) learning
algorithm to more accurately estimate the probability terms used by the BN. They apply
the algorithm to fine-tune TAN and other models. Wang et al. [10] presented a kind of
semi-lazy TAN Classifier, which builds a TAN identical to the original TAN at training
time, but adjusts the dependence relations for a new test instance at classification time.
Campos et al. [11] proposed an extended version of the well-known tree-augmented naive
Bayes. The structure learning procedure explores a superset of the structures that are
considered by TAN, yet achieves global optimality of the learning score function in a very
efficient way. The procedure is enhanced with a new score function that only takes into
account arcs that are relevant to predict the class, as well as an optimization over the
equivalent sample size during learning. Jiang et al. [12] investigated the class probability
estimation performance of TAN in terms of Conditional Log Likelihood (CLL). An im-
proved algorithm was presented by choosing each attribute as the root of the tree and
then averaging all the spanning TAN classifiers. Cerquides and Mántaras [13] introduced
decomposable distributions over TANs. They proposed four classifiers based on decompos-
able distributions over TANs. These classifiers provide clearly significant improvements,
specially when data is scarce. It could be found that these work focuses mainly on the TAN
structure learning, few of them have tried to eliminate redundant attributes in the process
of training.

Attribute selection in Bayesian network classifiers had been investigated. Zhang et al. [14]
proposed a discriminative model selection approach which chooses different single models
for different test instances and retains the interpretability of single models. Langley
and Sage [15] proposed Selective Bayes Classifiers (SBC) by hill-climbing search of the
optimal attribute subset. The same strategy had also been applied to Averaged-One
Dependence Estimator (AODE) to find the optimal parent and child attribute set [16].
As this carries out a greedy search through the space of feature, it often falls into a local
optimization. Furthermore, the evaluation of the successively added attributes is time-
consuming. Recently, an attribute selection approach based on efficient attribute subsets
construction and evaluation has been investigated in NB [17], k-dependence Bayesian
classifier (KDB) [18], averaged n-dependence estimators (AnDE) [19,20]. However, the
performance of TAN [4] with this attribute selection has not been explored.

This paper proposes an attribute Selective TAN (STAN) algorithm by cross validation
risk minimization. The attribute subsets are first constructed very efficiently as the latter
subset can be obtained only by adding one attribute to the former. Classification models
based on these different subsets of attributes could then be searched by cross validation risk
minimization in one pass learning of the training data. Five different approaches to ranking
the attributes have been explored. Different from the traditional attribute selection based
on hill climbing, the strategy in this paper is efficient and able to avoid local optima in the
model space. The extensive experiments on 70 UCI data sets demonstrated that STAN,
along with a certain attribute ranking approach, called Minimum Redundancy-Maximum
Relevance (MRMR), achieves superior performance while maintaining the efficiency and
simplicity. It provides consistently better predictions than regular TAN in a statistically
way. The win/draw/loss result in terms of zero-one loss is 34/22/14, which means STAN
with MRMR obtains lower zero-one loss than regular TAN on 34 data sets, the same zero-
one loss as regular TAN on 22 data sets and greater zero-one loss than regular TAN on
14 data sets.
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2. Preliminaries
2.1. Bayesian Network Classifiers

The classification problem can be described as a procedure that given a data set
D and an unclassified observation x assigns a class to x. Suppose we have N observa-
tions in D. Each observation is a pair (x, y), consisting of an a-dimensional attribute
vector x = [x1, . . . , xa]T , and a target class y, draw from the underlying random variables
X = {X1, . . . , Xa} and Y.

Bayesian network classifier addresses this classification task by first modelling the
joint distribution P(y, x) by a certain Bayesian network B, and then calculating the poste-
rior distribution P(y|x) by bayesian rule. A Bayesian network is characterised by a pair
B = 〈G, Θ〉. The first component, G, is a directed acyclic graph. The nodes in G represent
random variables, including attributes X1, . . . , Xa and the class variable Y. The arcs in G
represent directed dependencies between the nodes. If Xj is pointing directly to Xi via
a directed edge (an arc), we say Xj is the parent of Xi, or Xi is the child of Xj. Different
bayesian network classifiers assume different dependencies among the attributes, but all
assume Y is the parent of all attributes and has no parents.

The second component of the pair, namely Θ, represents the set of parameters that
quantifies the network. It contains a parameter θxi |y,πi

for each xi of node Xi, each y of Y and
each πi of Πi, where Πi is the set of parent nodes of Xi in network G. θxi |y,πi

= PB(xi|y, πi),
abbreviated for PB(Xi = xi|Y = y, Πi = πi), represents the probability that variable Xi
takes the value xi given that Y takes the class y and Πi takes the value πi. It is obvious that
θxi |y,πi

is constrained by ∑xi∈Xi
θxi |y,πi

= 1.
When the data set D is given, the log-likelihood of the data given a specific network

structure is maximized when θxi |y,πi
corresponds to empirical estimates of probabilities

from the data, that is, θxi |y,πi
= PD(Xi = xi|Y = y, Πi = πi) [21]. This produces the

Maximum-Likelihood Estimation (MLE) of the parameters Θ.
A Bayesian network defines a unique joint probability distribution given by

PB(x1, . . . , xa, y) = PB(y)
a

∏
i=1

PB(xi|y, πi) = PB(y)
a

∏
i=1

θxi |y,πi
(1)

By Bayesian rule, the posterior distribution of a new unclassified example x can be
calculated as follows,

PB(y|x) =
PB(x, y)

∑y PB(x, y)
(2)

So we can easily classify x into class arg maxy(PB(y|x)).

2.2. Tree Augmented Naive Bayes

Although naive Bayes [1] performs surprisingly well on many data sets, its inde-
pendence assumption among attributes rarely holds in real world. In order to relax this
independence assumption, Friedman et al. [4] proposed to augment the naive Bayes
structure with edges among the attributes, when needed, thus dispensing with its strong
assumptions about independence. In order to learn the optimal set of augmenting edges
in polynomial time, a tree restriction has been imposed on the form of the allowed in-
teraction. So the resulting structure is called Tree-Augmented Naive Bayesian (TAN)
network, in which the class variable has no parents and each attribute has as parents at
most one other attribute in addition to the class variable. Thus, each attribute can have one
augmenting edge pointing to it and all the augmented edges form a tree structure.

In order to learn a TAN structure such that the log likelihood is maximized, they
proposed to use conditional mutual information between attributes given the class variable
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as the weight of an edge in the graph. The conditional mutual information between
attributes X and Z given the class variable Y is defined as

I(X; Z|Y) = ∑
x,z,y

P(x, z, y)log
P(x, z|y)

P(x|y)P(z|y) , (3)

Roughly speaking, this function measures the information that Z provides about X
when the value of Y is known.

The procedure to construct TAN structure consists of five main steps:

1. Compute I(Xi; Xj|Y) between each pair of attributes, i 6= j, from the training data.
2. Build a complete undirected graph in which the nodes are the attributes X1, . . . , Xa.

Annotate the weight of an edge connecting Xi to Xj by I(Xi; Xj|Y).
3. Build a maximum weighted spanning tree.
4. Transform the resulting undirected tree to a directed one by choosing a root variable

and setting the direction of all edges to be outward from it, thus getting the parent
node Πi of node Xi.

5. Construct a TAN model by adding a node labelled by Y and adding an arc from Y to
each Xi.

Note that in TAN, vector Πi has deteriorated to scalar Πi as TAN allows only one
parent for each attribute. So TAN model defines a unique joint probability distribution
given by

PTAN(x, y) = PTAN(y)
a

∏
i=1

PTAN(xi|y, πi) (4)

The structure and the parameters of TAN model can be learned in one pass learning
through the data.

3. Attribute Selective Tree-Augmented Naive Bayes
3.1. Motivation

It could be found from Equation (4) that the joint probability PTAN(x, y) is estimated
by the product of prior probability PTAN(y) and conditional probabilities PTAN(xi|y, πi).
Considering only the top certain attributes will produce an approximation to PTAN(x, y).
This implies that it is possible to build a sequence of alternative selective models such
that the latter one is a trivial extension to the former. Different models that build upon
one another in this way can be efficiently evaluated in a single set of computations. So in
just one pass learning through the data, cross validation risks of different models can be
obtained. Risk minimization will obtain the best model, which means also the optimal
attribute subset to perform classification in the framework of TAN.

3.2. Building Model Sequence

When trying to search the best attribute subset, the size of the search space for a vari-
ables is 2a. Instead of searching the whole space exhaustively, it is natural to impose some
restrictions on the construction of the model space. As TAN compute the joint probability
PTAN(x, y) by sequentially multiplying the conditional probability PTAN(xi|y, πi) to the
prior PTAN(y), considering only the top s attributes results in an approximate model to
PTAN(x, y), where 1 ≤ s ≤ a. So the model space of attribute selective TAN would be

PTANs(x, y) = PTAN(y)
s

∏
i=1

PTAN(xi|y, πi) (5)

By this means we can construct a model sequence of size a. These models can be
evaluated efficiently in a single set of computations as the latter one is only a trivial
extension to the former one. Although each model is only an approximation to TAN model,
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regular TAN is also included in this model sequence. Consequently, this attribute selective
model could be expected not to be worse than regular TAN.

3.3. Ranking the Attributes

Since the selective strategy is to consider only the top s attributes, the strategy relies
on a ranking of the attributes. As the purpose of attribute selection is to eliminate those
redundant attributes, we should prioritize those more informative attributes. We could
rank the attributes based on the attributes’ marginal relevance with respect to the class.
Fortunately, the attribute ranking has been extensively investigated in feature selection
area [22]. Here we adopt the most well known five strategies to measure the relevance
between the attribute and the class.

1. Mutual Information (MI) (Mutual information measures the amount of information
shared by two variables. This can also be interpreted as the amount of information
that one variable provides about another) is an intuitive score since it is a measure
of correlation between an attribute and the class variable. Before we present the
definition of mutual information, we would first present the concepts of entropy and
conditional entropy. The entropy of a random variable x is defined as

H(X) = − ∑
x∈X

P(x)log2P(x) (6)

The conditional entropy H(X|Y) of X given Y is

H(X|Y) = − ∑
y∈Y

P(y) ∑
x∈X

P(x|y)log2P(x|y) (7)

The mutual information between X and Y is defined as the difference between the
entropy H(X) and the conditional entropy H(X|Y)

I(X; Y) = H(X)− H(X|Y)

= ∑
y∈Y

∑
x∈X

P(x, y)log2
P(x, y)

P(x)P(y)
,

(8)

This heuristic considers a score for each attribute independently of others.
2. Symmetrical Uncertainty (SU) (Symmetrical uncertainty is the normalized mutual

information. The range of symmetrical uncertainty is [0, 1], where the value 1 indi-
cates that knowledge of the value of either one completely predicts the value of the
other and the value 0 indicates that the two variables are independent) [23] can be
interpreted as a sort of mutual information normalized to interval [0, 1]:

SU(X; Y) = 2
(

I(X; Y)
H(X) + H(Y)

)
. (9)

It is obvious that mutual information is biased in favor of attributes with more values
and so large entropy. However, symmetrical uncertainty, which is normalized to the
range [0, 1], is an unbiased metric and ensures they are comparable and have the same
effect. As a result, we can expect to obtain a more appropriate ranking of attributes
based on symmetrical uncertainty.

3. Minimum Redundancy-Maximum Relevance (MRMR) criterion (MRMR, short for
Minimum Reduncancy-Maximum Relevance, always tries to select the attribute which
has the best trade off between the relevance to the class variable and the the averaged
redundancy to the attributes already selected), which was proposed by Peng et al. [24],
not only considers mutual information to ensure feature relevance, but introduces
a penalty to enforce low correlations with features already selected. MRMR is very
similar to Mutual Information Feature Selection (MIFS) [25], except that the latter
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replace 1
k with a more general configurable parameter β, where k means the number

of the attributes that have been selected so far, and is also the number of steps.
Assume at step k, the attribute set selected so far is AS

k , while A−S
k = A \AS

k is the
set difference between the original set of inputs A and AS

k . The attribute returned by
MRMR criterion at step k + 1 is,

XMRMR
k+1 = arg max

X∈A−S
k

I(X; Y)− 1
k ∑

X′∈AS
k

I(X; X′)

. (10)

At each step, this strategy selected the variable which has the best trade off between
the relevance I(X; Y) of X to the class Y and the averaged redundancy of X to the
selected attributes X′ ∈ AS

k .
4. Conditional Mutual Information Maximization (CMIM) (CMIM, short for Conditional

Mutual Information Maximization, tries to select the attribute that maximizes the
minimal mutual information with the class within the attributes already selected)
proposes to select the feature whose minimal relevance conditioned to the selected
attributes is maximal. This heuristic was proposed by Fleuret [26] and also later by
Chen et al. [27] as direct rank (dRank). CMIM computes the mutual information of X
and the class variable Y, conditioned on each attribute X′ ∈ AS

k previously selected.
Then the minimal value is retained and the attribute that has a maximal minimal
conditional relevance is selected.
In formal notation, the variable returned at step k + 1 according to the CMIM strat-
egy is

XCMIM
k+1 = arg max

X∈A−S
k

{
min

X′∈AS
k

I(X; Y|X′)
}

. (11)

5. Joint Mutual Information (JMI) (JMI, short for joint Mutual Information, tries to
select the attribute which is complementary most with existing attributes), which
was proposed by Yang and Moody [28] and also later by Meyer et al. [29], tries to
select a candidate attribute if it is complementary with existing attributes. As a result,
JMI focuses on increasing the complementary information between attributes. The
variable returned by JMI criterion at step k + 1 is

XJMI
k+1 = arg max

X∈A−S
k

 ∑
X′∈AS

k

I(X, X′; Y)

. (12)

The score in JMI is the information between the class variable and a joint random
variable〈X, X′〉, defined by pairing the candidate X with each attribute X′ previ-
ously selected.

Note that for the first two scores, we can simply rank the attributes in the descending
order of MI or SU scores. While for the last three methods, a forward selection search
strategy is involved, which means we are selecting attributes sequentially, iteratively con-
structing our attribute subset. Suppose at step k, the set of attributes selected so far is AS

k ,
A−S

k = A \AS
k is the set difference between the original set of inputs A and AS

k . At step
k + 1 of forward selection search, these methods select the attribute Xk+1 which maximizes
the given score in Equation (10), Equation (11) or Equation (12). Then the attribute sets
can be updated as AS

k+1 ← A
S
k ∪ {Xk+1}, A−S

k+1 ← A
−S
k \ {Xk+1}. Initially, the set AS is

empty. So they select the attribute arg maxX∈A I(X; Y), which is with maximal mutual
information with respect to the class variable. The procedure terminates when the set A−S
becomes empty.
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3.4. Cross Validation Risk Minimization

Since the model space has been built, next we need select the best model in this space.
A natural idea is to apply these models to the training examples and select the model with
the best accuracy. However, this will cause the over fitting problem as the models have
been trained and tested on the same examples. Low error rate on the training data set
does not mean low error rate on the testing data set. The more practical way is to use
only part of training examples to construct the models and leave the rest for testing and
model selection. This is the idea of cross validation. In order to obtain the risks of different
models in one pass learning through the training data, incremental leave-one-out cross
validation [30] is adopted.

In the process of leave-one-out cross validation, the training set D is divided into
a validation set (having only one instance) and an effective training set (having |D| − 1
instances). Each instance in D can act as the validation instance in turn. At this time, the
contribution of the instance to the models will be removed and the instance acts only as
the validation instance. This realizes cross validation on the training set. During learning,
no use of an instance in test set is made.

As the Root Mean Squared Error (RMSE) is a finer grained measure of the calibration
of the probability estimates compared to zero-one loss, RMSE is adopted to measure the
cross validation risk. Since the model that minimizes the empirical risk is searched for, we
call the score Cross Validation Risk (CVR):

CVR =

√√√√ 1
|D|

|D|

∑
i=1

(1.0− PTANs(y = yi|xi))2 , (13)

Based on the above methodologies, we develop the training algorithm of attribute
selective TAN, described in Algorithm 1. It involves two passes learning through the
training set D. One pass is to collect the information that is needed to form the table of
joint frequencies of all combinations of 2 attributes values and the class label. The second
pass is to evaluate all the models by leave-one-out cross validation.

Algorithm 1 Training algorithm of attribute selective TAN.

1: Form the table of joint frequencies of all combinations of 2 attribute values and the class label .
first pass through training data

2: Rank the attributes by Equations (8)–(12)
3: for instance inst ∈ D do . second pass through training data
4: Remove inst from the frequency table
5: Predict inst by all models in Equation (5)
6: Accumulate the squared error for each model
7: Add inst back to the frequency table
8: end for
9: Compute the CVR score for each model as in Equation (13)

10: Select the model with the lowest CVR

It could be found that this strategy can search through the model space in one more
pass learning through the training data, thus it is efficient. Furthermore, local optima can
be avoided in this strategy. This is different from those attribute selections that rely on
hill climbing search [16], where multiple passes learning through training data might be
involved and we can only get the local optima. In our strategy, if the search space could be
expanded, the better model will be obtained.

From the training process in Algorithm 1, we could see that the space complexity of
the table of joint frequencies of all combinations of 2 attributes values and the class label is
O(c(av)2), where v is the average number of values per attribute and c is the number of
classes. Attribute selection will not require more memory. The time complexity consists
of three parts. One is derivation of the frequencies required to populate the table, the
time complexity of which is O(ta2). The second part is the attribute ranking, the time
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complexity of which is O(a2). This part can be ignored given the first part. The last part is
attribute selection in a second pass through the training data, the time complexity of which
is O(tca), since for each example we need to compute the joint probability in Equation (4).
So the overall time complexity is O(ta2 + tca). The time complexity of classifying a single
example is O(ca) in the worst-case scenario, because some attributes may be omitted after
attribute selection.

4. Experiments and Analysis
4.1. Experimental Methodology

We have performed the experiments on 70 UCI data sets [31], covering a wide spec-
trum of number of instances (24–5,749,132), attributes (3–166) and classes (2–50), which
allows us to examine the performance of the proposed algorithm on data sets with various
characteristics. Table 1 lists the data sets, including the name of the data set, the number of
instances, attributes, and classes. Note that the data sets have been listed in the ascending
order of number of instances.

Table 1. Data sets.

No. Name Inst Att Class No. Name Inst Att Class

1 contact-lenses 24 4 3 36 tic-tac-toe 958 9 2
2 lung-cancer 32 56 3 37 vowel 990 13 11
3 labor-negotiations 57 16 2 38 german 1000 20 2
4 post-operative 90 8 3 39 led 1000 7 10
5 zoo 101 16 7 40 contraceptive-mc 1473 9 3
6 promoters 106 57 2 41 yeast 1484 8 10
7 echocardiogram 131 6 2 42 volcanoes 1520 3 4
8 lymphography 148 18 4 43 car 1728 6 4
9 iris 150 4 3 44 segment 2310 19 7

10 teaching-ae 151 5 3 45 hypothyroid 3163 25 2
11 hepatitis 155 19 2 46 splice-c4.5 3177 60 3
12 wine 178 13 3 47 kr-vs-kp 3196 36 2
13 autos 205 25 7 48 abalone 4177 8 3
14 sonar 208 60 2 49 spambase 4601 57 2
15 glass-id 214 9 3 50 phoneme 5438 7 50
16 new-thyroid 215 5 3 51 wall-following 5456 24 4
17 audio 226 69 24 52 page-blocks 5473 10 5
18 hungarian 294 13 2 53 optdigits 5620 64 10
19 heart-disease-c 303 13 2 54 satellite 6435 36 6
20 haberman 306 3 2 55 musk2 6598 166 2
21 primary-tumor 339 17 22 56 mushrooms 8124 22 2
22 ionosphere 351 34 2 57 thyroid 9169 29 20
23 dermatology 366 34 6 58 pendigits 10,992 16 10
24 horse-colic 368 21 2 59 sign 12,546 8 3
25 house-votes-84 435 16 2 60 nursery 12,960 8 5
26 cylinder-bands 540 39 2 61 magic 19,020 10 2
27 chess 551 39 2 62 letter-recog 20,000 16 26
28 syncon 600 60 6 63 adult 48,842 14 2
29 balance-scale 625 4 3 64 shuttle 58,000 9 7
30 soybean 683 35 19 65 connect-4 67,557 42 3
31 credit-a 690 15 2 66 waveform 100,000 21 3
32 breast-cancer-w 699 9 2 67 localization 164,860 5 11
33 pima-ind-diabetes 768 8 2 68 census-income 299,285 41 2
34 vehicle 846 18 4 69 poker-hand 1,025,010 10 10
35 anneal 898 38 6 70 donation 5,749,132 11 2
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The experiments has been done on a Linux HPC cluster which has 4 nodes each with
64 GB RAM. The experimental system is implemented in C++. In our experimental system,
several different strategies from the Weka software [32] were adopted, namely:

1. Missing values are considered as a distinct value rather than replaced with modes
and means for nominal and numeric attributes as in the Weka software.

2. Root mean squared error is calculated exclusively on the true class label. This is
different from Weka’s implementation, where all class labels are considered.

The base probabilities are estimated using m-estimation (m = 1) [33]. 5-bin equal
frequency discretization is performed to discretize the numeric attributes as in [34]. All the
algorithms have been run on the data sets in the 10-fold cross validation mode.

In the experiments, we will compare STAN with regular TAN. According to different
attributes ranking strategies described in Section 3.3, we develop five versions of STAN,
namely STANMI, STANSU, STANJMI, STANCMIM and STANMRMR. It is worthwhile to
note that in the implementation of STANMRMR, we use the following criterion instead of
Equation (10) as suggested by the authors [24]:

XMRMR
k+1 = arg max

X∈A−S
k

 I(X; Y)
1
k ∑X′∈AS

k
I(X; X′) + 0.01

, (14)

where 0.01 is added so as to avoid to be divided by zero. We also compare the best version
of STAN with state-of-the-art one-dependence BNCs as AODE [5] and KDB1 (KDB where
k = 1).

4.2. Win/Draw/Loss Analysis

In this subsection, we demonstrate the classification performance of the proposed
algorithms. Two commonly used performance measures are reported, namely Zero-one
Loss (ZOL) and Root Mean Squared Error (RMSE). ZOL is the proportion of instances that
are misclassified. RMSE is squared root of the mean squared probability that the testing
example is misclassified, which is the difference between 1.0 and the probability estimated
by the algorithm for the true class for the testing example.

Tables A1 and A2 in the Appendix A provide the detailed ZOL and RMSE results of
eight algorithms on 70 data sets. In order to present a brief summary of the comparison of
different algorithms, statistical win/draw/loss records in terms of the above performance
measures are reported in Tables 2 and 3.

The win/draw/loss record indicates the frequency of one algorithm wins, draws
with or loses to another algorithm with respect to the specified measure on 70 data sets.
For example, win/draw/loss of STANMI against TAN with respect to ZOL is 26/22/22,
which means STANMI obtains lower ZOL than TAN on 26 data sets, the same ZOL as TAN
on 22 data sets and greater ZOL than TAN on 22 data sets.

To decide whether two comparing algorithms have the equal chances of win, a stan-
dard binomial sign test [35] is applied to these records. Given the null hypothesis that wins
and losses are equiprobable, the binomial test indicates the probability of observing the
specified numbers of win and loss. In our analysis, the number of draws is divided equally
to the number of wins and losses. If the number of draws is an odd number, we ignore
one. We reject the hypothesis and consider the difference between the two algorithms
significant if the p value is less than the critical value 0.05, which is in bold font. The p value
we reported is the outcome of a one-tailed test. For example, p value of STANMI against
TAN is 0.3601, which means the probability of 37 (26 + 22/2) wins in 70 comparisons is
0.3601 according to the binomial distribution. Since 0.3601 is greater than 0.5, we can draw
a conclusion that the difference between STANMI and TAN is not significant, although
STANMI obtains lower ZOL than TAN more often than the reverse.

We first compare different versions of STAN with TAN. From Table 2, we could find
that relative to TAN, STANMI achieves lower error almost as often as higher. STANSU,
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STANJMI and STANCMIM deliver lower error more often than TAN, only significantly so
with respect to STANJMI and STANCMIM on RMSE. STANMRMR reduces both zero-one
loss and RMSE significantly often relative to TAN. We could conclude that along with
the ranking strategy MRMR, STANMRMR achieves the best performance among the 5
five improvements.

We also present the scatter plot of STANMRMR to TAN in terms of ZOL in Figure 2.
The points below the diagonal represent the data sets on which STANMRMR achieves lower
ZOL than TAN. It could be found that STANMRMR provides consistently better predictions
than regular TAN in a statistically way.

Table 2. Win/draw/loss records of different versions of STAN vs. TAN in terms of ZOL and RMSE on 70 data sets.

STANMI vs. TAN STANSU vs. TAN STANJMI vs. TAN

win/draw/loss p win/draw/loss p win/draw/loss p

ZOL 26/22/22 0.3601 29/20/21 0.2015 22/29/19 0.4050
RMSE 28/21/21 0.2352 32/19/19 0.0740 34/20/16 0.0207

STANCMIM vs. TAN STANMRMR vs. TAN

win/draw/loss p win/draw/loss p

ZOL 30/21/19 0.1142 34/22/14 0.0112
RMSE 34/18/18 0.0361 38/17/15 0.0038
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Figure 2. Scatter plot of STANMRMR to TAN in terms of ZOL

Next, we compare STANMRMR with state-of-the-art one-dependence Bayesian classi-
fiers, AODE [5] and KDB [6]. We use the version of KDB where k = 1, simplified as KDB1.
The win/draw/loss results are summarized in Table 3. It could be found that STANMRMR

achieves lower error almost as often as higher relative to AODE, while it obtains lower
zero-one-loss and RMSE more often than KDB1 than the reverse.
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Table 3. Win/draw/loss records of STANMRMR vs. AODE and KDB1 in terms of ZOL and RMSE on
70 data sets.

STANMRMR vs. AODE STANMRMR vs. KDB1

Win/Draw/Loss p Win/Draw/Loss p

ZOL 33/1/36 0.4050 40/7/23 0.0266
RMSE 31/0/39 0.2015 45/1/24 0.0077

4.3. Analysis of Training and Classification Time

In this subsection, we will compare the averaged training and classification time of the
proposed algorithms. The averaged training and classification time of all the 8 algorithms
have been plotted in Figure 3.

It could be found that selective TAN requires more training time than regular TAN.
This could be explained that selective TAN involves one more pass learning through the
training data. While the difference between various versions of STAN is not significant.
Five STAN algorithms require more training time than AODE and KDB1.
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(a) Training time

TAN STAN
MI

STAN
SU

STAN
JMI

STAN
CMIM

STAN
MRMR

AODE KDB1

M
e
a
n
 t
im

e

0
.0

0
0
.0

4
0
.0

8
0
.1

2

(b) Classification time

Figure 3. Averaged (a) training time and (b) classification time of all algorithms on
70 datasets (seconds).

As far as the classification time is concerned, five STAN algorithms achieve the same
results as regular TAN. As the classification process uses less attributes in STAN than in
regular TAN, the classification times are expected to be less than regular TAN. However, the
plot does not indicate this trend. The deep observation of the classification times of different
algorithms on each data set shows that the classification times on most data sets are 0 due
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to the limited number of instances in those data sets. AODE require more classification
time since it needs to classify the test instance by multiple one-dependence estimators.

5. Discussion

In this paper, we propose an attribute Selective Tree-Augmented Naive Bayes (STAN)
algorithm, which builds a sequence of approximate models by adding one attribute at a
time to the previous model and searches the model space to minimize the cross validation
risk. The extensive experiments on 70 UCI data sets demonstrats that STAN achieves
superior performance while maintaining the efficiency and simplicity. The conclusions are
summarized as follows:

• STAN algorithms with different ranking strategies achieve superior classification
performance than regular TAN at the cost of a modest increase in training time.

• MRMR ranking strategy achieves the best classification performance compared to
other ranking strategies, and the advantage over regular TAN is significant.

• STAN with MRMR ranking strategy is comparable with AODE and superior to KDB1
in terms of accuracy, while requires less classification time than AODE.

As the cross validation risk minimization provides an efficient search in the model
space, expansion of the space would be expected to produce better models. So in the future
it is worthwhile to expand the model space by varying the dependence level so as to find
more practical model.
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Appendix A

Table A1. ZOL results of 8 algorithms on 70 data sets.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

contact-lenses 0.3750 ± 0.3758 0.3750 ± 0.3425 0.3750 ± 0.3425 0.3750 ± 0.3425 0.3750 ± 0.3425 0.3750 ± 0.3425 0.4167 ± 0.3574 0.2917 ± 0.3543
lung-cancer 0.5938 ± 0.2265 0.6875 ± 0.2641 0.7188 ± 0.2502 0.5625 ± 0.3289 0.6250 ± 0.2605 0.6562 ± 0.2733 0.4688 ± 0.2885 0.5938 ± 0.3082
labor-negotiations 0.1053 ± 0.1234 0.1053 ± 0.1234 0.0877 ± 0.1272 0.1053 ± 0.1234 0.1228 ± 0.2090 0.1053 ± 0.1234 0.0526 ± 0.0675 0.1053 ± 0.1146
post-operative 0.3667 ± 0.2075 0.3222 ± 0.2117 0.3444 ± 0.2124 0.3111 ± 0.1663 0.3111 ± 0.1663 0.3222 ± 0.2263 0.3444 ± 0.1882 0.3444 ± 0.1748
zoo 0.0099 ± 0.0527 0.0099 ± 0.0527 0.0099 ± 0.0527 0.0099 ± 0.0527 0.0198 ± 0.0542 0.0099 ± 0.0527 0.0198 ± 0.0384 0.0495 ± 0.0614
promoters 0.1321 ± 0.1036 0.1792 ± 0.1307 0.1887 ± 0.1251 0.1792 ± 0.1280 0.1604 ± 0.1072 0.1321 ± 0.1108 0.1038 ± 0.0648 0.1321 ± 0.0891
echocardiogram 0.3664 ± 0.1549 0.3893 ± 0.1191 0.3664 ± 0.0922 0.3969 ± 0.0998 0.3969 ± 0.0998 0.3511 ± 0.1132 0.3435 ± 0.1143 0.3664 ± 0.1511
lymphography 0.1757 ± 0.1003 0.1622 ± 0.1007 0.1689 ± 0.1005 0.1622 ± 0.1007 0.1689 ± 0.1047 0.2432 ± 0.1177 0.1486 ± 0.0991 0.1757 ± 0.0791
iris 0.0667 ± 0.0632 0.0667 ± 0.0632 0.0667 ± 0.0632 0.0667 ± 0.0632 0.0667 ± 0.0632 0.0667 ± 0.0632 0.0600 ± 0.0655 0.0733 ± 0.0505
teaching-ae 0.4901 ± 0.1245 0.4901 ± 0.1245 0.4901 ± 0.1245 0.5232 ± 0.1216 0.5232 ± 0.1216 0.5166 ± 0.1436 0.4834 ± 0.1179 0.4834 ± 0.1079
hepatitis 0.1484 ± 0.1280 0.1548 ± 0.1246 0.1548 ± 0.1264 0.1484 ± 0.1280 0.1484 ± 0.1264 0.1806 ± 0.1236 0.1935 ± 0.1244 0.2194 ± 0.1205
wine 0.0618 ± 0.0643 0.0562 ± 0.0534 0.0562 ± 0.0534 0.0618 ± 0.0647 0.0674 ± 0.0611 0.0449 ± 0.0532 0.0281 ± 0.0404 0.0674 ± 0.0633
autos 0.2293 ± 0.1374 0.1951 ± 0.1278 0.2000 ± 0.1118 0.2098 ± 0.1067 0.1951 ± 0.1162 0.2146 ± 0.1230 0.2537 ± 0.1104 0.2293 ± 0.1374
sonar 0.2788 ± 0.0840 0.3029 ± 0.1086 0.3029 ± 0.1086 0.2981 ± 0.0925 0.2692 ± 0.1032 0.3173 ± 0.1301 0.1394 ± 0.0888 0.2548 ± 0.0914
glass-id 0.2617 ± 0.0944 0.2664 ± 0.0923 0.2290 ± 0.0757 0.2523 ± 0.0944 0.2523 ± 0.0944 0.2243 ± 0.0671 0.1589 ± 0.0576 0.2383 ± 0.0720
new-thyroid 0.0791 ± 0.0647 0.0791 ± 0.0647 0.0791 ± 0.0647 0.0791 ± 0.0647 0.0791 ± 0.0647 0.0791 ± 0.0647 0.0512 ± 0.0544 0.0651 ± 0.0454
audio 0.2920 ± 0.0926 0.3053 ± 0.0676 0.3053 ± 0.0676 0.3009 ± 0.0851 0.3009 ± 0.0934 0.2876 ± 0.0821 0.2301 ± 0.0649 0.3097 ± 0.1054
hungarian 0.1973 ± 0.0606 0.2041 ± 0.0613 0.2109 ± 0.0708 0.1973 ± 0.0524 0.1905 ± 0.0511 0.1871 ± 0.0789 0.1429 ± 0.0676 0.2075 ± 0.0625
heart-disease-c 0.2112 ± 0.1005 0.2211 ± 0.1154 0.2244 ± 0.1037 0.2178 ± 0.1020 0.2079 ± 0.1081 0.1914 ± 0.0820 0.1848 ± 0.1067 0.2178 ± 0.1428
haberman 0.2843 ± 0.1023 0.2778 ± 0.0868 0.2778 ± 0.0868 0.2745 ± 0.0851 0.2745 ± 0.0851 0.2680 ± 0.0985 0.2712 ± 0.1188 0.2778 ± 0.1024
primary-tumor 0.5752 ± 0.0960 0.5841 ± 0.1188 0.5841 ± 0.1188 0.5841 ± 0.1188 0.5782 ± 0.1209 0.5841 ± 0.1184 0.5162 ± 0.0984 0.5841 ± 0.1119
ionosphere 0.0684 ± 0.0510 0.0741 ± 0.0453 0.0769 ± 0.0448 0.0741 ± 0.0542 0.0712 ± 0.0409 0.0855 ± 0.0428 0.0826 ± 0.0405 0.0684 ± 0.0441
dermatology 0.0464 ± 0.0390 0.0383 ± 0.0345 0.0437 ± 0.0359 0.0410 ± 0.0287 0.0437 ± 0.0378 0.0301 ± 0.0282 0.0219 ± 0.0275 0.0301 ± 0.0258
horse-colic 0.2092 ± 0.0629 0.1875 ± 0.0524 0.1793 ± 0.0567 0.1793 ± 0.0715 0.1685 ± 0.0618 0.1902 ± 0.0604 0.2038 ± 0.0590 0.2120 ± 0.0615
house-votes-84 0.0552 ± 0.0375 0.0644 ± 0.0386 0.0644 ± 0.0386 0.0552 ± 0.0315 0.0529 ± 0.0404 0.0552 ± 0.0368 0.0529 ± 0.0346 0.0690 ± 0.0353
cylinder-bands 0.3296 ± 0.0719 0.3833 ± 0.0730 0.3796 ± 0.0821 0.3722 ± 0.0634 0.3759 ± 0.0677 0.3704 ± 0.0774 0.1611 ± 0.0421 0.2074 ± 0.0575
chess 0.0926 ± 0.0492 0.0907 ± 0.0509 0.0907 ± 0.0509 0.0944 ± 0.0553 0.0907 ± 0.0509 0.0907 ± 0.0509 0.1053 ± 0.0631 0.0998 ± 0.0354
syncon 0.0300 ± 0.0249 0.0283 ± 0.0241 0.0283 ± 0.0241 0.0317 ± 0.0266 0.0267 ± 0.0235 0.0317 ± 0.0291 0.0200 ± 0.0163 0.0200 ± 0.0156
balance-scale 0.1328 ± 0.0156 0.1328 ± 0.0156 0.1328 ± 0.0156 0.1328 ± 0.0156 0.1328 ± 0.0156 0.1328 ± 0.0156 0.1120 ± 0.0159 0.1424 ± 0.0307
soybean 0.0469 ± 0.0136 0.0586 ± 0.0195 0.0571 ± 0.0180 0.0469 ± 0.0158 0.0454 ± 0.0100 0.0410 ± 0.0095 0.0542 ± 0.0184 0.0644 ± 0.0205
credit-a 0.1696 ± 0.0370 0.1667 ± 0.0394 0.1623 ± 0.0374 0.1739 ± 0.0460 0.1696 ± 0.0444 0.1536 ± 0.0377 0.1261 ± 0.0210 0.1696 ± 0.0417
breast-cancer-w 0.0415 ± 0.0273 0.0443 ± 0.0252 0.0429 ± 0.0271 0.0415 ± 0.0271 0.0386 ± 0.0207 0.0372 ± 0.0237 0.0386 ± 0.0248 0.0486 ± 0.0181
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Table A1. Cont.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

pima-ind-diabetes 0.2526 ± 0.0509 0.2487 ± 0.0416 0.2487 ± 0.0416 0.2409 ± 0.0505 0.2461 ± 0.0480 0.2396 ± 0.0550 0.2513 ± 0.0636 0.2578 ± 0.0583
vehicle 0.2837 ± 0.0603 0.3014 ± 0.0505 0.3014 ± 0.0505 0.3121 ± 0.0479 0.2837 ± 0.0570 0.2884 ± 0.0654 0.3132 ± 0.0563 0.3026 ± 0.0627
anneal 0.0468 ± 0.0182 0.0468 ± 0.0182 0.0468 ± 0.0182 0.0468 ± 0.0182 0.0468 ± 0.0182 0.0468 ± 0.0182 0.0735 ± 0.0232 0.0445 ± 0.0156
tic-tac-toe 0.2286 ± 0.0395 0.2286 ± 0.0395 0.2286 ± 0.0395 0.2286 ± 0.0395 0.2286 ± 0.0395 0.2286 ± 0.0395 0.2683 ± 0.0432 0.2463 ± 0.0382
vowel 0.0667 ± 0.0259 0.0616 ± 0.0284 0.0616 ± 0.0284 0.0646 ± 0.0270 0.0707 ± 0.0354 0.0616 ± 0.0284 0.0808 ± 0.0296 0.2162 ± 0.0272
german 0.2700 ± 0.0515 0.2750 ± 0.0411 0.2760 ± 0.0470 0.2770 ± 0.0653 0.2740 ± 0.0604 0.2670 ± 0.0398 0.2410 ± 0.0535 0.2660 ± 0.0634
led 0.2660 ± 0.0569 0.2660 ± 0.0569 0.2660 ± 0.0569 0.2660 ± 0.0569 0.2660 ± 0.0569 0.2660 ± 0.0569 0.2700 ± 0.0604 0.2640 ± 0.0603
contraceptive-mc 0.4739 ± 0.0345 0.4800 ± 0.0328 0.4779 ± 0.0318 0.4793 ± 0.0333 0.4739 ± 0.0234 0.4745 ± 0.0266 0.4671 ± 0.0455 0.4684 ± 0.0276
yeast 0.4481 ± 0.0360 0.4481 ± 0.0360 0.4461 ± 0.0324 0.4481 ± 0.0360 0.4481 ± 0.0360 0.4454 ± 0.0322 0.4205 ± 0.0402 0.4394 ± 0.0326
volcanoes 0.3559 ± 0.0250 0.3539 ± 0.0276 0.3539 ± 0.0276 0.3533 ± 0.0294 0.3533 ± 0.0294 0.3539 ± 0.0276 0.3539 ± 0.0331 0.3520 ± 0.0258
car 0.0567 ± 0.0182 0.0567 ± 0.0182 0.0567 ± 0.0182 0.0567 ± 0.0182 0.0567 ± 0.0182 0.0567 ± 0.0182 0.0845 ± 0.0193 0.0567 ± 0.0182
segment 0.0615 ± 0.0142 0.0610 ± 0.0133 0.0610 ± 0.0133 0.0610 ± 0.0133 0.0610 ± 0.0133 0.0615 ± 0.0130 0.0563 ± 0.0091 0.0567 ± 0.0158
hypothyroid 0.0332 ± 0.0126 0.0319 ± 0.0110 0.0322 ± 0.0098 0.0326 ± 0.0104 0.0316 ± 0.0106 0.0310 ± 0.0095 0.0348 ± 0.0118 0.0338 ± 0.0137
splice-c4.5 0.0466 ± 0.0129 0.0349 ± 0.0089 0.0349 ± 0.0089 0.0349 ± 0.0102 0.0318 ± 0.0078 0.0340 ± 0.0088 0.0375 ± 0.0087 0.0482 ± 0.0152
kr-vs-kp 0.0776 ± 0.0228 0.0569 ± 0.0186 0.0579 ± 0.0187 0.0569 ± 0.0186 0.0607 ± 0.0145 0.0551 ± 0.0142 0.0854 ± 0.0187 0.0544 ± 0.0171
abalone 0.4692 ± 0.0285 0.4692 ± 0.0285 0.4692 ± 0.0285 0.4692 ± 0.0285 0.4690 ± 0.0279 0.4692 ± 0.0285 0.4551 ± 0.0214 0.4656 ± 0.0237
spambase 0.0696 ± 0.0106 0.0689 ± 0.0115 0.0685 ± 0.0118 0.0696 ± 0.0106 0.0689 ± 0.0112 0.0682 ± 0.0114 0.0635 ± 0.0114 0.0702 ± 0.0121
phoneme 0.2733 ± 0.0177 0.2413 ± 0.0119 0.2413 ± 0.0119 0.2413 ± 0.0119 0.2413 ± 0.0119 0.2444 ± 0.0119 0.2100 ± 0.0144 0.2120 ± 0.0123
wall-following 0.1147 ± 0.0116 0.0872 ± 0.0092 0.0872 ± 0.0092 0.0867 ± 0.0097 0.0861 ± 0.0108 0.0924 ± 0.0110 0.1514 ± 0.0101 0.1043 ± 0.0094
page-blocks 0.0541 ± 0.0100 0.0530 ± 0.0081 0.0530 ± 0.0081 0.0541 ± 0.0100 0.0550 ± 0.0099 0.0530 ± 0.0081 0.0502 ± 0.0066 0.0590 ± 0.0102
optdigits 0.0438 ± 0.0064 0.0441 ± 0.0064 0.0441 ± 0.0064 0.0441 ± 0.0064 0.0443 ± 0.0068 0.0441 ± 0.0067 0.0283 ± 0.0095 0.0454 ± 0.0070
satellite 0.1310 ± 0.0126 0.1321 ± 0.0118 0.1321 ± 0.0118 0.1318 ± 0.0126 0.1340 ± 0.0135 0.1322 ± 0.0132 0.1301 ± 0.0131 0.1392 ± 0.0135
musk2 0.0917 ± 0.0086 0.1003 ± 0.0142 0.1073 ± 0.0165 0.0996 ± 0.0146 0.0997 ± 0.0187 0.1028 ± 0.0127 0.1511 ± 0.0101 0.0867 ± 0.0097
mushrooms 0.0001 ± 0.0004 0.0001 ± 0.0004 0.0001 ± 0.0004 0.0001 ± 0.0004 0.0000 ± 0.0000 0.0001 ± 0.0004 0.0002 ± 0.0005 0.0006 ± 0.0009
thyroid 0.2294 ± 0.0111 0.2294 ± 0.0111 0.2301 ± 0.0121 0.2294 ± 0.0111 0.2294 ± 0.0111 0.2294 ± 0.0111 0.2421 ± 0.0136 0.2319 ± 0.0146
pendigits 0.0576 ± 0.0064 0.0576 ± 0.0064 0.0576 ± 0.0064 0.0552 ± 0.0056 0.0544 ± 0.0058 0.0568 ± 0.0064 0.0254 ± 0.0029 0.0529 ± 0.0066
sign 0.2853 ± 0.0094 0.2853 ± 0.0094 0.2853 ± 0.0094 0.2853 ± 0.0094 0.2853 ± 0.0094 0.2853 ± 0.0094 0.2960 ± 0.0119 0.3055 ± 0.0140
nursery 0.0654 ± 0.0062 0.0654 ± 0.0062 0.0654 ± 0.0062 0.0654 ± 0.0062 0.0654 ± 0.0062 0.0654 ± 0.0062 0.0733 ± 0.0059 0.0654 ± 0.0061
magic 0.1613 ± 0.0076 0.1611 ± 0.0086 0.1611 ± 0.0086 0.1613 ± 0.0076 0.1613 ± 0.0076 0.1611 ± 0.0076 0.1726 ± 0.0084 0.1759 ± 0.0107
letter-recog 0.1941 ± 0.0085 0.1941 ± 0.0085 0.1941 ± 0.0085 0.1941 ± 0.0085 0.1941 ± 0.0085 0.1941 ± 0.0085 0.1514 ± 0.0089 0.1920 ± 0.0112
adult 0.1641 ± 0.0037 0.1609 ± 0.0040 0.1609 ± 0.0040 0.1635 ± 0.0034 0.1642 ± 0.0037 0.1631 ± 0.0045 0.1679 ± 0.0032 0.1638 ± 0.0044
shuttle 0.0097 ± 0.0013 0.0085 ± 0.0013 0.0085 ± 0.0013 0.0085 ± 0.0013 0.0085 ± 0.0013 0.0085 ± 0.0013 0.0101 ± 0.0010 0.0163 ± 0.0012
connect-4 0.2354 ± 0.0050 0.2354 ± 0.0050 0.2354 ± 0.0050 0.2354 ± 0.0050 0.2354 ± 0.0050 0.2354 ± 0.0050 0.2422 ± 0.0047 0.2406 ± 0.0030
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Table A1. Cont.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

waveform 0.0368 ± 0.0015 0.0370 ± 0.0014 0.0370 ± 0.0014 0.0369 ± 0.0014 0.0369 ± 0.0014 0.0367 ± 0.0015 0.0343 ± 0.0008 0.0396 ± 0.0021
localization 0.4367 ± 0.0033 0.4367 ± 0.0033 0.4367 ± 0.0033 0.4367 ± 0.0033 0.4367 ± 0.0033 0.4367 ± 0.0033 0.4333 ± 0.0027 0.4642 ± 0.0040
census-income 0.0675 ± 0.0016 0.0585 ± 0.0020 0.0571 ± 0.0010 0.0567 ± 0.0010 0.0599 ± 0.0011 0.0544 ± 0.0015 0.1106 ± 0.0015 0.0667 ± 0.0014
poker-hand 0.3295 ± 0.0015 0.3294 ± 0.0015 0.3294 ± 0.0015 0.3294 ± 0.0015 0.3294 ± 0.0015 0.3294 ± 0.0015 0.4812 ± 0.0028 0.3291 ± 0.0012
donation 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0002 ± 0.0000 0.0001 ± 0.0000

Table A2. RMSE results of 8 algorithms on 70 data sets.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

contact-lenses 0.6077 ± 0.1831 0.5438 ± 0.2091 0.5438 ± 0.2091 0.5635 ± 0.2278 0.5438 ± 0.2091 0.5635 ± 0.2278 0.5226 ± 0.2221 0.5024 ± 0.2104
lung-cancer 0.7623 ± 0.1357 0.8044 ± 0.1515 0.7955 ± 0.1412 0.6807 ± 0.2643 0.7364 ± 0.1709 0.7690 ± 0.1463 0.6614 ± 0.2444 0.7523 ± 0.2928
labor-negotiations 0.2935 ± 0.1975 0.2988 ± 0.2081 0.2847 ± 0.2132 0.2877 ± 0.1972 0.3131 ± 0.2514 0.2915 ± 0.2033 0.2104 ± 0.1455 0.3014 ± 0.1907
post-operative 0.5340 ± 0.1393 0.5153 ± 0.1354 0.5206 ± 0.1241 0.5017 ± 0.1150 0.5017 ± 0.1150 0.5133 ± 0.1405 0.5136 ± 0.1059 0.5289 ± 0.1031
zoo 0.1309 ± 0.1131 0.1168 ± 0.1054 0.1168 ± 0.1054 0.1144 ± 0.1052 0.1477 ± 0.1144 0.1397 ± 0.1139 0.1344 ± 0.0935 0.1984 ± 0.1255
promoters 0.3264 ± 0.1659 0.3883 ± 0.1721 0.3895 ± 0.1698 0.3864 ± 0.1749 0.3702 ± 0.1647 0.3485 ± 0.1748 0.2795 ± 0.0940 0.3292 ± 0.1603
echocardiogram 0.5276 ± 0.1017 0.5144 ± 0.0890 0.4999 ± 0.0640 0.5073 ± 0.0741 0.5073 ± 0.0741 0.4986 ± 0.0693 0.4829 ± 0.0808 0.5288 ± 0.1034
lymphography 0.3813 ± 0.1227 0.3816 ± 0.1231 0.3891 ± 0.1250 0.3814 ± 0.1230 0.3874 ± 0.1175 0.4369 ± 0.0996 0.3274 ± 0.1395 0.3726 ± 0.1169
iris 0.2211 ± 0.1353 0.2211 ± 0.1353 0.2211 ± 0.1353 0.2211 ± 0.1353 0.2211 ± 0.1353 0.2211 ± 0.1353 0.2224 ± 0.1303 0.2273 ± 0.1252
teaching-ae 0.6189 ± 0.0671 0.6189 ± 0.0671 0.6189 ± 0.0671 0.6272 ± 0.0834 0.6272 ± 0.0834 0.6404 ± 0.0749 0.6105 ± 0.0684 0.6224 ± 0.0683
hepatitis 0.3434 ± 0.1479 0.3530 ± 0.1396 0.3409 ± 0.1326 0.3416 ± 0.1422 0.3475 ± 0.1459 0.3751 ± 0.1442 0.3711 ± 0.1079 0.4188 ± 0.1082
wine 0.2026 ± 0.1223 0.2020 ± 0.1179 0.2063 ± 0.1234 0.2142 ± 0.1218 0.2202 ± 0.1180 0.1923 ± 0.1029 0.1528 ± 0.1007 0.2210 ± 0.0927
autos 0.4725 ± 0.1291 0.4214 ± 0.1637 0.4241 ± 0.1350 0.4339 ± 0.1327 0.4312 ± 0.1356 0.4350 ± 0.1427 0.4760 ± 0.1102 0.4736 ± 0.1286
sonar 0.4856 ± 0.0890 0.5085 ± 0.1087 0.5085 ± 0.1087 0.5027 ± 0.0989 0.4805 ± 0.0920 0.5161 ± 0.1172 0.3349 ± 0.1109 0.4629 ± 0.0783
glass-id 0.4360 ± 0.0585 0.4504 ± 0.0608 0.4286 ± 0.0604 0.4381 ± 0.0594 0.4371 ± 0.0583 0.4170 ± 0.0587 0.3654 ± 0.0546 0.4199 ± 0.0650
new-thyroid 0.2554 ± 0.0991 0.2554 ± 0.0991 0.2554 ± 0.0991 0.2554 ± 0.0991 0.2554 ± 0.0991 0.2554 ± 0.0991 0.2221 ± 0.0850 0.2262 ± 0.0710
audio 0.5212 ± 0.0855 0.5168 ± 0.0663 0.5175 ± 0.0660 0.5151 ± 0.0803 0.5139 ± 0.0809 0.5136 ± 0.0672 0.4639 ± 0.0606 0.5294 ± 0.0939
hungarian 0.3895 ± 0.0711 0.3882 ± 0.0740 0.3816 ± 0.0684 0.3855 ± 0.0610 0.3870 ± 0.0548 0.3778 ± 0.0628 0.3506 ± 0.0845 0.3917 ± 0.0684
heart-disease-c 0.4177 ± 0.0861 0.4203 ± 0.0881 0.4159 ± 0.0778 0.4171 ± 0.0820 0.4152 ± 0.0810 0.3874 ± 0.0692 0.3605 ± 0.0844 0.4135 ± 0.0989
haberman 0.4433 ± 0.0759 0.4299 ± 0.0756 0.4299 ± 0.0756 0.4280 ± 0.0743 0.4280 ± 0.0743 0.4283 ± 0.0728 0.4402 ± 0.0820 0.4416 ± 0.0776
primary-tumor 0.7280 ± 0.0579 0.7272 ± 0.0574 0.7264 ± 0.0610 0.7272 ± 0.0574 0.7266 ± 0.0580 0.7258 ± 0.0572 0.6972 ± 0.0585 0.7250 ± 0.0589
ionosphere 0.2573 ± 0.1077 0.2616 ± 0.0991 0.2654 ± 0.0981 0.2596 ± 0.1044 0.2452 ± 0.0947 0.2638 ± 0.0941 0.2841 ± 0.0724 0.2434 ± 0.1047
dermatology 0.1826 ± 0.0695 0.1792 ± 0.0745 0.1786 ± 0.0719 0.1786 ± 0.0633 0.1878 ± 0.0793 0.1576 ± 0.0593 0.1145 ± 0.0617 0.1521 ± 0.0784
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Table A2. Cont.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

horse-colic 0.4289 ± 0.0672 0.3829 ± 0.0585 0.3714 ± 0.0569 0.3746 ± 0.0593 0.3764 ± 0.0587 0.3879 ± 0.0520 0.4029 ± 0.0709 0.4185 ± 0.0597
house-votes-84 0.2181 ± 0.0792 0.2337 ± 0.0803 0.2337 ± 0.0803 0.2161 ± 0.0663 0.2123 ± 0.0789 0.2115 ± 0.0686 0.2016 ± 0.0736 0.2235 ± 0.0721
cylinder-bands 0.4405 ± 0.0420 0.4407 ± 0.0282 0.4393 ± 0.0280 0.4365 ± 0.0278 0.4423 ± 0.0281 0.4436 ± 0.0246 0.3656 ± 0.0451 0.4312 ± 0.0590
chess 0.2594 ± 0.0470 0.2589 ± 0.0477 0.2590 ± 0.0475 0.2613 ± 0.0495 0.2597 ± 0.0479 0.2590 ± 0.0475 0.2855 ± 0.0485 0.2671 ± 0.0384
syncon 0.1602 ± 0.0688 0.1608 ± 0.0807 0.1608 ± 0.0807 0.1651 ± 0.0748 0.1557 ± 0.0862 0.1617 ± 0.0800 0.1287 ± 0.0448 0.1271 ± 0.0686
balance-scale 0.3971 ± 0.0186 0.3971 ± 0.0186 0.3971 ± 0.0186 0.3971 ± 0.0186 0.3971 ± 0.0186 0.3971 ± 0.0186 0.3999 ± 0.0234 0.4014 ± 0.0200
soybean 0.2014 ± 0.0341 0.2139 ± 0.0365 0.2062 ± 0.0347 0.1914 ± 0.0294 0.1945 ± 0.0337 0.1828 ± 0.0265 0.2224 ± 0.0402 0.2206 ± 0.0436
credit-a 0.3704 ± 0.0443 0.3404 ± 0.0242 0.3377 ± 0.0396 0.3386 ± 0.0314 0.3371 ± 0.0334 0.3473 ± 0.0307 0.3164 ± 0.0387 0.3692 ± 0.0419
breast-cancer-w 0.1928 ± 0.0618 0.1877 ± 0.0544 0.1931 ± 0.0595 0.1794 ± 0.0566 0.1830 ± 0.0475 0.1746 ± 0.0527 0.1778 ± 0.0879 0.1951 ± 0.0461
pima-ind-diabetes 0.4225 ± 0.0442 0.4142 ± 0.0496 0.4142 ± 0.0496 0.4116 ± 0.0516 0.4114 ± 0.0501 0.4079 ± 0.0495 0.4071 ± 0.0438 0.4212 ± 0.0494
vehicle 0.4638 ± 0.0458 0.4691 ± 0.0389 0.4691 ± 0.0389 0.4706 ± 0.0387 0.4634 ± 0.0448 0.4611 ± 0.0425 0.4653 ± 0.0343 0.4637 ± 0.0433
anneal 0.1813 ± 0.0366 0.1813 ± 0.0366 0.1813 ± 0.0366 0.1813 ± 0.0366 0.1813 ± 0.0366 0.1813 ± 0.0366 0.2311 ± 0.0373 0.1815 ± 0.0330
tic-tac-toe 0.4023 ± 0.0269 0.4023 ± 0.0269 0.4023 ± 0.0269 0.4023 ± 0.0269 0.4023 ± 0.0269 0.4023 ± 0.0269 0.3995 ± 0.0212 0.4050 ± 0.0252
vowel 0.2316 ± 0.0407 0.2232 ± 0.0390 0.2232 ± 0.0390 0.2305 ± 0.0405 0.2366 ± 0.0481 0.2232 ± 0.0390 0.2593 ± 0.0347 0.4182 ± 0.0185
german 0.4389 ± 0.0476 0.4380 ± 0.0389 0.4374 ± 0.0416 0.4348 ± 0.0429 0.4385 ± 0.0354 0.4368 ± 0.0339 0.4147 ± 0.0305 0.4333 ± 0.0392
led 0.5000 ± 0.0376 0.5000 ± 0.0376 0.5000 ± 0.0376 0.5000 ± 0.0376 0.5000 ± 0.0376 0.5000 ± 0.0376 0.4970 ± 0.0364 0.4991 ± 0.0375
contraceptive-mc 0.5955 ± 0.0148 0.5970 ± 0.0131 0.5957 ± 0.0112 0.5969 ± 0.0132 0.5955 ± 0.0122 0.5965 ± 0.0123 0.5938 ± 0.0183 0.5923 ± 0.0164
yeast 0.6204 ± 0.0226 0.6204 ± 0.0226 0.6205 ± 0.0195 0.6204 ± 0.0226 0.6204 ± 0.0226 0.6201 ± 0.0188 0.6063 ± 0.0195 0.6144 ± 0.0201
volcanoes 0.5313 ± 0.0155 0.5324 ± 0.0146 0.5324 ± 0.0146 0.5322 ± 0.0144 0.5322 ± 0.0144 0.5324 ± 0.0146 0.5284 ± 0.0184 0.5297 ± 0.0168
car 0.2405 ± 0.0171 0.2405 ± 0.0171 0.2405 ± 0.0171 0.2405 ± 0.0171 0.2405 ± 0.0171 0.2405 ± 0.0171 0.3065 ± 0.0151 0.2404 ± 0.0170
segment 0.2215 ± 0.0255 0.2216 ± 0.0254 0.2216 ± 0.0254 0.2216 ± 0.0254 0.2216 ± 0.0254 0.2218 ± 0.0254 0.2069 ± 0.0143 0.2166 ± 0.0256
hypothyroid 0.1528 ± 0.0262 0.1448 ± 0.0195 0.1442 ± 0.0187 0.1467 ± 0.0187 0.1445 ± 0.0195 0.1447 ± 0.0192 0.1636 ± 0.0277 0.1517 ± 0.0268
splice-c4.5 0.1917 ± 0.0248 0.1670 ± 0.0150 0.1670 ± 0.0150 0.1650 ± 0.0153 0.1638 ± 0.0160 0.1640 ± 0.0141 0.1720 ± 0.0211 0.1944 ± 0.0245
kr-vs-kp 0.2358 ± 0.0223 0.2249 ± 0.0218 0.2230 ± 0.0214 0.2244 ± 0.0229 0.2206 ± 0.0215 0.2220 ± 0.0200 0.2658 ± 0.0155 0.2159 ± 0.0229
abalone 0.5635 ± 0.0080 0.5635 ± 0.0080 0.5635 ± 0.0080 0.5635 ± 0.0080 0.5634 ± 0.0079 0.5635 ± 0.0080 0.5576 ± 0.0077 0.5638 ± 0.0081
spambase 0.2377 ± 0.0187 0.2370 ± 0.0194 0.2366 ± 0.0196 0.2374 ± 0.0196 0.2367 ± 0.0197 0.2365 ± 0.0196 0.2282 ± 0.0212 0.2383 ± 0.0206
phoneme 0.5048 ± 0.0133 0.4789 ± 0.0104 0.4789 ± 0.0104 0.4789 ± 0.0104 0.4789 ± 0.0104 0.4799 ± 0.0101 0.4397 ± 0.0123 0.4385 ± 0.0127
wall-following 0.3113 ± 0.0146 0.2598 ± 0.0121 0.2598 ± 0.0121 0.2602 ± 0.0142 0.2658 ± 0.0149 0.2661 ± 0.0121 0.3677 ± 0.0136 0.2968 ± 0.0145
page-blocks 0.2127 ± 0.0211 0.2095 ± 0.0198 0.2095 ± 0.0198 0.2127 ± 0.0211 0.2141 ± 0.0210 0.2095 ± 0.0198 0.2024 ± 0.0110 0.2168 ± 0.0173
optdigits 0.1919 ± 0.0125 0.1924 ± 0.0127 0.1924 ± 0.0127 0.1924 ± 0.0127 0.1931 ± 0.0133 0.1922 ± 0.0129 0.1542 ± 0.0236 0.1968 ± 0.0162
satellite 0.3396 ± 0.0173 0.3403 ± 0.0165 0.3403 ± 0.0165 0.3407 ± 0.0172 0.3424 ± 0.0177 0.3406 ± 0.0176 0.3307 ± 0.0161 0.3479 ± 0.0195
musk2 0.2946 ± 0.0144 0.2961 ± 0.0110 0.2826 ± 0.0172 0.2982 ± 0.0115 0.2998 ± 0.0121 0.2762 ± 0.0159 0.3837 ± 0.0115 0.2847 ± 0.0153
mushrooms 0.0083 ± 0.0082 0.0083 ± 0.0082 0.0083 ± 0.0082 0.0083 ± 0.0082 0.0036 ± 0.0035 0.0083 ± 0.0082 0.0112 ± 0.0098 0.0188 ± 0.0155
thyroid 0.4156 ± 0.0103 0.4156 ± 0.0103 0.4158 ± 0.0106 0.4156 ± 0.0103 0.4156 ± 0.0103 0.4156 ± 0.0103 0.4334 ± 0.0109 0.4193 ± 0.0127
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Table A2. Cont.

Dataset TAN STANMI STANSU STANJMI STANCMIM STANMRMR AODE KDB1

pendigits 0.2140 ± 0.0130 0.2140 ± 0.0130 0.2140 ± 0.0130 0.2127 ± 0.0135 0.2116 ± 0.0133 0.2138 ± 0.0134 0.1420 ± 0.0047 0.2060 ± 0.0120
sign 0.4736 ± 0.0058 0.4736 ± 0.0058 0.4736 ± 0.0058 0.4736 ± 0.0058 0.4736 ± 0.0058 0.4736 ± 0.0058 0.4835 ± 0.0042 0.4911 ± 0.0073
nursery 0.2194 ± 0.0068 0.2194 ± 0.0068 0.2194 ± 0.0068 0.2194 ± 0.0068 0.2194 ± 0.0068 0.2194 ± 0.0068 0.2510 ± 0.0047 0.2193 ± 0.0068
magic 0.3437 ± 0.0068 0.3438 ± 0.0072 0.3438 ± 0.0072 0.3437 ± 0.0068 0.3437 ± 0.0068 0.3435 ± 0.0072 0.3505 ± 0.0079 0.3547 ± 0.0070
letter-recog 0.4120 ± 0.0085 0.4120 ± 0.0085 0.4120 ± 0.0085 0.4120 ± 0.0085 0.4120 ± 0.0085 0.4120 ± 0.0085 0.3755 ± 0.0092 0.4106 ± 0.0101
adult 0.3354 ± 0.0040 0.3322 ± 0.0037 0.3322 ± 0.0037 0.3339 ± 0.0035 0.3353 ± 0.0038 0.3335 ± 0.0040 0.3476 ± 0.0035 0.3345 ± 0.0037
shuttle 0.0907 ± 0.0046 0.0865 ± 0.0046 0.0865 ± 0.0046 0.0865 ± 0.0046 0.0865 ± 0.0046 0.0865 ± 0.0046 0.0944 ± 0.0033 0.1036 ± 0.0037
connect-4 0.4435 ± 0.0031 0.4435 ± 0.0031 0.4435 ± 0.0031 0.4435 ± 0.0031 0.4435 ± 0.0031 0.4435 ± 0.0031 0.4506 ± 0.0018 0.4480 ± 0.0022
waveform 0.1597 ± 0.0018 0.1597 ± 0.0018 0.1597 ± 0.0018 0.1595 ± 0.0021 0.1596 ± 0.0018 0.1593 ± 0.0018 0.1528 ± 0.0020 0.1684 ± 0.0051
localization 0.6321 ± 0.0014 0.6321 ± 0.0014 0.6321 ± 0.0014 0.6321 ± 0.0014 0.6321 ± 0.0014 0.6321 ± 0.0014 0.6520 ± 0.0010 0.6501 ± 0.0012
census-income 0.2247 ± 0.0025 0.2134 ± 0.0019 0.2104 ± 0.0019 0.2090 ± 0.0018 0.2119 ± 0.0018 0.2043 ± 0.0023 0.2932 ± 0.0020 0.2219 ± 0.0024
poker-hand 0.4987 ± 0.0006 0.4987 ± 0.0006 0.4987 ± 0.0006 0.4987 ± 0.0006 0.4987 ± 0.0006 0.4987 ± 0.0006 0.5392 ± 0.0006 0.4987 ± 0.0005
donation 0.0081 ± 0.0009 0.0081 ± 0.0009 0.0081 ± 0.0009 0.0081 ± 0.0009 0.0081 ± 0.0009 0.0081 ± 0.0009 0.0120 ± 0.0005 0.0082 ± 0.0009
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