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Abstract

:

Identifying influential edges in a complex network is a fundamental topic with a variety of applications. Considering the topological structure of networks, we propose an edge ranking algorithm DID (Dissimilarity Influence Distribution), which is based on node influence distribution and dissimilarity strategy. The effectiveness of the proposed method is evaluated by the network robustness R and the dynamic size of the giant component and compared with well-known existing metrics such as Edge Betweenness index, Degree Product index, Diffusion Intensity and Topological Overlap index in nine real networks and twelve BA networks. Experimental results show the superiority of DID in identifying influential edges. In addition, it is verified through experimental results that the effectiveness of Degree Product and Diffusion Intensity algorithm combined with node dissimilarity strategy has been effectively improved.
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1. Introduction


A complex network is a multidisciplinary topic in many domains including informatics, psychology, management, sociology, biology and engineering [1]. In reality, networks arise in a multitude of domains and are useful in solving numerous problems of human communities, such as the detection of bot accounts on Twitter [2], the discovery of vulnerabilities in electrical grids [3], identification of potentially harmful interactions between drugs [4], health care programs to predict the spread of epidemic diseases [5], improvement of routes in the development of road networks [6] and so on. The question of how to find influential nodes and edges is an important issue. Many methods are used to rank the nodes in networks. Degree [7], H-index [8] and k-shell [9] are based on nodes’ neighbors. Closeness centrality [10] and betweenness centrality [11] are based on the path. Quasi-Laplacian centrality [12], Local Gravity Model [13] and AWLM [14] are based on semi-local structural information. In comparison, influential edges also play a significant role in complex network study. Influential edges analysis will be beneficial for guiding or controlling the network from a global perspective, moving the epidemic tipping point through topologically targeted social distancing [15] and so on.



In fact, for different problems, the importance of the edge in the network contains different meanings. In terms of the transmission of infectious diseases, the edge in the network represents the path of the transmission of infectious diseases, and its importance depends on the ability of this edge to spread diseases in the network. The stronger the transmission ability, the higher the edge importance. In electric transportation networks, edges in the network represent circuit connections. Its importance depends on the impact of the circuit failure on the network connectivity; the greater the impact on the network connectivity, the higher the edge importance. Therefore, the importance of the edge in the network under different problems is different. In this paper, we use network robustness R [16] as the target measure defining the importance of an edge for the impact on the network connectivity.



It is arduous that the number of edges in the network is more than the number of nodes. However, there are still great signs of progress madding in the research of identifying influential edges in complex networks. The earliest studies have reported in 1973. Granovetter [17] proposed that weakly connected edges may be more important than strongly connected edges, which has captured the attention of many researchers. Then, the research on edge strength has gradually emerged. Radicchi et al. [18] extended the clustering coefficient of nodes to edges and considered that the edges with lower clustering coefficient bridges communities generally. Gilbert and Karahalios [19] considered the attribute information and interaction strength of two nodes based on user characteristics and interaction behavior. En-Yu Yu [20] considered not only the degrees of nodes and cliques (local characteristics) but also the betweenness centrality (global characteristics) in order to rank important edges. Kossinets [21], Goyal [22] and Saito [23] proposed algorithms by learning a node behavior sequence and by calculating the influence probability.



In addition, Girvan and Newman [24] proposed edge betweenness that is based on the centrality of betweenness. It can accurately identify the important edges in the network but consumes huge computing resources. Holme et al. [25] multiplied the degrees of the two nodes as the centrality value of the edge. Liu et al. [26] measured the influence of an edge by counting the number of node first-order neighbors at the ends of the edge that are not connected to another node. These two methods are very fast, but the accuracy is very low. Onnela et al. [27] proposed a topological overlap method to judge the proportion of common neighbors in the total number of neighbors to measure the importance of the edge. It can improve the accuracy, but it was still poor at identifying edges that have a significant impact on network connectivity. The vital edge cannot be accurately identified; thus, the target removal edge has little effect on the network connectivity. An edge ranking algorithm that can accurately identify important edges is urgent needed.



Maintaining global network connectivity is the basic function of edges. In fact, the importance of an edge is related to the influence of the nodes at its two ends. However, the most important nodes tend to have many edges, which also causes these edges to be replaceable. In the paper, the scale of the gaint component is its nodes number. If edges that are highly replaceable are chosen to be removed, it will have a little impact on the scale of the giant component. On the contrary, the scale of the giant component will decrease sharply by removing the irreplaceable edge, For example, in the power grid, if the most irreplaceable edge is destroyed, it will cause a large-scale blackout. If such an edge is protected in advance, the impact will not be significant for other replaceable edges are damaged. Therefore, the rule of node influence distribution and the irreplaceability of edges should be considered comprehensively.



In order to improve the accuracy for identifying influential edges in complex network, we propose an edge ranking algorithm considering both local information and global information. Firstly, a node influence distribution model is employed for measuring the effect of the node on the edge. Subsequently, edge irreplaceability is revealed via the node dissimilarity strategy. Afterward, the edge ranking algorithm is proposed by combining the node influence distribution model (ID) and the node dissimilarity strategy (DIS). The purpose of the proposed DID algorithm is to accurately detect edges that can exert a strong influences over complex networks. Empirical results show that DID performs best in comparison with the four methods on nine real networks and twelve BA networks. In addition, DIS also can improve other methods that consider local information of the network.



The structure of the paper is as follows: In Section 2, ID and DIS are proposed first. Next, our method DID is proposed, and an analysis of DID is represented. The network data description and numerical results based on various classic methods applying to real networks and BA networks are shown in Section 3, respectively. Moreover, the experimental results are discussed in Section 4. Finally, conclusions are made in Section 5.




2. Algorithm


For different problems, the edge importance in the network is different. For the spreading problems, people take the number of infected nodes per unit time as the evaluation index of the network edge importance under the same transmission probability. On the contrary, for network connectivity problems, researchers measure edge importance by calculating the change of the scale of the most connected component in the network. The purpose of this paper is to find edges that have a significant impact on network connectivity.



In this paper, we introduce the node influence distribution model and node dissimilarity strategy, which are the basis of our proposed edge ranking algorithm. The proposed algorithm can identify influential edges widely. It works on unweighted and undirected networks. The proposed algorithm consists of the following three steps: distributes node influence, measures edge irreplaceability and proposes an edge ranking algorithm. Table 1 summarizes the symbols and notations used in the paper.



2.1. Node Influence Distribution Model


It is known that the edge connected with the greater influence node also has greater influence on the network. However, it is difficult to distinguish the importance of these edges connecting the same influential node for many important nodes in reality with many edges. For example, nodes F and G are the most influential nodes in Figure 1. However, removing the connecting edge between nodes F and G has less impact on the overall connectivity of the network than by removing the connecting edge between nodes H and I. The influence of a node cannot directly reflect the influence of the edges connected to the node. When a node has many edges, the influence will be diluted accordingly. To solve these problems, node influence should be allocated to edges according to the actual rules.



Considering the global characteristics, closeness centrality [10] is selected to evaluate the influence of nodes. The influence of node i allocated to an edge   e  i j    is calculated by node i influences and the proportion of node j influence relative to the influence of all node i neighbors. The ID value is the product of the influence values allocated to the edge by the nodes at both ends of the edge. Thus, the edge influence is obtained as follows.


  I  D  i j   =  ( C  C i  ×   C  C j     ∑  t ∈ Γ ( i )   C  C t    )  ×  ( C  C j  ×   C  C i     ∑  z ∈ Γ ( j )   C  C z    )  =    ( C  C i  × C  C j  )  2    ∑  t ∈ Γ ( i )   C  C t  ×  ∑  z ∈ Γ ( j )   C  C z     



(1)







  C  C i    is defined as the following.


  C  C i  =  N   ∑  i ≠ j    d  i j      



(2)







The node influence distribution model considers not only the information of the edge itself but also the path, which can more comprehensively reflect the importance of the edge.




2.2. Strategy Based on Node Dissimilarity


One of the greatest challenges for edge ranking is that the number of edges is much larger than the nodes. Therefore, the cost of calculation is unacceptable for the dissimilarity between edges. The more common the neighbors between the two nodes with the same edge, the more backup paths there are corresponding to the edge. For example, in Figure 1, after the edge between node F and G is removed, there are two paths between them. The common neighbor plays the role of replacing the directly connected edge between the two nodes. Thus, the dissimilarity of nodes should be considered when identifying important edges to be more practical and efficient.



In order to measure the nodes similarity, Salton [29] is selected to explore the similarity influence in two nodes on the edge. The cost of calculating the edge by this method is O(m). By calculating the similarity between nodes, the dissimilarity in nodes at both ends of the network is judged, and the irreplaceability of the edge is evaluated by the dissimilarity. The node dissimilarity is calculated as follows.


     D I  S  i j   = 1 −   1 + Γ ( i ) ∩ Γ ( j )     k i   k j         



(3)







It should be noted that, in this paper, node dissimilarity is only used for pair of nodes with connected edges. Therefore, when the neighbors of two nodes are identical except for the degree of the two nodes being same and equal to the number of common neighbors plus one (for an edge between them), their similarity is one, and so the dissimilarity of the two nodes is zero.




2.3. Dissimilarity Influence Distribution Algorithm


Considering node influence distribution and edge irreplaceability, a new edge ranking algorithm is obtained by combining DIS with the ID model, named dissimilarity influence distribution algorithm (DID). DID is calculated as follows.


     D I  D  i j   = I  D  i j   × D I  S  i j   =  (    ( C  C i  × C  C j  )  2    ∑  t ∈ Γ ( i )   C  C t  ×  ∑  z ∈ Γ ( j )   C  C z    )  ×  ( 1 −   1 + Γ ( i ) ∩ Γ ( j )     k i   k j     )      



(4)







The kite network (Figure 1) is used to describe the DID calculation process. The closeness centrality of each node in the kite network is calculated, which is shown in Table 2.



The closeness centrality of A is 0.5294117647058824, which is the same as B. The neighbors of node A are B, C, D and F. The influence of edge 1 from node A can be obtained as follows.


     C  C i  ×   C  C j     ∑  t ∈ Γ ( A )   C  C t     = C   C A  ×   C  C B    C  C B  + C  C C  + C  C D  + C  C F    = 0.123     











The influence of edge 1 from node B also is 0.123. The ID value of Edge 1 can be obtained by 0.123 × 0.123 = 0.0152.



Then, the dissimilarity of nodes A and B is calculated as the irreplaceability of edge 1. Node A is connected with nodes B, C, D and F, and node B is connected with nodes A, D, E and G. The common neighbor between node pair A B is node D, the number of the common neighbor is one and so the dissimilarity is 0.5. Therefore, the DID of edge 1 is calculated by 0.0152 × 0.5 = 0076. Correspondingly, the DID values of other edges can be obtained, as shown in Table 3.



Edge 17 has the highest score calculated by DID. Edge 17 is the only way to connect the left and right modules, which plays the role of the bridge. Although edges 4 and 5 connect the more important nodes in the network, their importance is decreased due to the presence of many neighbors relative to these nodes. The DID method can better reflect the real edge ranking sequence in the network.





3. Experiment


In this section, all experiments comprise targeted edge removal. Firstly, we explain four algorithms used in comparison with DID. Then, we describe the data sets used in our experiments. Next, the evaluation criterion network robustness R is described. The results are explained at the end.



3.1. Compared Algorithms


The performance of the proposed algorithm is compared with the following four algorithms:



(1) Edge Betweenness (EB [24]): EB considers the global information of the network and measures the edge importance by judging the proportion of an edge on the shortest path between any two nodes. It can be calculated as follows.


     E  B  i j   =  ∑  s ≠ t      σ  s t    (  e  i j   )    σ  s t        



(5)







(2) Degree Product (DP [25]): The centrality of the edge can be obtained by multiplying the degree value of nodes at both ends of an edge, as follows.


     D  P  i j   =  k i  ×  k j      



(6)







(3) Diffusion Intensity (DI [26]): The centrality of the edge can be obtained by counting the number of neighbors of one end node that is not connected to the other end node, as follows.


     D  I  i j   =    n  i → j   +  n  j → i    2      



(7)







(4) Topological Overlap(TO [27]): The centrality of the edge can be obtained by calculating the ratio of common neighbors to unconnected neighbors, as follows.


     T  O  i j   =   Γ ( i ) ∩ Γ ( j )    (  k i  − 1 )  +  (  k j  − 1 )  −  ( Γ  ( i )  ∩ Γ  ( j )  )        



(8)








3.2. Data Set


In this paper, nine real networks from disparate fields including four social networks (Dolphin [30], polblogs [31], Sex [32] and Facebook [33]; three communication networks (Email [34], As-733 [35] and PG [36]); and two collaboration networks (Jazz [37] and CA-CondMat [3]) are used to test the performance of DID and DIS combined with several classic methods. Dolphin is a social network of 62 dolphins. Polblogs is a social network in the political blogosphere of the United States. Sex is a bipartite network in which nodes are females (sex sellers) and males (sex buyers), and links between them are established when males write posts indicating sexual encounters with females. Facebook describes social circles from Facebook. Email describes email interchanges between users including faculty, researchers, technicians, managers, administrators and graduate students of the Rovira i Virgili University. As-733 contains the daily instances of autonomous systems from 8 November 1997 to 2 January 2000. PG is a snapshot of the Gnutella peer-to-peer file sharing network from August 2002. Jazz is a collaboration network of jazz musicians. Ca-CondMat is a collaboration network of Arxiv Condensed Matter category. Table 4 summarizes the key properties of the selected real sets.



The BA networks are used to test the performance of DID and nodes, and the average degrees include (500, 3), (500, 6), (500, 9), (500, 12), (5000, 3), (5000, 6), (5000, 9), (5000, 12), (50,000, 3), (50,000, 6), (50,000, 9) and (50,000, 12), respectively.




3.3. Evaluation Criterion


The network robustness R is used as an evaluation criterion to compare the performance of DID with four algorithms on the considered data sets. The calculation process is as follows: delete the connected edges in the network one by one and calculate the size of the most connected subgraph of the normalized network until the network is empty. R could be obtained as follows:


     R =  1 M   ∑  i = 1  M    G i  N      



(9)




where i is the number of edges removed.




3.4. Experiment of DID Performance


The proposed DID is compared with four classic algorithms in nine real networks. The results are shown in Table 5. The lower the network robustness R, the better performance of the algorithm.



Table 5 shows that the network robustness R obtained by the proposed DID generally outperforms the competitive methods as marked in bold. From Table 5, DID is the best performing algorithm on seven data sets (namely, Dolphin, Jazz, Email, polblogs, PG, Sex and Facebook) whereas TO is the best performing algorithm on the as-733 and CA-CondMat data set. Compared with TO, which considers the semi local information, DID comprehensively considers the global and local information of the network. By combining the relationship between nodes and edges, it can better reflect the importance of network edges.



We further study the efficiency of the algorithm by observing the ratio of the remaining giant component relative to the original network after removing a certain proportion of edges. By observing the proportion dynamic change of the giant component relative to that of the original network, we can better represent the destruction of the algorithm. The results are as shown in Figure 2.



Figure 2 exhibits that DID has excellent performance in finding the key edges in the real network. With the important edges removed, the connectivity of the network is greatly damaged. Even in the as-733 network and Ca-Condmat network where the performance of DID is not optimal, the damage of DID is stronger than the other four methods when deleting the top 50% edges. Moreover, in the Facebook network, DID is the best in the entire process. In other networks, after more than half of the edges are deleted, DID is still more destructive than other methods. Dynamic network experiment proves the effectiveness of DID.



Next, we compared the proposed DID with four classic algorithms in 12 BA networks. The results are as shown in Table 6 where the best values are marked in bold. Figure 3 shows the dynamic damage of DID and four comparison algorithms relative to network connectivity. From Table 6 and Figure 3, DID has an excellent performance in finding the vital edges in the BA network.




3.5. Experiment of DIS


In order to verify the proposed DIS, we compared the combination methods (named DEP, DDP, DDI and DTO) with the original methods in nine real networks. The network robustness R is used as the evaluation index. The experimental results are shown in Table 7 where the best values are marked in bold. The lower the R value, the better performance of the algorithm.



As Table 7 shows, when compared with the original methods, it is obvious that DEB and DTO are not suitable, but DDP and DDI generally outperformed DP and DI. The performance of DID is the best when compared with these eight algorithms based on Table 5 and Table 7.





4. Discussion


Identifying influential nodes and edges is a hot topic with a variety of applications in different fields, such as informatics, psychology, management, sociology, biology, engineering and so on. Degree product [24], as the simplest measure, considers that the importance of the edge is related to the importance of the nodes at its two ends. If nodes have a large number of neighbors, the edge will be crucial. However, it is likely that some bridge nodes are ignored, which connect different components but have a few neighbors. Edge Betweenness [20] considers an edge as important if most nodes’ shortest path proceeds through it but has high computational complexity. To overcome this shortcoming, Diffusion Intensity [25] and Topological Overlap [26] are proposed, which can identify vital edges by the semi local information. These two measures seem to be more suitable for identifying the influential edges having a significant impact on network connectivity; however, they ignore the edge irreplaceability, which is more realistic. Thus, the DID algorithm is proposed in this paper, which firstly computes the influence that nodes distribute to the edge and then considers edge irreplaceability by computing node dissimilarity. The proposed DID algorithm is capable of identifying vital edges. Experimental results on nine real networks and twelve different BA networks show the feasibility and efficiency of DID.



Firstly, the experiments comparing network robustness R exhibit the superiority of DID, for the vital edges identified by the algorithm are observed to easily exert strong influence than compared to the competitors. Although inferior to TO on the as-733 and CA-CondMat data set, it is also quite competitive. As shown in Figure 2, by observing the ratio of the remaining giant component to the original network after removing a certain proportion of edges, the networks are more easily broken up by DID. The results on BA networks also verify the feasibility and efficiency of DID. Secondly, we apply network robustness R to evaluate the DIS effect on the classical algorithm (as shown in Table 7). In general, DIS can only improve the performance of the method in some real networks, some of which may even be reduced. Generally speaking, for some identifying influential edge methods that consider local information of nodes, this strategy can effectively enhance the performance of the algorithm at the cost of O(m) time when ranking edges for target removal edges. It is worth noting that the DID is still the best.




5. Conclusions


In this paper, by considering node influence distribution and edge irreplaceability, we proposed an edge ranking method named DID and compared it with four classic methods in nine real networks and twelve BA networks by network robustness R and the proportion of dynamic change relative to the giant component. The results show that DID performs well in identifying influential edges that have a significant impact on network connectivity. This will help us in some real-life applications such as controlling the spreading of rumors and targeted attacks on networks and so on.



In addition, we combined DIS with four classic methods (such as DEB, DDP, DDI and DTO). The results show that DIS can effectively improve the performance of DP and DI algorithms, which are based on local information of the network. The reason is that the node dissimilarity strategy is more realistic, and these algorithms combined with this strategy are more comprehensive for considering the topology of structure. However, for TO and EB, which consider the network’s semi-local or global information, their accuracies are reduced when identifying the edge that is more important compared to network connectivity. Therefore, for different methods, the question of whether to choose this strategy based on node dissimilarity should be answered and improved upon.
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Figure 1. Kite network [28]. 
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Figure 2. The dynamic damage of DID and 4 comparison algorithms to the real networks connectivity (a–i). 
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Figure 3. The dynamic damage of DID and 4 comparison algorithms to BA networks connectivity (a–l). 
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Table 1. Used symbols and variables.






Table 1. Used symbols and variables.





	Notation
	Description





	   Γ ( i )   
	Neighbor set of node i



	   C  C i    
	Closeness centrality of node i



	N
	Number of nodes in the network



	M
	Number of edges in the network



	   d  i j    
	Distance from node i to node j



	   Γ ( i ) ∩ Γ ( j )   
	The common neighbor of node i and j



	   k i   
	Degree of node i



	   σ  s t    
	Number of the shortest path between node s and t



	    σ  s t    (  e  i j   )    
	Number of the shortest path between node s and t that goes through edge   e  i j   



	   n  i → j    
	Neighbor of node j that is not connected with node i and not node i



	   〈 k 〉   
	Average degree of the network



	   〈 d 〉   
	Average distance of the network



	D
	Network diameter



	C
	Clustering coefficient of the network



	r
	Assortative coefficient of the network



	   G i   
	Number of nodes in the largest connected component after removing i edges removed
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Table 2. The closeness centrality of each node in kite network.
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	Node
	Closeness Centrality





	A
	0.5294118



	B
	0.5294118



	C
	0.5



	D
	0.6



	E
	0.5



	F
	0.6428571



	G
	0.6428571



	H
	0.6



	I
	0.4285714



	J
	0.0.3103448










[image: Table] 





Table 3. DID of each edge in kite network.






Table 3. DID of each edge in kite network.





	Edge
	DID





	1
	0.007607



	2
	0.001166



	3
	0.003282



	4
	0.001076



	5
	0.000986



	6
	0.002363



	7
	0.00103



	8
	0.002224



	9
	0.00294



	10
	0.001585



	11
	0.002088



	12
	0.00273



	13
	0.002287



	14
	0.003826



	15
	0.007306



	16
	0.009036



	17
	0.012536



	18
	0.00664
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Table 4. The basic topological features of 9 real networks.
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	Networks
	N
	M
	    〈 k 〉    
	    〈 d 〉    
	D
	C
	r





	Dolphin
	62
	159
	2.5645
	3.3570
	8
	0.2590
	−0.0436



	Jazz
	198
	2742
	13.8485
	2.2350
	6
	0.6175
	0.0202



	Email
	1133
	5451
	9.6222
	3.6060
	8
	0.2540
	0.0782



	AS-733
	6474
	12,572
	1.9419
	3.705
	9
	0.2522
	−0.1818



	polblogs
	1222
	16,714
	13.6776
	2.7375
	8
	0.3203
	−0.2213



	PG
	6299
	20,776
	3.2983
	4.6430
	9
	0.0108
	0.0355



	Sex
	15,810
	38,540
	2.4377
	5.7846
	17
	0
	−0.1145



	CA-CondMat
	23,133
	93,239
	4.0392
	5.3522
	15
	0.6334
	−0.1340



	Facebook
	26,954
	497,878
	18.4714
	3.6925
	8
	0.2358
	0.1421










[image: Table] 





Table 5. The R of DID and classic algorithms in real networks.
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	Networks
	EB
	DP
	DI
	TO
	DID





	Dolphin
	0.511
	0.6745
	0.6165
	0.4709
	0.4407



	Jazz
	0.666
	0.9136
	0.8051
	0.6398
	0.6024



	Email
	0.6253
	0.809
	0.7622
	0.5533
	0.4721



	As-733
	0.5262
	0.564
	0.5675
	0.4492
	0.4934



	polblogs
	0.5956
	0.9362
	0.8537
	0.4809
	0.4379



	PG
	0.5764
	0.7348
	0.7377
	0.6002
	0.4504



	Sex
	0.5208
	0.6416
	0.6395
	0.5925
	0.3895



	CA-CondMat
	0.4395
	0.6278
	0.5313
	0.4125
	0.4143



	Facebook
	0.6979
	0.9284
	0.8824
	0.728
	0.5156
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Table 6. The R of DID and classic algorithms in the BA networks.
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	Networks
	EB
	DP
	DI
	TO
	DID





	BA-500-3
	0.7325
	0.7251
	0.7262
	0.7103
	0.6399



	BA-500-6
	0.8651
	0.844
	0.8306
	0.7771
	0.6877



	BA-500-9
	0.886
	0.8661
	0.8551
	0.8161
	0.725



	BA-500-12
	0.9066
	0.8728
	0.8634
	0.8384
	0.7621



	BA-5000-3
	0.7346
	0.7257
	0.7227
	0.7352
	0.6493



	BA-5000-6
	0.8636
	0.8445
	0.8341
	0.7982
	0.7264



	BA-5000-9
	0.8962
	0.8702
	0.8575
	0.8298
	0.7597



	BA-5000-12
	0.9069
	0.8788
	0.8653
	0.8693
	0.7775



	BA-50000-3
	0.7358
	0.723
	0.7222
	0.7379
	0.6545



	BA-50000-6
	0.8578
	0.8445
	0.8333
	0.8214
	0.7283



	BA-50000-9
	0.8958
	0.8715
	0.8576
	0.8484
	0.775



	BA-50000-12
	0.9154
	0.8804
	0.8655
	0.866
	0.8131
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Table 7. The R of original methods and combination methods.






Table 7. The R of original methods and combination methods.





	Networks
	EB
	DEB
	DP
	DDP
	DI
	DDI
	TO
	DTO





	Dolphin
	0.511
	0.4912
	0.6745
	0.6494
	0.6165
	0.564
	0.4709
	0.4664



	Jazz
	0.666
	0.6514
	0.9136
	0.8758
	0.8051
	0.7264
	0.6398
	0.0.7328



	Email
	0.6253
	0.6129
	0.809
	0.7907
	0.7622
	0.7376
	0.5533
	0.555



	As-733
	0.5262
	0.5357
	0.564
	0.5622
	0.5675
	0.5634
	0.4492
	0.449



	polblogs
	0.5956
	0.5778
	0.9362
	0.9356
	0.8537
	0.8449
	0.4809
	0.4749



	PG
	0.5764
	0.613
	0.7348
	0.7347
	0.7377
	0.7315
	0.6002
	0.6002



	Sex
	0.5208
	0.5446
	0.6416
	0.6416
	0.6395
	0.6379
	0.5925
	0.5925



	CA-CondMat
	0.4395
	0.4449
	0.6278
	0.5725
	0.5313
	0.5058
	0.4125
	0.5223



	Facebook
	0.6979
	0.7097
	0.9284
	0.9242
	0.8824
	0.8943
	0.728
	0.721
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