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Abstract: The Lorenz curve and Gini coefficient are widely used to describe inequalities in many
fields, but accurate estimation of the Gini coefficient is still difficult for grouped data with fewer
groups. We proposed a shape-preserving cubic Hermite interpolation method to approximate the
Lorenz curve by maximizing or minimizing the strain energy or curvature variation energy of the
interpolation curve, and a method to estimate the Gini coefficient directly from the coefficients of
the interpolation curve. This interpolation method can preserve the essential requirements of the
Lorenz curve, i.e., non-negativity, monotonicity, and convexity, and can estimate the derivatives at
intermediate points and endpoints at the same time. These methods were tested with 16 grouped
quintiles or unequally spaced datasets, and the results were compared with the true Gini coefficients
calculated with all census data and results estimated with other methods. Results indicate that the
maximum strain energy interpolation method generally performs the best among different methods,
which is applicable to both equally and unequally spaced grouped datasets with higher precision,
especially for grouped data with fewer groups.

Keywords: Gini coefficient; inequality; Lorenz curve; shape-preserving interpolation; cubic Hermite
interpolation

1. Introduction

First proposed by Corrado Gini in 1912 [1], the Gini coefficient or Gini index has
been widely used in describing inequalities in various fields, such as income/wealth [2],
meteorology [3], ecology [4], hydrology [5], water resources [6], and the environment [7].
However, accurate estimation of the Gini coefficient has been a continuing topic of investi-
gation, especially for grouped data [2,8–10].

The Gini coefficient is an important index that is related with the Lorenz curve
(Figure 1), which was developed by Lorenz in 1905 [11] and shows the cumulative share
of income or another variable under consideration (y ∈ [0, 1]) from different sections of
population or another variable (p ∈ [0, 1]). The Lorenz curve is a non-negative, monotonic
increasing, and convex curve [12,13]. In Figure 1, the straight diagonal line y = p represents
perfect equality in income or other distribution, while a Lorenz curve y = L (p) generally lies
beneath the line of perfect equality. The area between the line y = p and curve y = L (p), SA,
represents the inequality in income or other distribution. The greater the SA, the greater the
inequality in the distribution. Line segments y = 0 and p = 1 (p, y ∈ [0, 1]) with the greatest
SA = 1/2 represent another extreme distribution, the line of absolute inequality. The Gini
coefficient, a scalar measurement of inequality, is defined as 2SA for a Lorenz curve y = L (p),
which varies from 0 (representing perfect equality) to 1 (representing absolute inequality).

Besides estimation methods of the Gini coefficient directly from statistical data or its
probability distribution, many estimation methods are based on the approximation of the
corresponding Lorenz curve using curve fitting or interpolation methods, especially for
grouped data.
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Figure 1. Sketch of the Lorenz curve showing the cumulative share of income or another variable
under consideration (y ∈ [0, 1]) from different sections of population or another variable (p ∈ [0, 1]).

The curving fitting method fits the data with functions that meet the requirements of
the Lorenz curve, i.e., non-negativity, monotonicity, and convexity [12,13]. However, an
appropriate function is usually selected from a group of possible functions for specified
data, and the selected function is generally not flexible enough to depict the complex
variation of actual data globally [13]. Moreover, the fitted Lorenz curves can only represent
the global trend and generally do not pass through all the data points, which is a common
characteristic of the curve fitting method.

Contrary to the curve fitting method, the interpolation method constructs an interpo-
lation curve that passes all data points. For grouped data, the simplest method to estimate
the Gini coefficient is the trapezoidal rule, which approximates the Lorenz curve with
piecewise linear interpolation. However, the trapezoidal rule always underestimates the
Gini coefficient, and is generally taken as the lower limit of the Gini coefficient [14]. To
improve the estimation accuracy of the Gini coefficient, higher order numerical integration
methods that approximate the Lorenz curve with piecewise polynomial interpolation, such
as Simpson’s and Romberg’s rules, can be used [14]. However, these numerical integra-
tion methods are generally applicable to equally spaced data except the trapezoidal rule.
Furthermore, widely used Lagrangian, Hermite, and other interpolation curves do not
necessarily preserve the non-negativity, monotonicity and convexity of the Lorenz curve [8].
Therefore, monotonicity and convexity should be considered in interpolating the Lorenz
curve.

Another problem in interpolating the Lorenz curve with Hermite or other similar
interpolators is the estimating of derivatives at intermediate points and endpoints [9],
which has significant influence on the estimated Gini coefficient and should be considered
with care in the interpolation.

The main objective of the present study is to develop a shape-preserving cubic Hermite
interpolation method to approximate the Lorenz curve for estimating the Gini coefficient
directly from the interpolation coefficients, where the derivatives of the Lorenz curve at
intermediate points and endpoints are optimized by maximizing or minimizing the strain
energy or curvature variation energy of the interpolation curve subject to non-negativity,
monotonicity and convexity conditions. The applicability of this method was tested with
16 grouped datasets.
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2. Materials and Methods
2.1. Conditions of Shape-Preserving Cubic Hermite Interpolation for the Lorenz Curve

Suppose we have n + 1 points in the Lorenz curve, (pi, yi), i = 0, 1, . . . , n, where 0 = p0
< p1 < . . . < pn = 1 is the cumulative fractions of the population or other variable of interest,
and 0 = y0 < y1 < . . . < yn = 1 is the cumulative fractions of income or another variable
(Figure 2). The length of interval Ii = [pi, pi+1], hi, and slope of the line passing through
(pi, yi) and (pi+1, yi+1), δi, are denoted as:

hi = pi+1 − pi, δi = (yi+1 − yi)/hi, i = 0, 1, . . . , n− 1 (1)
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Figure 2. Sketch of data points and interpolated Lorenz curve.

Since the Lorenz curve is generally a convex curve, data points (pi, yi), i = 0, 1, . . . , n,
form a strictly convex set, i.e.,

0 < δ0 < δ1 < · · · < δn−1 (2)

A continuously differentiable function, L (p), to approximate the Lorenz curve should
pass all the interpolation points (pi, yi), i = 0, 1, . . . , n, and has the same derivative as the
Lorenz curve at each interpolation point (Figure 2). These conditions can be expressed as:

L(pi) = yi, i = 0, 1, . . . , n (3)

L(1)(pi) = di, i = 0, 1, . . . , n (4)

where di is the derivative of the Lorenz curve at pi, i = 0, 1, . . . , n. Generally, di, i = 0, 1,
. . . , n, are not known from statistics, and their estimation is essential for the interpolation
and will be discussed later. The interpolation curve should have the same properties as the
Lorenz curve, including non-negativity, monotonicity, and convexity.

A piecewise cubic Hermite interpolation curve that satisfies conditions (3) and (4)
is [15,16]:

y = L(p) = Li(s), s = p− pi, pi ≤ p ≤ pi+1, i = 0, 1, . . . , n− 1 (5)

Li(s) = yi+1
3his2 − 2s3

h3
i

+ yi
h3

i − 3his2 + 2s3

h3
i

+ di+1
s2(s− hi)

h2
i

+ di
s(s− hi)

2

h2
i

, i = 0, 1, . . . , n− 1 (6)

The first and second derivatives of the interpolation curve L (p) are

L(1)
i (s) = yi+1

6his− 6s2

h3
i

+ yi
−6his + 6s2

h3
i

+ di+1
3s2 − 2shi

h2
i

+ di
3s2 − 4shi + h2

i
h2

i
, i = 0, 1, . . . , n− 1 (7)
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L(2)
i (s) =

2
hi
(3δi − di+1 − 2di) +

6s
h2

i
(−2δi + di+1 + di), i = 0, 1, . . . , n− 1 (8)

Following [17], the necessary and sufficient condition for the convexity of the inter-
polated Lorenz curve can be determined. The convexity of the Lorenz curve requires that
L(2)

i (s) > 0, i = 0, 1, . . . , n − 1, which is equivalent to L(2)
i (0) > 0 and L(2)

i (hi) > 0, i = 0, 1,

. . . , n − 1, because L(2)
i (s) is a linear function of s. From Equation (8), the convexity of the

interpolation curve can be preserved if and only if

3δi − 2di − di+1 > 0,−3δi + di + 2di+1 > 0, i = 0, 1, . . . , n− 1 (9a)

or
(3δi − di)/2 < di+1 < 3δi − 2di, i = 0, 1, . . . , n− 1 (9b)

If the convexity condition (9) is satisfied, L(1)(p) is a strictly monotonic increasing
function. Therefore, the monotonic condition of L (p), L(1)(p) > 0, is equivalent to

L(1)
0 (0) = d0 > 0 (10)

In this case, the monotonicity of L (p) is satisfied. Meanwhile, the non-negativity of
mboxemphL (p) is also valid because L (0) = 0.

In summary, if the convexity condition (9) and monotonicity condition (10) are satis-
fied, L (p) have the properties of non-negativity, monotonicity, and convexity, and can be
used as an approximation of the Lorenz curve.

2.2. Construction of the Shape-Preserving Cubic Hermite Interpolation for the Lorenz Curve

Cubic spline, S (p), is the most widely used cubic Hermite interpolants, which has
continuous derivatives to order two and minimizes some energy functions, such as the
widely used strain energy [18] and curvature variation energy [19]. These two energy
functions can be approximated as [20]

Es =
∫ 1

0
[S(2)(p)]

2
dp (11)

Ec =
∫ 1

0
[S(3)(p)]

2
dp (12)

where Es and Ec are approximated forms of strain energy and curvature variation energy,
respectively.

However, S (p) constructed from the energy minimization does not necessarily preserve
the properties of non-negativity, monotonicity or convexity. To construct a shape-preserving
cubic Hermite interpolation for the Lorenz curve, we determined the derivatives di, i = 0, 1,
. . . , n, by minimizing the energy function (11) or (12) subject to conditions (9) and (10).

For L (p), the approximated strain energy is

Es =
∫ 1

0
[L(2)(p)]

2
dp =

n−1

∑
i=0

∫ hi

0
[L(2)

i (s)]
2
ds =

n−1

∑
i=0

{
L(2)

i (s)L(1)
i (s)

∣∣∣hi

0
−
∫ hi

0
L(3)

i (s)L(1)
i (s)ds

}
(13)

Because L(3)
i (s) = 6(di + di+1 − 2δi)/h2

i is a constant in the interval Ii = [pi, pi+1], i = 0,
1, . . . , n − 1, the approximated strain energy can be deduced to be

Es =
∫ 1

0
[L(2)(p)]

2
dp =

n−1

∑
i=0

4
hi

[
d2

i + didi+1 + d2
i+1 − 3δidi − 3δidi+1 + 3δ2

i

]
(14)
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Meanwhile, the approximated curvature variation energy is

Ec =
n−1

∑
i=0

36(di + di+1 − 2δi)
2/h4

i (15)

Therefore, the derivatives di, i = 0, 1, . . . , n, can be determined from the following
quadratic programming model:

min. E′s =
n−1

∑
i=0

1
hi

[
d2

i + didi+1 + d2
i+1 − 3δidi − 3δidi+1

]
(16)

or

min. E′c =
n−1

∑
i=0

(di + di+1 − 2δi)
2/h4

i (17)

subject to linear constraints (8) and (9). Compared with Equations (14) and (15), constants
and items that have no influence on the optimal solution of the quadratic programming
model are omitted in Equations (16) and (17).

Generally, the minimization of energy functions results in a straight and smooth spline.
However, the straightness and smoothness are not intrinsic properties of a Lorenz curve.
Following [21], we also used an alternative criterion to define the constrained Lorenz
curve, i.e., maximizing the strain energy or curvature variation energy functions using
Equation (18) or (19) subject to linear constraints (9) and (10).

max. E′′s =
n−1

∑
i=0

1
hi

[
d2

i + didi+1 + d2
i+1 − 3δidi − 3δidi+1

]
(18)

max. E′c =
n−1

∑
i=0

(di + di+1 − 2δi)
2/h4

i (19)

In contrast to the straight and smooth spline resulted from (16) or (17), spline resulted
from (18) or (19) will contain relatively sharp curvatures or curvature variations. These
two types of splines represent the most and least smooth interpolation curves that meet the
requirements of the Lorenz curve, and will be compared to find which is more appropriate
to approximate the Lorenz curve.

Now we have four optimization models with the objective functions of (16)–(19)
subject to constraints (9) and (10). Due to diversity in empirical points (pi, yi), i = 0, 1, . . . ,
n, and the estimated δi, i = 0, 1, . . . , n − 1, it is difficult to obtain the optimal solution
analytically using the Kuhn-Tucker condition for nonlinear programming [22]. Because
the feasibility region bounded by the linear constraints (9) and (10) are a convex set and
the second order items in objective function (16) and (17) are positive definite and positive
semi-definite, respectively, the minimizations of strain energy and curvature variation
energy are both convex programming that have a unique optimal solution.

Moreover, from inequalities (2), (9), and (10), we have

0 < d0 < δ0 < d1 < δ1 < · · · < dn−1 < δn−1 < dn < 3δn−1 − 2dn−1 (20)

Therefore, all decision variables (di, i = 0, 1, . . . , n), and corresponding objective
functions (18) and (19) are finite with lower and upper limits. Consequently, objective
functions (18) and (19) have maximum in the feasibility region.

To solve the above quadratic programming models, several algorithms and optimiza-
tion tools can be used [22], among which the Microsoft Excel Solver was chosen because of
its wide availability and easy applicability [23].
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2.3. Estimating Gini Coefficient from the Interpolated Lorenz Curve

The Gini coefficient, G, can be estimated directly from the coefficients of the interpo-
lated Lorenz curve (Figure 2) using the following formula.

G = 1− 2
∫ 1

0
L(p)dp = 1− 2

n−1

∑
i=0

∫ hi

0
Li(s)ds = 1−

n−1

∑
i=0

[
hi(yi + yi+1)− h2

i (di+1 − di)/6
]

(21)

Using trapezoidal rule that approximates the Lorenz curve with piecewise linear
interpolation, the estimated Gini coefficient, GT, is usually taken as its lower bound, which
is

GT = 1−
n−1

∑
i=0

hi(yi + yi+1) (22)

From Equations (21) and (22), G can be estimated from

G = GT +
n−1

∑
i=0

h2
i (di+1 − di)/6 = GT + (h2

n−1dn − h2
0d0)/6 +

n−1

∑
i=1

di(h2
i−1 − h2

i )/6 (23)

Because of the convexity of the interpolated Lorenz curve, its first derivative, d (p),
is a monotonic increasing function. Therefore, G estimated with Equation (23) is always
greater than its lower bound of GT. Meanwhile, for a grouped dataset with known yi,
i = 0, 1, . . . , n, and hi, i = 0, 1, . . . , n − 1, G depends only on the estimated derivatives of
the interpolated Lorenz curve, especially the right part of the curve that has significantly
greater derivative. Because the derivative at the left endpoint is small and the influence of
derivatives at intermediate points can be partly (for unequally spaced data) or completely
(for equally spaced data) counterbalanced for successive intervals from Equation (23),
accurate estimation of derivatives at intermediate points and endpoints is crucial for
accurate estimation of G, especially the derivative at the right endpoint.

When the grouped data is equally spaced with equal interval lengths of h, Equation (23)
can be further simplified to

G = GT + h2(dn − d0)/6 (24)

This equation further illustrates the importance of accurately estimating the deriva-
tives at the endpoints, especially the right endpoint.

2.4. Data Used to Test the Method

To test the applicability of the interpolated Lorenz curve in estimating the Gini co-
efficient and to find whether minimizing or maximizing the strain energy or curvature
variation energy is more preferable, we used 16 grouped datasets from published refer-
ences to estimate their Gini coefficients, and compared the results with the “true” values
estimated from all census data and estimates using other methods. These datasets in-
clude quintiles [24,25], quintiles plus the 95th percentile [10], and an unequally spaced
dataset [26].

3. Results

The interpolated Lorenz curves for the grouped quintiles of US income census data
in 2000 [24] by minimizing or maximizing the approximated strain energy are shown in
Figure 3a, which shows that the former (Min. Es) is smoother than the latter (Max. Es).
Meanwhile, negative and positive differences between these two interpolation curves occur
alternatively in adjacent intervals, and the maximum absolute value of the differences in
these intervals tend to increase with the cumulative population fraction (p). The maximum
difference of 0.075 occurs at p = 0.92 in the last interval [0.8, 1]. Gini coefficients (G)
estimated with these two interpolated Lorenz curves are 0.417 and 0.432, respectively;
while G estimated with the interpolated Lorenz curves (not shown in Figure 3a for clarity)
by minimizing (Min. Ec) and maximizing (Max. Ec) the approximated curvature variation
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energy are 0.420 and 0.419, respectively. Compared with the estimates using the quintile
rule of 0.422 [24], the estimated G corresponding to Max. Es interpolation of 0.432 is very
close to the “true” value of 0.433 calculated from all the census data (Figure 3b), and is
superior to other methods.
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Figure 3. (a) Grouped quintiles of US income census data in 2000 [24] and interpolated Lorenz curves based on maximization
(Max. Es) or minimization (Min. Es) of approximated strain energy; (b) Comparison of Gini coefficients estimated with
different methods.

Using income quintiles of the United States in five-year intervals from 1947 to 2002 [20],
the Gini coefficients were estimated with the present interpolation method and compared
with those with Z-gradient and trapezoid rules [25] (Figure 4). For comparison purposes, all
the G values were rounded to two decimals (or integers for 100G) as in [25]. From Figure 4,
absolute errors between the actual values of 100G calculated from all census data and 100G
estimated with the Z-gradient rule, trapezoid rule, Min. Es interpolation, and Max. Es
interpolation range from 1–3, 2–3, 0–2, and 0–1 with the average values of 1.8, 2.8, 1.3, and
0.3, respectively. The average absolute error of G estimated with the Max. Es interpolation
is only 12% to 27% of those with the other three methods. G is generally underestimated
by the Z-gradient and trapezoid rules and the Min. Es interpolation method, while G
estimates using the Max. Es interpolation method is the closest to the actual value.

The interpolated Lorenz curves for the grouped quintiles plus the 95th percentile of
US income census data in 2010 [10] are shown in Figure 5a. Similar to Figure 3a, Figure 5a
also shows that the interpolated curve by Min. Es interpolation is smoother than that
by Max. Es interpolation, and their maximum differences in successive intervals tend
to increase with pi for pi < 0.95, which reach the peak of 0.043 when pi = 0.89. However,
the difference becomes smaller for pi > 0.95 due to the added data at pi = 0.95 and the
shorter interval. G estimated with these two interpolated Lorenz curves are 0.470 and 0.469,
respectively, which are the same or very close to the “true” value of 0.470. G estimated with
Max. Ec and Min Ec also give satisfactory results of 0.467 and 0.468, respectively, which
are slightly poorer than G estimated with Max. Es and Min Es. Among six methods used
in [10], four methods also gave very good G estimates of 0.467 to 0.470, while two other
methods resulted in poorer estimates compared to the aforementioned results (Figure 5b).



Mathematics 2021, 9, 2551 8 of 11

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 11 
 

 

 
(a) (b) 

Figure 3. (a) Grouped quintiles of US income census data in 2000 [24] and interpolated Lorenz curves based on maximi-

zation (Max. Es) or minimization (Min. Es) of approximated strain energy; (b) Comparison of Gini coefficients estimated 

with different methods. 

Using income quintiles of the United States in five-year intervals from 1947 to 2002 

[20], the Gini coefficients were estimated with the present interpolation method and com-

pared with those with Z-gradient and trapezoid rules [25] (Figure 4). For comparison pur-

poses, all the G values were rounded to two decimals (or integers for 100G) as in [25]. 

From Figure 4, absolute errors between the actual values of 100G calculated from all cen-

sus data and 100G estimated with the Z-gradient rule, trapezoid rule, Min. Es interpola-

tion, and Max. Es interpolation range from 1–3, 2–3, 0–2, and 0–1 with the average values 

of 1.8, 2.8, 1.3, and 0.3, respectively. The average absolute error of G estimated with the 

Max. Es interpolation is only 12% to 27% of those with the other three methods. G is gen-

erally underestimated by the Z-gradient and trapezoid rules and the Min. Es interpolation 

method, while G estimates using the Max. Es interpolation method is the closest to the 

actual value. 

 

Figure 4. Comparison of Gini coefficients estimated with different methods for income quintiles of the United States in 

five-year intervals from 1947 to 2002. G-Z and G-T are estimates of Gini coefficient using Z-gradient and trapezoid rules 

[25], respectively. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

p

Grouped census data

Interpolation (Max. Es)

Interpolation (Min. Es)

0.433

0.422

0.432

0.417
0.419 0.420

0.40

0.41

0.42

0.43

0.44

“T
ru

e
” 

va
lu

e

Q
u
in

ti
le

ru
le

 [
2
4
]

M
ax

. 
E

s

M
in

. 
E

s

M
ax

. 
E

c

M
in

. 
E

c

G
in

i 
c
o

e
ff

ic
ie

n
t

Method

0

5

10

15

20

25

30

35

40

45

50

1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002

1
0

0
*

G
in

i 
c
o

ef
fi

ci
en

t

Year

Actual G G-Z [25] G-T [25] G-Min. Es G-Max. Es

Figure 4. Comparison of Gini coefficients estimated with different methods for income quintiles of the United States in
five-year intervals from 1947 to 2002. G-Z and G-T are estimates of Gini coefficient using Z-gradient and trapezoid rules [25],
respectively.
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Figure 5. (a) Grouped quintiles plus the 95th percentile of US income census data in 2010 [10] and interpolated Lorenz
curves based on maximization (Max. Es) or minimization (Min. Es) of approximated strain energy; (b) Comparison of Gini
coefficients estimated with different methods, where M1-[10] to M6-[10] are six methods used in [10].

The interpolated Lorenz curves for the income data of 10 unequally spaced groups [26]
are shown in Figure 6a. For pi < 0.492 that has interval lengths less than 0.08, the differences
between two interpolated Lorenz curve with Max. Es and Min. Es are very small. However,
the difference becomes greater with the longer interval when pi > 0.492, and reaches its
peak of 0.042 at pi = 0.959. Gini coefficients (G) estimated with these two interpolated
Lorenz curves are 0.3988 and 0.4009 (Figure 6b), respectively. G is slightly underestimated
using the Min. Es interpolation method. Meanwhile, the estimated G based on Max. Es is
the same as the estimates using the method 4 in [26], which are both very close to the “true”
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value of 0.4014 calculated from all the census data. Values of G estimated with Max. Ec
and Min. Ec are close to that estimated with Min Es., but they are all slightly poorer than G
estimated with Max. Es.
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Figure 6. (a) Income data of 10 unequally spaced groups [10] and interpolated Lorenz curves based on maximization (Max.
Es) or minimization (Min. Es) of approximated strain energy; (b) Comparison of Gini coefficients estimated with different
methods.

4. Discussion and Conclusions

The Gini coefficient is widely used in describing inequalities in many fields, but its
accurate estimation is still difficult for grouped data with fewer groups. We proposed a
shape-preserving cubic Hermite interpolation method to approximate the Lorenz curve by
maximizing or minimizing the approximated strain energy or curvature variation energy of
the interpolated curve, which can then be used to estimate the Gini coefficient directly from
the interpolation coefficients. Case studies with 16 grouped quintiles or unequally spaced
datasets (Figures 3–6) showed that the maximum strain energy interpolation method
generally performs the best among different methods compared with the “true” Gini
coefficient calculated with all census data.

The proposed shape-preserving cubic Hermite interpolation method for the Lorenz
curve has several advantages. First, the interpolated curves pass all data points, which
is preferable to fitted curves that are generally not flexible enough to depict the complex
variation of actual data globally and do not pass all data points [13]. Second, the interpo-
lated curve preserves the essential requirements of the Lorenz curve, i.e., non-negativity,
monotonicity, and convexity [17]. Third, derivatives at intermediate points and endpoints
are optimized at the same time by maximizing or minimizing the energy functions subject
to non-negativity, monotonicity, and convexity conditions (9) and (10), which is much
simpler than some other interpolation methods that determine derivatives at interme-
diate points and endpoints with different methods [9]. Because accurate estimation of
derivatives at intermediate points and endpoints, especially the derivative at the right
endpoint, is crucial for accurate estimation of G, the simultaneous estimation of derivatives
at intermediate points and endpoints may be a possible reason for the higher precision of
the estimated G. Fourth, the method is applicable to both equally and unequally spaced
grouped datasets with higher precision than other methods, especially for datasets with
fewer groups (Figures 3–5). The estimated Gini coefficients using the maximizing strain
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energy rule are better than or close to other methods for most of the case studies.
The Lorenz curve generated from the minimizing strain/curvature variation energies

are smoother than those from the maximizing strain/curvature variation energies. These
two types of interpolated Lorenz curves represent the most and least smooth interpolation
curves that meet the requirements of the Lorenz curve, and their differences tend to increase
with the population fraction and interval length (Figures 3, 5 and 6). The Lorenz curve inter-
polated from the maximizing strain energy generally contains relatively sharp curvatures
that may better reflect the distribution of income or other variables under consideration
within each group, and results in better estimation of derivatives at intermediate points
and endpoints, which is the possible reason for better estimates for the Gini coefficient
using the maximizing strain energy rule compared with other energy rules.
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