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Abstract: We investigate four predator–prey Rosenzweig–MacArthur models in which the prey
exhibit herd behaviour and only the individuals on the edge of the herd are subjected to the predators’
attacks. The key concept is the herding index, i.e., the parameter defining the characteristic shape
of the herd. We derive the population equations from the individual state transitions using the
mechanistic approach and time scale separation method. We consider one predator and one prey
species, linear and hyperbolic responses and the occurrence of predators’ intraspecific competition.
For all models, we study the equilibria and their stability and we give the bifurcation analysis.
We use standard numerical methods and the software Xppaut to obtain the one-parameter and
two-parameter bifurcation diagrams.

Keywords: predator–prey model; herd behaviour; herd shape; linear functional response; Holling
type II functional response; bifurcation analysis

1. Introduction

Modelling herd behaviour of a population with ordinary differential equations,
via a spatial factor with herding index (see Laurie et al. [1]), avoids an explicit spa-
tial representation.

Already in 1987, Liu and colleagues [2] used the herding index, represented by an
exponent, to give a non-linear incidence rate in epidemiological models, and later this
concept found several applications in the same context [3,4].

The herding index, α in this article, also appeared in predator–prey dynamics with
prey grouped in herd. In particular, the first studies comprised only the case α = 1/2 by
assuming a two-dimensional herd representation [5,6], while later works allowed for a fixed
herding index in the range [1/2, 1) [6,7]. The concept of herding index was further extended
to models other than ordinary differential equations, such as time delay equations, [8], and
fractional differential equations [9,10].

In predator–prey models, the assumption that the prey gather in a herd has a direct
effect on the shape of the functional response, as the encounter rate of the predator and
prey individuals increases with the prey density according to the herding index. Therefore,
in the simple case of no prey handling, we obtain the herd-linear functional response.
More complex is the herd-Holling type II functional response, already used by Djilali in [8]
in a time delay differential model, which we derive in this paper from a system of fast
time-scale state transitions.

The mechanistic derivation of the functional response follows from the time-scale
separation method that has been recently formalised by Berardo et al. [11] and previously
used in the works by Geritz and Gyllenberg [12–14]. In particular, analogously to Metz and
Diekmann [15], we assume the predators in two states, searching and handling, and model
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the state transitions on a fast time-scale compared to other processes. The equilibrium
distribution of the predators between the two states depends on the density of the prey
available for capture on the edge of the herd and, as a consequence, the functional response
varies with the prey density in a similar way as the Holling type II.

Finally, in this paper we study four different predator–prey–herd models. All the
possible combinations arise from the following situations: first of all, assuming that the
prey gather in herds, secondly, assuming that the predator can be specialist, i.e., feeding
only on one species, or generalist, i.e., feeding on multiple resources, and lastly, considering
two functional responses, the herd-linear and herd-Holling type II functional responses.
The aim of the paper is to derive their mathematical formulation from the individual-level
state transitions, and compare the models’ dynamics in terms of equilibria, stability and
bifurcation diagrams.

The paper is organised as follows. In Section 2, we introduce the mechanistic deriva-
tion of the herd-Holling type II functional response for the predator–prey dynamics. In
Section 3, we give partial results on the equilibrium and linear stability analysis, and the
bifurcation diagrams obtained with numerical methods. In Section 4, we outline the main
outcomes and draw our conclusions.

2. Materials and Methods
Mechanistic Derivation of the Functional Response for the Predator–Prey Dynamics

We model the scenario where a prey species x and a predator species y interact in
the following way. The prey gather in herds and the predators are partitioned among
searching individuals yS and handling individuals yH . We define the handling time as the
time necessary for killing, eating and digesting the prey, as well as resting and giving birth.

Suppose that there is one prey herd and multiple predator individuals. Assume
further that

(i) the geometric shape of the herd is fixed, e.g., a circle in two dimensions or a ball in
three dimensions,

(ii) the density of individuals inside the shape stays constant independently of the size of
the herd,

(iii) the predators can attack the prey on the edge of the herd or in a small boundary layer
of the herd.

Therefore, the number of individuals exposed to predation is proportional to xα, where
the exponent α is defined as herding index [1] and depends only on the characteristic shape
of the herd. Examples are α = 1

2 for a circle in two dimensions or α = 2
3 for a sphere in

three dimensions. Intermediate values of α would model fractal or multi connected sets;
such exponents are investigated in [7].

Let us assume that the attack rate for a searching predator is axα, i.e., the per capita
attack rate is proportional to the number of available prey according to mass action.
Thus, the time until prey capture becomes 1

axα . When we exclude handling, the predator
functional response is linear and takes the form f (x) = axα (herd-linear functional response).
Alternatively, let h denote the handling time, then the time between two successive catches
by the same predator is 1

axα+h .
All in all, consider the following fast processes

yS axα

−−→ yH the predator meets the prey and the prey is caught, (1)

yH h−1
−−→ yS the predator stops handling.

The above interactions were first used by Metz and Diekmann [15] to mechanistically
derive the Holling type II functional response and what differs here is the exponent α in
the encounter rate axα, defining predation on the edge of the herd. We apply the time-scale
separation method between fast and slow processes (for details on this modelling approach
we refer to [11]). In particular, birth and death happen on a slower time scale. By converting
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the individual-level processes in (1) into differential equations, considering the rates at
which individuals leave and enter the two subsets yS and yH , the equations for the fast-time
dynamics reduce to

dyS

dt
= −axαyS + h−1yH , (2)

dyH

dt
= +axαyS − h−1yH , (3)

where we recall that a is the predator’s attack rate and h denotes the handling time as
defined in the individual-level processes above. The total population density y is constant

on the fast time scale (as yS and yH verify dy
dt = dyS

dt + dyH

dt = 0), therefore, we can reduce
the system to one equation by using the conservation law y = yS + yH . By using this law
and solving the equilibrium equation for yS, i.e., setting the right hand side of (2) and (3) to
zero, we obtain a unique quasi-steady state for the fast dynamics

yS =
y

1 + ahxα
, yH = y− yS. (4)

By definition, the corresponding functional response is given by the average number

of prey caught by a searching predator per unit of time, i.e., f (x) = axαyS

y , and, plugging

the expression for yS at the quasi-equilibrium in (4), we obtain

f (x) =
axα

1 + ahxα
. (5)

We name the functional response in (5) the herd-Holling type II functional response. Note
that when α = 1 we recover the Holling type II functional response and when α = 2 we
obtain the Holling type III functional response. However, in the present context with prey
herd geometry, we necessarily have α ∈ (0, 1). In this case, the shape of the functional
response is similar to the Holling type II functional response as it is concave and saturating,
but the behaviour near the origin is different as it is infinitely steep.

3. Results

In this section we present the theoretical and numerical results for the following the
Rosenzweig and MacArthur [16] models with functional responses derived in Section 2:

(i) specialist predator and herd-linear functional response f (x) = axα;
(ii) generalist predator and herd-linear functional response f (x) = axα;
(iii) specialist predator and herd-Holling type II like functional response f (x) = axα

1+ahxα ;
(iv) generalist predator and herd-Holling type II like functional response f (x) = axα

1+ahxα .

The analysis is organised as follows. First, we check the unboundedness of the prey
and predator populations, we derive the dimensionless version of the equations, we
compute the equilibrium points and we study their stability by applying linear stability
analysis. Sections 3.1–3.4 cover this first part of the study and give the analytical results for
each of the models above. Finally, in Section 3.5, we use standard numerical methods and
the software Xppaut to give the one-parameter and two-parameter bifurcation diagrams.

3.1. Predator–Prey Dynamics with Specialist Predator and Herd-Linear Functional Response:
Boundedness, Equilibrium Points and Stability Analysis

We study the dynamics of the model by Rosenzweig and MacArthur [16] with herd-
linear response f (x) = axα, conversion factor e of captured prey into new predators, per
capita natural mortality rate m for the predators and logistic growth g(x) = rx

(
1− x

K
)

for
the prey, where r denotes their net growth rate and K their carrying capacity,
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dx
dt

= rx
(

1− x
K

)
− axαy, (6)

dy
dt

= eaxαy−my. (7)

We show that the populations do not grow unbounded (we refer to the work by Bulai
and Venturino in [7]). We define with ψ(t) = x(t) + y(t) the total population density and,
summing up the equations for the prey and predator populations, we obtain

dψ(t)
dt

= rx
(

1− x
K

)
− (1− e)axαy−mψ(t) + mx. (8)

We collect dψ(t)
dt + mψ(t) on the left-hand side and drop the term (1− e)axαy > 0 to obtain

dψ(t)
dt

+ mψ(t) ≤ max
x

{
rx
(

1− x
K

)
+ mx

}
. (9)

The value of maxx
{

rx
(
1− x

K
)
+ mx

}
is at x = (m+r)K

2r and, by substituting this, we obtain

dψ(t)
dt

+ mψ(t) ≤ K(r + m)2

4r
≡ M̄. (10)

We solve the equation for ψ(t) and get the upper bound for ψ(t), as well as x(t) and y(t)

ψ(t) = e−mt
(

ψ(0)− M̄
m

)
+

M̄
m
≤ max

{
ψ(0),

M̄
m

}
. (11)

To reduce the number of parameters, we introduce the dimensionless quantities x̃ = x
K ,

ỹ = y
K , t̃ = rt, ã = aKα

r , m̃ = m
r . Applying the substitutions and dropping the tildes, we

obtain the non-dimensional system

dx
dt

= x(1− x)− axαy, (12)

dy
dt

= eaxαy−my, (13)

with g(x) = x(1− x) and f (x) = axα.
The equilibria follow by setting the equations in (12) and (13) to zero. We obtain the

trivial equilibrium points of the system

E0 = (0, 0), E1 = (1, 0) (14)

and the interior equilibrium E∗ = (x∗, y∗) with full expression below

E∗ =

((m
ae

) 1
α ,

1
a

(m
ae

) 1−α
α

[
1−

(m
ae

) 1
α

])
. (15)

Note that the interior equilibrium is positive if m
ae < 1.

We use the Jacobian matrix of the system in (12) and (13) to study the stability of
the equilibria

J(x, y) =
[

1− 2x− axα−1αy −axα

aexα−1αy aexα −m

]
. (16)

The Jacobian evaluated at E0 has possibly a singularity, but the instability of this point
can be assessed looking back at the original Equations (12) and (13). With y = 0, and x
near 0, the first equation behaves like x′ ≈ rx, so that x grows. Conversely, on x = 0 the
second equation is y′ ≈ −my and y → 0. Hence, E0 is a saddle. When evaluated at the
equilibrium E1, the determinant of the Jacobian matrix is m− ae and is positive if m

ae > 1,
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that is, when the interior equilibrium is not feasible (i.e., does not exist or is negative).
Under the same condition, the trace of the Jacobian at E1, ae−m− 1, is negative and the
equilibrium is stable.

For simplicity, we rewrite the Jacobian matrix evaluated at the interior equilibrium
E∗ = (x∗, y∗) in terms of the functions f (x) and g(x)

J(x∗, y∗) =
[

g′(x∗)− f ′(x∗)y∗ − f (x∗)
e f ′(x∗)y∗ e f (x∗)−m

]
=

[
f (x∗)

(
g(x∗)
f (x∗)

)′
−m

e

e f ′(x∗)y∗ 0

]
. (17)

The determinant of the matrix in (17) is m f ′(x∗)y∗ > 0 (since the functional response
is an increasing function of the prey density), therefore the stability of the interior equi-

librium depends on the sign of the trace f (x∗)
(

g(x∗)
f (x∗)

)′
, and, in particular, on the slope

of the prey zero-growth isocline
(

g(x∗)
f (x∗)

)′
= x−α [x(α−2)+1−α]

a

∣∣∣
x=x∗

(see also Gause [17] and

Gause et al. [18]). We obtain that the equilibrium E∗ is stable if m
ae >

(
α−1
α−2

)α
∈ (0, 1) (check

Table 1 for a summary of the feasibility and stability conditions).
We conclude that a transcritical bifurcation occurs at m

ae = 1, where the interior
equilibrium exchanges stability with the predator-free equilibrium. A Hopf bifurcation

appears at m
ae =

(
α−1
α−2

)α
, as the eigenvalues of the community matrix become purely

imaginary and the system converges to a stable limit cycle.

Table 1. Conditions for feasibility and stability of the equilibria of the system in (12) and (13). The
trivial equilibrium E0 is always unstable. TB: transcritical bifurcation. HB: Hopf bifurcation.

Condition E1 E∗ Bifurcation
m
ae > 1 asympt. stable not feasible
m
ae = 1 TB(

α−1
α−2

)α
< m

ae < 1 unstable asympt. stable
m
ae =

(
α−1
α−2

)α
HB

0 < m
ae <

(
α−1
α−2

)α
unstable unstable

3.2. Predator–Prey Dynamics with Generalist Predator and Herd-Linear Functional Response:
Boundedness, Equilibrium Points and Stability Analysis

We study the dynamics of the model by Rosenzweig and MacArthur [16] with herd-
linear response f (x) = axα, conversion factor e of captured prey into new predators and
per capita natural mortality rate m for the predators. We assume logistic growth for both the
prey and the predator species, gx(x) = rx

(
1− x

Kx

)
and gy(x) = sx

(
1− x

Ky

)
, respectively,

where r is the net growth rate of the prey and Kx their carrying capacity, while s denotes
the predators’ reproduction rate, i.e., not discounted by deaths,

dx
dt

= rx
(

1− x
Kx

)
− axαy, (18)

dy
dt

= sy
(

1− y
Ky

)
+ eaxαy−my. (19)

In this way, the predators are subjected to intraspecific competition, which occurs at rate s
Ky

.
To check that the populations do not grow unbounded, we set ψ(t) = x(t) + y(t) and,

by repeating the steps in Section 3.1, we get the differential equation for the total population
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dψ(t)
dt

+ mψ(t) ≤ max
x,y

{
rx
(

1− x
Kx

)
+ sy

(
1− y

Ky

)
+ mx

}
. (20)

We differentiate the right-hand term with respect to x and y to get the local maximum(
(r+m)

2r Kx, Ky
2

)
. By substitution in the equation above, we obtain

dψ(t)
dt

+ mψ(t) ≤ (r + m)2

4r
Kx +

s
4

Ky ≡ M̄. (21)

Therefore, the solution for the total population reads

ψ(t) = e−mt
(

ψ(0)− M̄
m

)
+

M̄
m
≤ max

{
ψ(0),

M̄
m

}
, (22)

where the upper bound is applicable also for x(t) and y(t).
To obtain the non-dimensional version of the system in (18) and (19), we consider the

dimensionless variables and parameters x̃ = x
Kx

, ỹ = y
Ky

, t̃ = rt, ã =
Ky

K1−α
x r

a, s̃ = s
r , ẽ = Kx

Ky
e,

m̃ = m
r . We drop the tildes and obtain the dimensionless system

dx
dt

= x(1− x)− axαy, (23)

dy
dt

= sy(1− y) + eaxαy−my, (24)

with gx(x) = x(1− x), gy(y) = sy(1− y) and f (x) = axα.
We proceed with computing the equilibria. The trivial equilibria are

E0 = (0, 0), E1 = (1, 0), E2 =
(

0, 1− m
s

)
, (25)

with E2 feasible if m < s. The interior equilibria are given by the intersection of the isoclines

y =
(1− x)x1−α

a
(26)

and
y = 1− m

s
+

ea
s

xα. (27)

Note that the isocline in (26) intersects the x-axis at (0, 0) and (1, 0) and has a maximum
at x = 1−α

2−α < 1
2 for 0 < α < 1, while the isocline in (27) intersects the vertical axis at

(0, 1− m
s ) and is a root function translated by 1− m

s and dilated by ea
s . Therefore, if the

intersection point of the isocline in (27) lies in the positive quadrant, i.e., if m < s, we
find three different configurations for the phase plane: the two isoclines can intersect

at most twice at E∗1 and E∗2 if 1− m
s < 1

a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
, or be tangent at

E∗ =
(

1−α
2−α , 1− m

s + ea
s

(
1−α
2−α

)α)
when 1 − m

s = 1
a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
or never

intersect in x ∈ (0, 1) when 1 − m
s > 1

a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
. The equilibria are

obtained as the positive roots of the curve

φ(x) = 1− m
s
+

ea
s

xα − (1− x)
x1−α

a
(28)

and the non-negativity of y is ensured by the condition

(
m− 1

ea

) 1
α

< x < 1. (29)
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When m > s, the isocline in (27) intersects the vertical axes at y = 1− m
s < 0 and

we find at most one interior equilibrium E∗. We obtain the feasibility condition for E∗ by
imposing that the curve in (27) takes positive values at x = 1, that is, if m < s + ea.

The Jacobian matrix of the system in (23) and (24) is given by

J(x, y) =
[

1− 2x− axα−1αy −axα

aexα−1αy s− 2sy + aexα −m

]
. (30)

The equilibrium E0, restricting the analysis to the trajectories on the coordinate axes, is seen
to be either an unstable node if m < s, or a saddle if m > s. The prey-only equilibrium E1
is a stable node if m > s + ae, otherwise the steady state is an unstable saddle. Under its
feasibility condition m < s, the equilibrium E2 is always an unstable saddle. We summarise
the feasibility and stability conditions studied above in Tables 2 and 3.

We rewrite the Jacobian matrix evaluated at the interior equilibrium in terms of
functions f (x), gx(x) and gy(y):

J(x∗, y∗) =
[

g′x(x∗)− f ′(x∗)y∗ − f (x∗)
e f ′(x∗)y∗ g′y(y) + e f (x∗)−m

]
=

[
f (x∗)

(
gx(x∗)
f (x∗)

)′
− f (x∗)

e f ′(x∗)y∗ −y∗

]
. (31)

The trace and the determinant at the interior equilibrium are given by

trJ(x∗, y∗) = f (x∗)
(

gx(x∗)
f (x∗)

)′
− y∗, (32)

det J(x∗, y∗) = −y∗ f (x∗)
(

gx(x∗)
f (x∗)

)′
+ e f (x∗) f ′(x∗)y∗. (33)

When only one interior equilibrium exists and is positive, the signs of the trace and the
determinant determine its asymptotic stability, more specifically if trJ(x∗, y∗) < 0 and
det J(x∗, y∗) > 0.

It seems rather difficult to obtain more analytical details on the stability of the equilib-
ria and bifurcations for the model in (23) and (24). If possible, a more detailed analysis will
be the topic of a future work.

Table 2. Conditions for the feasibility and stability of the equilibria of the system in (23) and (24).

Condition E0 E1 E2 E∗1 E∗2

m < s unstable unstable unstable See Table 3 See Table 3
s < m < s + ae unstable unstable not feas. stable not feasible

m > s + ae unstable asympt. stable not feasible not feasible not feasible

Table 3. Conditions for feasibility of the interior equilibria of the system in (23) and (24) when m < s.

Condition E∗1 E∗2

1− m
s < 1

a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
feasible feasible

1− m
s = 1

a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
feasible not feasible

1− m
s > 1

a(2−α)

(
1−α
2−α

)1−α
− ea

s

(
1−α
2−α

)α
not feasible not feasible

3.3. Predator–Prey Dynamics with Specialist Predator and Herd-Holling Type II Functional
Response: Boundedness, Equilibrium Points and Stability Analysis

We study the dynamics of the model by Rosenzweig and MacArthur [16] with the
herd-Holling type II functional response f (x) = axα

1+ahxα derived in Section 2, conversion
factor e of captured prey into new predators and per capita natural mortality rate m for the
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predators, logistic growth g(x) = rx
(
1− x

K
)

for the prey, where r denotes their net growth
rate and K their carrying capacity,

dx
dt

= rx
(

1− x
K

)
− axα

1 + ahxα
y, (34)

dy
dt

= e
axα

1 + ahxα
y−my. (35)

The total population ψ(t) = x(t) + y(t) verifies

ψ(t) ≤ max
{

ψ(0),
M̄
m

}
, (36)

with M̄ = K(r+m)2

4r as in Section 3.1.
We obtain the dimensionless version of the model by applying the substitutions x̃ = x

K ,
ỹ = y

K , t̃ = rt, ã = aKα

r , h̃ = rh, m̃ = m
r . We drop the tildes and get the equations

dx
dt

= x(1− x)− axα

1 + ahxα
y, (37)

dy
dt

= e
axα

1 + ahxα
y−my, (38)

with g(x) = x(1− x) and f (x) = axα

1+ahxα .
We compute the equilibria by setting the equations in (37) and (38) to zero. The

trivial equilibria are E0 = (0, 0) and E1 = (1, 0), while the unique interior equilibrium
E∗ = (x∗, y∗) has full expression

E∗ =

((
m

ea−mah

) 1
α

,
e
m

x∗(1− x∗)

)
(39)

and exists and is positive if and only if mah + m < ea.
The Jacobian matrix corresponding to the system in (37) and (38) is given by

J(x, y) =

1− 2x− aαxα−1

(1+ahxα)2 y axα

1+ahxα

e aαxα−1

(1+ahxα)2 y e axα

1+ahxα −m

. (40)

The origin is unstable, being a saddle, a fact that is shown restricting the system to the
coordinate axes, as previously done for the system (12) and (13). The equilibrium E1 is
stable if and only if ea < mah + m (under this condition the determinant of the Jacobian
matrix at the equilibrium is positive and the trace is negative). The prey-only equilibrium
changes its stability at ea = mah + m when a transcritical bifurcation occurs. We can use
the same formulation as in (17) for the Jacobian evaluated at the interior equilibrium, which
for convenience we reproduce here

J(x∗, y∗) =
[

g′(x∗)− f ′(x∗)y∗ − f (x∗)
e f ′(x∗)y∗ e f (x∗)−m

]
=

[
f (x∗)

(
g(x∗)
f (x∗)

)′
−m

e

e f ′(x∗)y∗ 0

]
. (41)

As the determinant of the Jacobian matrix is always positive, the stability of the interior
equilibrium depends on the sign of the trace, in particular on the slope of the predator

isocline,
(

g(x∗)
f (x∗)

)′
= x−α [x(α−2)+1−α+ahxα(1−2x)]

a

∣∣∣
x=x∗

. For the same reason as in Section 3.1,

the system in (37) and (38) undergoes a Hopf bifurcation when
(

g(x∗)
f (x∗)

)′
= 0 and converges

to a stable limit cycle for
(

g(x∗)
f (x∗)

)′
> 0, otherwise it converges to the interior equilibrium E∗.

In Table 4 we give a summary of the feasibility and stability conditions of the equilibria.
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Table 4. Conditions for feasibility and stability of the equilibria of the system in (37) and (38). TB:
transcritical bifurcation. HB: Hopf bifurcation.

Condition E0 E1 E∗ Bifurcation

ea < mah + m unstable asympt. stable not feasible
ea = mah + m TB

ea > mah + m,
(

g(x∗)
f (x∗)

)′
< 0 unstable unstable asympt. stable

ea > mah + m,
(

g(x∗)
f (x∗)

)′
= 0 HB

ea > mah + m,
(

g(x∗)
f (x∗)

)′
> 0 unstable unstable unstable

3.4. Predator–Prey Dynamics with Generalist Predator and Herd-Holling Type II Functional
Response: Boundedness, Equilibrium Points and Stability Analysis

We study the dynamics of the model by Rosenzweig and MacArthur [16] with the
herd-Holling type II functional response f (x) = axα

1+ahxα derived in Section 2, conversion
factor e of captured prey into new predators and per capita natural mortality rate m for
the predators. We assume logistic growth for both the prey and the predator species,
gx(x) = rx

(
1− x

Kx

)
and gy(x) = sx

(
1− x

Ky

)
, respectively, where r is the net growth rate

of the prey and Kx their carrying capacity, while s denotes the predators’ reproduction rate,

dx
dt

= rx
(

1− x
Kx

)
− axα

1 + ahxα
y, (42)

dy
dt

= sy
(

1− y
Ky

)
+ e

axα

1 + ahxα
y−my. (43)

Once again, note the second term in the predators’ equation, whose coefficient s
Ky

models predators intraspecific competition.
The boundedness of the populations is ensured by the condition on the total popula-

tion density ψ(t) = x(t) + y(t)

ψ(t) ≤ max
{

ψ(0),
M̄
m

}
, (44)

with M̄ = (r+m)2

4r Kx +
s
4 Ky as in Section 3.1.

We use the dimensionless quantities x̃ = x
Kx

, ỹ = y
Ky

, t̃ = rt, ã =
Ky

K1−α
x r

a, h̃ = r Kx
Ky

h,

s̃ = s
r , ẽ = Kx

Ky
e, m̃ = m

r to obtain the dimensionless system of equations

dx
dt

= x(1− x)− axα

1 + ahxα
y, (45)

dy
dt

= sy(1− y) + e
axα

1 + ahxα
y−my, (46)

with gx(x) = x(1− x), gy(y) = sy(1− y) and f (x) = axα

1+ahxα .
The corresponding trivial equilibria correspond to the ones in Section 3.2 and are

given by

E0 = (0, 0), E1 = (1, 0), E2 =
(

0, 1− m
s

)
, (47)

with E2 being feasible if m < s. The interior equilibria are given by the intersection of
the isoclines

y =
x(1− x)(1 + ahxα)

axα
(48)
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and
y = 1− m

s
+

eaxα

s(1 + ahxα)
. (49)

The isocline in (48) intersects the horizontal axis at (0, 0) and (1, 0), while the isocline
in (49) intersects the vertical axis at (0, 1− m

s ). As for the model with generalist predator
and linear functional response in Section 3.2, we may expect that, under some conditions,
the system admits two interior equilibria. However, given the formulation of the isoclines
in (48) and (49), it seems difficult to find explicit analytical results and we refer to the
next Section 3.5 for more details on the interior equilibria and their feasibility and stability
conditions.

We obtain the Jacobian matrix to check the stability of the trivial equilibria:

J(x, y) =

1− 2x− aαxα−1

(1+ahxα)2 y axα

1+ahxα

e aαxα−1

(1+ahxα)2 y s− 2sy + e axα

1+ahxα −m

. (50)

Again, restricting the analysis to the trajectories on the coordinate axes, we obtain that
E0 is an unstable node for m < s, or a saddle if m > s. We find that the origin E0 is an
unstable saddle, as well as the predator-only equilibrium E2. The prey-only equilibrium E1
is a stable node if m > s + ea

1+ah , an unstable saddle otherwise. We give a summary of these
results in Table 5.

Table 5. Conditions for feasibility and stability of the trivial equilibria of the system in (45) and (46).

Condition E0 E1 E2

m < s + ea
1+ah unstable unstable unstable

m > s + ea
1+ah ,

(
g(x∗)
f (x∗)

)′
< 0 unstable asympt. stable unstable

3.5. One-Parameter and Two-Parameter Bifurcation Diagrams

In this section, we proceed with the bifurcation analysis. We give the one-parameter
bifurcation diagrams and vary either the value of the predator mortality rate, m, or the
herding index, α, when possible. Additionally, we obtain the two-parameter bifurcation
diagrams with respect to the parameter pairs (m, ?) or (α, ?), where ? equals one of the
other parameters in the model. Note that in the numerical simulations we use the model
and parameters prior to non-dimensionalisation, to obtain a complete analysis with respect
to all the model parameters.

We first study the predator–prey model with specialist predator and herd-linear
functional response. In the one-parameter bifurcation plots, we fix the parameter values of
the model in (6) and (7) as in Table 6 and we call it the nominal set (hypothetical values).

Table 6. Nominal set of parameter values for the model in (6) and (7).

Parameter Description Value

r prey net reproduction rate 1
K prey carrying capacity 5
a predation rate 1
α herd exponent 0.7
e conversion factor 0.5
m natural mortality rate (predators) 1

In Figure 1 we give the one-parameter bifurcation diagrams with respect to the natural
mortality rate of the predators, m. Note that when m = 0.5526, the system undergoes
a supercritical Hopf bifurcation (HB) and a stable limit cycle appears. At m = 1.543, a
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transcritical bifurcation occurs, where the coexistence equilibrium loses its stability and the
predator-free equilibrium becomes stable.
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Figure 1. One-parameter bifurcation diagram with respect to m. Left panel: the prey population
dynamics. Right panel: the predator population dynamics. Thick lines: stable equilibria; dashed
lines: unstable equilibria; HB: supercritical Hopf bifurcation point where a stable limit cycle arises
with maximum amplitude given by the amplitude of the HB (circles); TB: transcritical bifurcation
point where the coexistence equilibrium exchanges its stability with the prey-only equilibrium. The
remaining parameter values are as in Table 6.

To complete the analysis, in Figure 2 we have plotted all the possible two-parameter
bifurcation diagrams for (m, ?), with ? = a, K, a, α or e. Note that the HB curve appears in
all two-parameter bifurcation diagrams, but only in the plots where we vary (m, K), (m, a)
and (m, e) it occurs for every value of m. When we let r vary, the HB curve is present only
at m = 0.5526 (Figure 2, top left); similarly, when we allow α to change, the HB occurs only
for m ≤ 0.5 (Figure 2, bottom left).
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Figure 2. Two-parameter bifurcation diagrams with respect to m and, from top-left to bottom-right,
r, K, a, α and e. Thick line: HB curve; dashed line: transcritical bifurcation curve. E∗ is the coexistence
equilibrium and E1 the prey-only equilibrium. The remaining parameter values are as in Table 6.

As a second example, we analyse the predator–prey dynamics with generalist predator
and herd-linear functional response. In Table 7 we give the nominal set of parameter values
for the model in (18) and (19).
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Table 7. Nominal set of parameter values for the model in (18) and (19).

Parameter Description Value

r prey net reproduction rate 0.5
Kx prey carrying capacity 5
a predation rate 1
α herd exponent 0.7
s predator reproduction rate 0.5

Ky predator carrying capacity 5
e conversion factor 0.5
m natural mortality rate (predators) 1

In Figure 3 we give the one-parameter bifurcation diagram with respect to the herd
exponent, α. Here a supercritical HB occurs at α = 0.5995 and a subcritical HB appears at
α = 0.1476.
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Figure 3. One-parameter bifurcation diagram with respect to α. Left panel: the prey population
dynamics. Right panel: the predator population dynamics. Thick lines: stable equilibria; dashed
lines: unstable equilibria; SHB: supercritical Hopf bifurcation point where a stable limit cycle arises
with maximum amplitude given by the amplitude of the SHB (circles); UHB: subcritical Hopf
bifurcation point, where an unstable limit cycle arises with maximum amplitude given by the
amplitude of the UHB (pluses); TB: transcritical bifurcation point where the coexistence equilibrium
exchanges its stability with the prey-only equilibrium. The remaining parameter values are as in
Table 7.

The two-parameters bifurcation diagrams with respect to (α, ?), with ? = r, Kx, a,
s, Ky, e, and m for the model with Equations (18) and (19) are given in Figure 4. When
we vary the parameter pair (α, a), a HB appears for all values of α independently of the
value of a, while for the remaining cases the HB is present only for some parameter values.
Moreover, we observe that only when we vary the parameter pair (α, m), the transcritical
bifurcation curve is present. Finally, if one of the parameters ? = Kx, a, s, Ky, and e are
below certain threshold values, with the other parameter values fixed as in Figure 4, the
coexistence equilibrium is asymptotically stable; analogously, when r is above a certain
threshold value the system converges to the interior equilibrium.

In this paragraph, we focus on the predator–prey dynamics with specialist predator
and herd-Holling type II functional response. In Table 8 we list the parameter values for
the model in (34) and (35).
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Table 8. Nominal set of parameter values for the model in (34) and (35).

Parameter Description Value

r prey net reproduction rate 0.5
K prey carrying capacity 5
a predation rate 1
α herd exponent 0.7
h handling time 0.2
e conversion factor 0.5
m natural mortality rate (predators) 1
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Figure 4. Two-parameter bifurcation diagram with respect to α, and, from top left to bottom right,
r, Kx, a, s, Ky, e and m. Thick line: HB curve; dashed line: transcritical bifurcation curve. E∗ is the
coexistence equilibrium and E1 the prey-only equilibrium. The remaining parameter values are as in
Table 7.

In Figure 5 we obtain qualitatively similar results as for (6) and (7) for the one-
parameter bifurcation diagrams with respect to the natural mortality rate of the preda-
tors, m.

The dynamic described in Figure 6 is similar to the one in Figure 2. There are two
main differences: in the two-parameter bifurcation diagrams with respect to (m, K) and
(m, a) the HB curve is more concave; when we vary the parameter pair (m, h) (this case is
not present in Figure 2), one can see that the HB occurs for all values of h and for m smaller
than a threshold value.
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Figure 5. One-parameter bifurcation diagram with respect to the natural mortality rate of the
predators, m. Left panel: the prey population dynamics; Right panel: the predator population
dynamics. Thick lines: stable equilibria; dashed lines: unstable equilibria. HB: supercritical Hopf
bifurcation point where a stable limit cycle arises with maximum amplitude given by the amplitude
of the HB (circles); TB: transcritical bifurcation point where the coexistence equilibrium exchanges its
stability with the prey-only equilibrium. The remaining parameter values are as in Table 8.
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Figure 6. Two-parameter bifurcation diagram with respect to m and, from top left to bottom right, r,
K, a, α, h and e. Thick line: HB curve; dashed line: transcritical bifurcation curve. E∗ is the coexistence
equilibrium and E1 the prey-only equilibrium. The remaining parameter values are as in Table 8.

Finally, we study the predator–prey dynamics with generalist predator and herd-
Holling type II functional response. In Table 9 we list the nominal set of parameter values
for model in (42) and (43). This is the most general model that we study which encompasses
all the previously considered cases.

Both the one-parameter bifurcation diagram with respect to m, and two-parameter
bifurcation diagrams with respect to (m, ?), with ? = r, Kx, a, α, h, s, Ky and e show
behaviours similar to the previous models, see Figures 7 and 8, respectively. It is worth
noting that the results for models (34) and (35) are different as we give the two-parameter
bifurcation diagrams with respect to the herd exponent as first parameter, while we refer to
the predator natural mortality rate in the other two-parameter bifurcation plots.
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Figure 7. One-parameter bifurcation diagram with respect to m. Left panel: the prey population
dynamics. Right panel: the predator population dynamics. Thick lines: stable equilibria; dashed
lines: unstable equilibria; HB: supercritical Hopf bifurcation point where a stable limit cycle arises
with maximum amplitude given by the amplitude of the HB (circles); TB: transcritical bifurcation
point where the coexistence equilibrium exchanges its stability with the prey-only equilibrium. The
remaining parameter values are as in Table 9.
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Figure 8. Two-parameters bifurcation diagram with respect to m and, from top left to bottom right, r,
Kx, a, α, h, s, Ky, and e. Thick line: HB curve; dashed line: transcritical bifurcation curve. E∗ is the
coexistence equilibrium and E1 the prey-only equilibrium. The remaining parameter values are as in
Table 9.
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Table 9. Nominal set of parameter values for the third model (42) and (43).

Parameter Description Value

r prey net reproduction rate 0.5
Kx prey carrying capacity 5
a predation rate 1
α herd exponent 0.7
h handling time 0.2
s predator reproduction rate 0.5

Ky predator carrying capacity 5
e conversion factor 0.5
m natural mortality rate (predators) 1

4. Conclusions

The aim of this paper is to formalise, by means of illustrative examples, how prey
herd behaviour can be modelled with ordinary differential equations from first principles.
We propose four different Rosenzweig–MacArthur predator–prey models where the prey
gather in herds and only the individuals on the edge are subjected to the predators’ attacks.

We use the mechanistic approach and time-scale separation method to derive from
the individual mechanisms a Holling type II–like functional response for the predators,
the herd-Holling type II functional response, which takes into account the prey herd shape.
As strongly emphasised in [11–15], the strength of the mechanistic approach lies in the
possibility of interpreting the population equations in terms of individual state transition
parameter rates.

Moreover, by introducing the so-called herding index α (see [5–10]), we model the
density of the prey x on the edge of the herd as xα and we are able to track information
on the herd shape in a simple system of ordinary differential equations for the popula-
tion dynamics.

We focus our attention on the ecological dynamics with one prey and one predator
species, including specialist versus generalist predators, i.e., no predators’ intraspecific
competition versus predators’ intraspecific competition. Such antagonistic behaviour has
been widely observed in population ecology, especially in aquatic species and insects, and
has been proven to deeply affect niche expansion and speciation (see, for example, [19–23]).
We further assume either herd-linear or herd-Holling type II functional responses for
the predators.

Unlike the two simple cases with specialist predator where both the analytical and
numerical results on the attractors and bifurcations for the population dynamics given in
this paper are exhaustive, for the two models assuming intraspecific competition there is
room for a more detailed study. Indeed, we have found that such ecological dynamics can
give rise to multiple stable attractors (cycles and steady states), while our current analysis
comprises only the cases with one interior equilibrium.

Moreover, given the evidence of possible chaotic behaviour in models with prey herd
behaviour, as found for instance in the recent paper [24], the analysis can be widened in
both analytical and numerical directions, by introducing an adequate change of variable.
This has the advantage of simplifying the exponential term in the population equations as
in [7] and analysing two-bifurcation diagrams in the same way as performed in [25].

Further extensions of our models may include more complex types of predators and
prey-predator dynamics, e.g., generalist predators with respect to prey switching and
prey–predator–superpredator models, where the superpredator species feeds on the prey
and alternative food sources, such as cannibalising the weaker and younger predator
individuals (see, for example, the state transitions and time-scale separation in [26,27] for
a system with one predator species with cannibalistic tendencies). However, the greater
the number of states and state transitions, the more complicated the population dynamics.
Extending the mechanistic derivation of the population equations from individual-level
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interactions to ecosystems with multiple prey and predator species can further increase the
complexity of the model, which may become parameter-heavy and will require advanced
numerical methods.
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