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Abstract: Recently, different recommendation techniques in e-learning have been designed that are
helpful to both the learners and the educators in a wide variety of e-learning systems. Customized
learning, which requires e-learning systems designed based on educational experience that suit
the interests, goals, abilities, and willingness of both the learners and the educators, is required in
some situations. In this research, we develop an intelligent recommender using split and conquer
strategy-based clustering that can adapt automatically to the requirements, interests, and levels of
knowledge of the learners. The recommender analyzes and learns the styles and characteristics of
learners automatically. The different styles of learning are processed through the split and conquer
strategy-based clustering. The proposed cluster-based linear pattern mining algorithm is applied to
extract the functional patterns of the learners. Then, the system provides intelligent recommendations
by evaluating the ratings of frequent sequences. Experiments were conducted on different groups
of learners and datasets, and the proposed model suggested essential learning activities to learners
based on their style of learning, interest classification, and talent features. It was experimentally
found that the proposed cluster-based recommender improves the recommendation performance
by resulting in more lessons completed when compared to learners present in the no-recommender
cluster category. It was found that more than 65% of the learners considered all criteria to evaluate the
proposed recommender. The simulation of the proposed recommender showed that for learner size
values of <1000, better metric values were produced. When the learner size exceeded 1000, significant
differences were obtained in the evaluated metrics. The significant differences were analyzed in
terms of a computational structure depending on |L|, the recommendation list size, and the attributes
of learners. The learners were also satisfied with the accuracy and speed of the recommender. For the
sample dataset considered, a significant difference was observed in the standard deviation σ and
mean µ of parameters, in terms of the Recall (List, User) and Ranking Score (User) measures, compared
to other methods. The devised method performed well concerning all the considered metrics when
compared to other methods. The simulation results signify that this recommender minimized the
mean absolute error metric for the different clusters in comparison with some well-known methods.

Keywords: e-learning; intelligent optimization; personalization; recommendation system; hybrid
recommender; cluster-based recommender

1. Introduction

Currently, e-learning has replaced conventional learning systems to ensure that better
objectives are achieved by all learners [1–4]. The usage of web enhancements to provide
online or offline learning to students at any time is called e-learning, which is considered
more effective than conventional learning techniques. Personalized e-learning allows
learners to access resources wherever and whenever needed in a useful manner [5–7].

The current research in e-learning focuses on the development of recommendation
methodologies that are expected to achieve better performance compared to the existing
recommendation strategies. Hence, it is important to develop a better recommendation
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system to provide better service to learners. The recommendation system proposed herein
consists of some important subsystems, namely, the Learner Subsystem, Domain Sub-
system, Application Subsystem, Adaptation Subsystem, and Session Subsystem. This
research presents the design of some strategies needed to provide better recommendations
compared to the existing state-of-the-art techniques. The proposed method was executed
on an educational dataset with 1000 learners. The experimental results allowed us to con-
clude that the learners from the simulation cluster could complete a course with reduced
computational time and more lessons when compared to the no-recommender cluster. It
was also found that the proposed model intelligently recommends learning resources based
on the characteristics and styles of learning.

Some research gaps in well-known recommendation systems involve greater differ-
ences in the measures of performance and greater computational complexity required,
resulting in lower recommendation accuracy. Hence, it is important to develop new recom-
mendation methodologies to offset these problems in well-known strategies in order to
find solutions to different real-world issues. To address the above-mentioned drawbacks,
in this research we describe the development of an intelligent recommender that can adapt
automatically to the requirements, interests, and levels of knowledge of the learners. The
recommender automatically analyzes and learns the styles and characteristics of learners.
The different styles of learning are processed through split and conquer strategy-based
clustering. Then, the system provides intelligent recommendations by evaluating the
ratings of frequent sequences.

The proposed intelligent hybrid recommender system applies the following new strate-
gies:

• The datasets are separated into different clusters using the split and conquer strategy;
• Better recommendations are updated by generating recommendations from each clus-

ter;
• A cluster-based linear pattern mining strategy is applied to identify the maximal large

cluster sequences;
• The maximal large sequences are enhanced using the linear pattern pruning strategy;
• The styles of learning are identified based on the characteristics of learners; and
• The preferences of learning styles are evaluated in different dimensions.

The definitions and notation applied in this recommender model are presented in
Section 2. A literature survey of the existing recommendation methods and the need for
new recommendation strategies are discussed in Section 3, and the proposed method is
explained in Section 4. The experimental results and an analysis of the proposed method
are presented in Section 5, and Section 6 concludes this research.

2. A Literature Survey on Recommendation Systems and the Need for New
Recommendation Strategies

Some existing e-learning systems were designed based on the methods of learning,
types of information, learner characteristics, and other specific features of operational
procedures [8–11]. Content-based collaborative filtering (CF) and mining procedures were
developed [12], as were rule-based customized learning systems with fuzzy theory [13], a
mutual filtering procedure with maximum likelihood estimation [14], a mutual filtering
recommendation for small datasets [15], a Bayesian model-based learning system [16], and
a domain perspective model-based recommendation framework [17].

A semantic recommendation with an ontology-based approach was proposed [18],
and a self-organizing map-based e-learning recommendation was developed using artificial
neural networks [19]. A customized recommendation model using machine learning and
clustering was developed to analyze the learning paths of learners [20]. Customized
object-based learning with different styles of learning was analyzed using a clustering
algorithm [21], and the learning styles and knowledge levels of learners were evaluated
using a content filtering approach [22].
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The recently developed recommender systems can be classified into different groups,
as outlined below [23–73].

2.1. User Profile Recommendation Systems

Personalized recommendation systems have been developed recently for some do-
mains. The User Profile Oriented Diffusion (UPOD) strategy was developed to analyze
learner profiles [74]. This methodology makes specific recommendations based on dif-
ferent operations that are executed in the training stage. The referral stage generates
recommendations based on learner profile features.

2.2. Content Recommendation Systems

The convolutional neural network (CNN) method with content-based recommenda-
tion was discussed in [75]. This method is used to obtain the concealed factors in different
media applications. In this method, the textual information is processed in recommending
the required contents.

2.3. Hybrid Recommendation Systems

Some hybrid strategies have been developed for recommending movie-based applica-
tions [76]. Content-based filtering was also applied in recommending better movies to users.
Personalized learning with a hybrid strategy was developed in [77]. The recommendation
system gives personalized recommendations using visualizations.

2.4. Filter-Based Recommendation Systems

Some CF-based recommendations have been implemented for user travel recommen-
dations [78]. This recommendation scheme obtained good performance when compared to
other schemes.

2.5. Feature-Based Recommendation Systems

A feature-based recommendation system to solve the ERP System and E-Agribusiness
datasets was developed [79], enhanced CF was developed for solving MovieLens applica-
tions [80], a group recommender strategy was developed in [81,82], and similarity-based
recommender systems for different applications were developed in [83–103].

Critiques of the well-known recommender systems in e-learning [23–30] include
the difference in the average absolute error, lower accuracy in the recommendation, and
longer computing time required during the recommendation [33–45]. To address these
problems in the existing well-known methods, the recommender proposed herein develops
an intelligent recommender that can adapt automatically to the requirements, interests, and
levels of knowledge of the learners. The recommender automatically analyzes and learns
the styles and characteristics of learners. The different styles of learning are processed
through a split and conquer based clustering strategy. Then, the system provides intelligent
recommendations by evaluating the ratings of frequent sequences.

3. Notation and Definitions

The following notation and definitions are used in the proposed model [46–72,103].

1. Learning Items
The learning items of the resources are defined as the collection of learning objects
and are defined as Learning-Items = {Item1, Item2, Item3, . . . , Itemn}.

2. Sequence of Item Sets
The sequence of item sets defines the ordered sequence: (Item1, Item2, Item3, . . . ,
Itemn).

3. Subset of a Sequence
A sequence (x1, x2, x3, . . . , xn) is a subset of another sequence (y1, y2, y3, . . . , yn) if x1
⊆ ya1, x2 ⊆ ya2, x3 ⊆ ya3, . . . , xn ⊆ yan where a1, a2, a3, . . . , an are integers such that
a1 < a2 < a3 < . . . < an.
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4. Maximal sequence
If a sequence x is not a subset of some other sequence, then x is said to be a maximal
sequence.

5. Linear Pattern
A linear pattern is defined as a maximal sequence.

6. Support(s)
For a sequence s, Support(s) is defined as the proportion of learners supporting s.

7. Rating (L)
The rating of a learner L is defined in vector form as
Rating(L) = (r1, r2, r3, . . . , rj) where r1, r2, r3, . . . , rj define the degree of learners’
knowledge for the specific module used in learning.

8. Expected Rating (L)
If SL defines a set of frequent sequences, then the expected rating is defined as follows:

r =
1
|SL| ∑

j∈SL

rj. (1)

9. Similarity (a,b)
The similarity measurement for two learners a and b is computed as follows:

Similarity(a, b) =
∑j∈Sa∩Sb

(raj − ra)
(

rbj − rb

)
√

∑j∈Sa∩Sb
(raj − ra)

2 ∑j∈Sa∩Sb
(rbj − rb)

2
. (2)

10. Prediction (a,j)
The prediction estimation for a learner a with sequence j is defined as follows:

Prediction(a, j) = ra + waj ∑
a∈Lj

Similarity(a, b)
(

rbj − rb

)
. (3)

11. Normalized vector
The normalized vector waj is defined as follows:

waj = 1/ ∑
a′∈Lj

Similarity(a, b). (4)

12. Recall (List, User)
Let g(L) be the item count that is associated with the valid target users, ValidUsers, in
the recommendation list L and testing set. Let IUser be the total item count related to
the valid user User ∈ ValidUsers. Then, Recall (List, User) is defined as follows:

Recall(List, User) =
g(L)
IUser

. (5)

13. Precision (List, User)
Precision (List, User) is given as

Precision(List, User) =
g(L)
|L| . (6)

14. Rank (i)
The metric Rank(i) is represented using the following equation:

Rank(i) =
The item position in L

The number of items initially unknown to the user
. (7)
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15. Ranking Score (User)

Ranking Score (User) = ∑
j∈IUser

Rank(j)
|IUser|

. (8)

16. Mean Absolute Error (MAE)
For each of the respective appraisals and evaluations of values of pi and qi, the MAE
is defined as follows:

MAE =
∑N

i=1|pi − qi|)
N

. (9)

4. The General Structure of the Proposed Methodology

An intelligent hybrid recommender is developed in this research that permits both
the learners and the educators to use teaching resources effectively. The hybrid intelligent
recommender is implemented for all the learning courses and recommends the essential
learning resources based on the learner preferences, styles of learning, and characteris-
tics [77].

The proposed intelligent recommender consists of different subsystems: the Domain
Subsystem, Learner Subsystem, Application Subsystem, Adaptation Subsystem, and Ses-
sion Subsystem. The operations of each subsystem are tabulated in Table 1. The overall
recommendation system architecture, which comprises these subsystems, is depicted in
Figure 1. The recommendation component architecture of the proposed system is shown in
Figure 2.

Table 1. Subsystems of the proposed recommender.

Subsystem Operations

Domain Subsystem Storing the learning resources and different components
Learner Subsystem Extracting the complete information and features of the learners

Application Subsystem Applying the operational rules to identify the requirements
of learners

Adaptation Subsystem Identifying the intelligent recommendations to the learners
Session Subsystem Controlling all subsystems along with the main system

Figure 1. The overall recommendation system architecture.
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Figure 2. The recommendation component architecture of the proposed system.

4.1. Novelty and Advantages of the Proposed Method

The devised recommender applies the following strategies:

• Splitting the datasets into various clusters via the split and conquer strategy;
• Generating recommendations in each cluster and updating the recommendations;
• A cluster-based linear pattern mining strategy;
• Finding the maximal large sequences using a linear pattern pruning strategy;
• Identifying the styles of learning based on the characteristics of learners; and
• Evaluating the preferences of learning styles in different dimensions.

The following are the advantages of the proposed recommender algorithm:

• Reduced deviation in the performance measurements when compared to well-
known methods;

• Reduced computational complexity of the recommendation process;
• Increased accuracy in the recommendation list generation;
• Better recommendation generation from each cluster;
• Identification of the learners’ learning styles;
• Analysis of learning style preferences using the Index of Learning Styles strategy; and
• Evaluation of variations in learner preferences across the different dimensions.

4.2. The Proposed Intelligent Hybrid Recommender

The proposed intelligent hybrid recommender model takes the learning resources,
Learning-Resources, and the learner list, Learner-List, as its inputs. The model outputs a
better recommendation list to the learners. The overall flowchart of the proposed intelligent
hybrid recommender is shown in Figure 3. The general structure of the proposed model
is depicted in Algorithm 1. Learning-Resources and Learner-List are given as inputs to this
model. Learning-Resources is the contents or materials which are divided into different
units, each of which consists of finite lessons. Each lesson consists of different topics
such as an introduction, overview, applications, tutorials, tests, and exercises. Learner-List
represents the faculty and learner information. The faculty prepares different learning
components and accesses the appropriate authoring tool. The learners can have different
learning characteristics such as requirements, preferences, and methods of learning. The
learning style characteristics are identified by evaluating preferences for the learning styles
in different dimensions.
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Figure 3. The overall flowchart of the proposed intelligent hybrid recommender.

Algorithm 1 General Structure of the Proposed Intelligent Hybrid Recommender

Input: Learning-Resources, Learner-List
Output: Identification of learning style characteristics
1: Filter the contents of the entire Learning-Resources and apply indexing
2: Divide Learning-Resources into the required number of different modules and lessons
3: Introduce the different examples, tests, and activities for each of the lessons and modules
4: Define the components to add new learning resources
5: Identify the styles of learning based on the characteristics of learners
6: Evaluate the preferences for learning styles in different dimensions
7: Process the information
8: Identify the perception of information
9: Identify the reception of information
10: Understand the information based on different learners
11: Print the learning style characteristics

The learning processes of the learners can be organized by the decisions made by the
learners themselves. Depending on the preferences of the learners, they can choose their
strategies in generating different learning activities. These learning activities are maintained
within the proposed intelligent system. The proposed cluster-based linear pattern mining
algorithm is applied to extract the functional patterns of the learners. These patterns can
also be used to analyze the complete historical information of the learners, starting from
the learning of a specific module and lessons to their successful or unsuccessful completion
of the modules and lessons.

The proposed cluster-based linear pattern mining strategy is depicted in Figure 4. The
learners are completely clustered and their functional patterns are analyzed as shown in
the proposed Algorithm 2. The algorithm starts with the set Learning-Items {Item1, Item2,
Item3, . . . , Itemn} and the sequence of item sets (Item1, Item2, Item3, . . . , Itemn). The maximal
sequence among all the defined sequences of items is identified, and Support(s), the support
for sequence s, is evaluated. Then, we obtain the maximal and large sequences of a pattern
and perform operations such as sorting, identifying the item sets with maximum size,
linear sequence transformation, sequencing operation, and maximal operation. Finally, the
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maximal large sequences of the cluster are identified so that the functional patterns of the
learners can be extracted.

Algorithm 2 Proposed Cluster-Based Linear Pattern Mining

Input: Learning items list, the sequence of items in the cluster
Output: The maximal large sequences of the cluster
1: Define the set Learning-Items = {Item1, Item2, Item3, . . . , Itemn}
2: Define the sequence of Item sets: (Item1, Item2, Item3, . . . , Itemn)
3: Identify the maximal sequence among all the defined sequences of item sets
4: Evaluate Support(s), the support for sequence s
5: Obtain the maximal and large sequences of a linear pattern
6: Sort the learner sequences based on the primary key Learner-Id
7: Identify the item sets with maximum size
8: Apply transformation of a learner sequence
9: Determine the expected sequences applying the sequencing operation
10: Apply the maximal operation to reduce data redundancy
11: Identify the maximal large sequences of the cluster

Figure 4. The proposed cluster-based linear pattern mining.

The linear patterns which are the subsets of other linear patterns are examined and
pruned to obtain the maximal large sequences; redundant data are thereby reduced [24].
The flowchart of the proposed linear pattern pruning strategy is depicted in Figure 5, and
the proposed linear pattern pruning algorithm is shown in Algorithm 3.
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Algorithm 3 Proposed Linear Pattern Pruning

Input: Linear patterns
Output: Maximal large sequences
1: Identify the set of sequences
2: For all the identified sequences
3: For all the subsequences in the identified sequences
4: If the subsequence is not in the identified sequences, then
5: Prune the subsequence from the sequence list
6: Print the maximal large sequences

Figure 5. The proposed linear pattern pruning strategy.

Once the learners finish the sequence of learning resources, the proposed cluster-based
evaluation evaluates the learners’ gained knowledge. The flowchart of the cluster-based
evaluation is shown in Figure 6. The corresponding algorithm is sketched in Algorithm 4.
This algorithm interprets the results based on the learners’ percentages of right answers.
The sets of similar learners are also identified.

Algorithm 4 Proposed Cluster-Based Evaluation

Input: Completion of learning resources in the cluster
Output: Evaluation of the learners’ gained knowledge in the cluster
1: Check if the sequence of learning resources is completed by the learner
2: Define the levels of learner rating
3: Interpret the results based on the percentage of right answers within the cluster
4: Identify the set of similar learners, if required
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Figure 6. The proposed cluster-based evaluation.

The flowchart of the proposed cluster-based intelligent hybrid recommender is shown
in Figure 7, and the algorithm is presented in Algorithm 5. The algorithm splits the input
resources into different clusters by applying the divide and conquer strategy and applies
the proposed algorithms with the new recommendation and enhanced CF strategies to
obtain a better recommendation list for the learners.

Algorithm 5 Proposed Cluster-Based Intelligent Hybrid Recommender

Input: Learning-Resources, Learner-List
Output: Recommendation-List, the better recommendation list for the learners
1: Split Learning-Resources and Learner-List into the required number of clusters
2: For each cluster, apply the following operations:
3: Apply Algorithm 1 to identify the learning style characteristics of the learners
4: Apply Algorithms 2 and 3 to identify the maximal large sequences of the cluster
5: Apply Algorithm 4 to evaluate the learners’ gained knowledge in the cluster
6: Apply the following recommendation strategy:
7: Define the rating vector of the learner using Rating(L)
8: Compare the learners’ ratings
9: Evaluate the expected rating of the learner using the weighted mean
10: Determine Similarity(a, b) for learners using Equation (2)
11: Compute Prediction(a, j) for a learner a with sequence j
12: Recommend the required activities to the learner based on the evaluation
13: Select the best recommendation from the recommended activities in all clusters evaluation

There are different methods available to explore and analyze the different learning
style preferences of learners. The Index of Learning Styles is an objective method used to
evaluate the learning style preferences of learners in different dimensions [32,33]. Some of
these learning style characteristics are tabulated in Table 2 [32,33].

Table 2. Learning style characteristics of learners.

Active Reflexive

Tasks in the clusters Tasks outside of the clusters
Willingness to add new resources Requiring time to think
Experimental Theoretical
Visual Verbal
Images, flowcharts Complete paragraphs
Global Sequential
Linear understanding Fast understanding
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Figure 7. The proposed cluster-based intelligent hybrid recommender.

In the proposed method, the learning style preferences are analyzed using the objective
Index of Learning Styles strategy; it evaluates variations in learner preferences across the
following different dimensions:

• How to process information for learners;
• Learners’ perceptions of information;
• Learners’ reception of information; and
• Understanding of information based on different learners.

The sequential pattern mining strategy consists of the following different steps which
were applied to a database consisting of the columns Learner-Id, Resource Access Time,
and Transaction Access Path.

Sorting: The database was sorted using the column Learner-Id. Access to the learning
resources was sorted based on the access times. These results are tabulated in Table 3.

Table 3. Learning resource access based on sorting.

Learner Id Resource Access Time Transaction Access Path

1 1 March 2020 Module 1 Lesson 1 Example, Introduction
1 2 March 2020 Module 1 Lesson 2 Example, Introduction
1 3 March 2020 Module 1 Lesson 3 Introduction
2 4 March 2020 Module 1 Lesson 1 Introduction
2 5 March 2020 Module 1 Lesson 1 Example
2 6 March 2020 Module 1 Lesson 2 Introduction
3 7 March 2020 Module 1 Lesson 2 Applications
3 8 March 2020 Module 1 Lesson 3 Exercises
4 9 March 2020 Module 1 Lesson 1 Example
5 10 March 2020 Module 1 Lesson 1 Introduction

Finding the large item sets: The large item sets were identified. The outcomes of the
mapping of large learning item sets are presented in Table 4.

Transformation: This replaces every transaction in a transformed linear sequence with
a set of large item sets. The result of the transformation step is shown in Table 5.

Sequencing: In this step, the algorithm applies a set of large item sets to obtain the
expected sequences in a fixed number of passes. The large sequences obtained are shown
in Table 6.
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Table 4. Mapping of large learning item sets.

Large Learning Item Sets Mapping

Module 1 Lesson 1 Introduction A
Module 1 Lesson 1 Overview B
Module 1 Lesson 1 Applications C
Module 1 Lesson 1 Flow diagram D
Module 1 Lesson 1 Limitations E
Module 1 Lesson 1 Example 1 F
Module 1 Lesson 1 Example 2 G
Module 1 Lesson 1 Example 3 H
Module 1 Lesson 1 Exercises 1 I
Module 1 Lesson 1 Exercises 2 J
Module 1 Lesson 1 Exercises 3 K
Module 1 Lesson 1 Quiz 1 L

Table 5. Transformation Function based on Learner-Id.

Learner-Id Transformation Function

1 <(AB) (CD) (EFGH) (IJ) (KL)
2 <(ABCD) (EFG) (HIJ) (KL)
3 <ABCD) (FGH) (IJKL)
4 <(CDEF) (GH) (IJKL)>
5 <(CDFGH) (IJKL)>

Table 6. Large 3, 4, and 5 sequences.

Size Sequence Support

3 EFG 1
3 HIJ 1
3 FGH 1
4 EFGH 1
4 ABCD 1
4 IJKL 2
5 CDFGH 1

Pruning: The sequential patterns contained within other sequential patterns were
pruned to reduce the information redundancy.

Cluster generation based on the learning style characteristics is shown in Table 7.
Based on the questionnaires, 16 clusters were constructed to determine the profile of the
simulation learners’ group. The clusters were constructed for different combinations of
learning styles.

Table 7. Cluster generation based on learning style characteristics

Cluster Number Learning Styles Number of Learners

1 active, sensing, sequential, global 26
2 reflexive, intuitive, sensing, global 28
3 visual, global, verbal, sensing 42

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
16 active, sensing, visual, intuitive 57

The learner profile for the first cluster concerning the first module, which consists of
five lessons, is shown in Table 8. The provided learner ratings are presented in Table 8. The
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ratings were measured from a value of 1 for “marginal” to the a value of 5 for “excellent”.
The learner profiles were constructed for the remaining modules.

Table 8. Learner profile for Module 1 and Cluster 1.

Sequence Learner-Id Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5

1 1 2 4 4 4 3
2 2 3 4 4 3 3
3 3 4 4 5 3 4

. . . . . . . . . . . . . . . . . . . . .
n 1000 5 5 3 2 5

5. Experimental Results and Analysis

In this section, we analyze a simulation of this new recommender executed on some
sample datasets. The proposed method was implemented in the Java language. The
proposed method was evaluated via different measurements—MAE, Precision (List, User),
Recall (List, User), and Ranking Score (User).

5.1. Datasets

The proposed intelligent recommender was simulated on some educational data sets
with 1000 learners. The learners were divided into two different clusters: a simulation
cluster and a no-recommender cluster. The learners in the no-recommender cluster were
not guided through the recommender to access the learning resources. The learners in the
simulation cluster were required to go through the proposed model. The simulation cluster
consisted of 900 learners and the no-recommender cluster consisted of 100 learners.

The simulation and no-recommender clusters’ data accomplished the normality condi-
tion, as indicated by the statistical t-test used to check whether any additional equalization
of groups was required. The experimental target was to cluster the simulation cluster
learners into subclusters based on the styles of learning and characteristics of the learners.
Sixteen clusters were constructed based on the different learning styles and characteristics.

The statistical t-test was conducted to test whether there were any significant differ-
ences between the means of the simulation and no-recommender clusters. The learners in
these clusters completed the exercises and tests in each chapter and, hence, the intellectual
skills of the learners were compared. For the n1 = 900 learners in the simulation clusters and
n2 = 100 learners in the no-recommender clusters, the averages of the learners’ intellectual
skills (simulation cluster: 98.27 and no-recommender cluster: 93.73) were tested at the level
of significance α = 5% with n1 + n2 − 2 degrees of freedom. The t-test resulted in a calcu-
lated value of tcal = 1.57, less than ttab = 1.96. This signifies that there were no significant
differences between the clusters; hence, it was concluded that additional equalization of
the groups was not required.

5.2. Performance Metrics

The performance of the proposed model was analyzed via different measurements. A
comparison of the proposed method with the existing CF method in terms of MAE is shown
in Figure 8. When the MAE became lower, the recommender predicted learner ratings
more effectively. The recommended learning sequences fulfilled the accuracy requirement.
The experimental results signify that the proposed method minimized the MAE metric
for the different clusters considered when compared to the existing method. A significant
difference was inferred in comparison with the CF method.
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Figure 8. Performance metric comparisons—mean absolute error (MAE).

The proposed recommender’s performance was compared with the existing CF using
different metrics as shown in Figure 9. For higher values of Recall (List, User), the system
gave better recommendations of the learning resources. For higher values of Precision (List,
User), the recommender system signified that there were more items in its recommendation.
For lower values of Ranking Score (User), the recommender system signified that the
required item was available at the starting place.

Figure 9. Performance comparisons—Recall, Precision, and Ranking Score metrics.

5.3. Analysis

The efficiency measure defines the time that learners need to reach the required
learning goals. The devised recommender was compared with the Mass Diffusion Heat
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Spreading Resource (MDHS), nearest neighborhood CF, and User Profile Oriented Diffusion
(UPOD) methods. During the execution of the recommender, minimal |L| was set. The
experimental results showed that the learners from the simulation cluster could complete a
course with reduced computational time and could complete more lessons than those from
the no-recommender cluster. It was also observed that the proposed model intelligently
recommended learning resources based on the characteristics and styles of learning.

The experimental results of the considered metrics were analyzed and the mean µ and
standard deviation σ were calculated for the sample dataset. The simulation outcomes are
tabulated in Tables 9 and 10. The results were compared using the statistical t-test to analyze
the significance of the existing methods. From the data in the tables, we concluded that the
proposed algorithms outperformed the existing techniques based on the metrics applied
to evaluate the performance measurements. For the considered dataset, a significant
difference was obtained in terms of parameters µ and σ concerning the Ranking Score (User)
and Recall (List, User) measures in comparison with the existing methods. The proposed
method also worked well in terms of all metrics in comparison to the existing methods.

Table 9. Performance comparison based on µ.

Strategy Ranking Score (User) Recall (List, User) Precision (List, User)

CF 0.563 0.114 0.005
MDHS 0.282 0.292 0.182
UPOD 0.172 0.301 0.193

Proposed Method 0.070 0.326 0.216

Table 10. Performance comparison based on σ.

Strategy Ranking Score (User) Recall (List, User) Precision (List, User)

CF 0.003 0.004 0.002
MDHS 0.002 0.005 0.002
UPOD 0.002 0.006 0.003

Proposed Method 0.001 0.008 0.004

The mean computational time of no-recommender versus simulation clusters is plot-
ted in Figure 10. The lessons are plotted on the x-axis and the computational time is
measured and plotted on the y-axis. The computational times were measured separately
for the no-recommender and simulation clusters. It was experimentally observed that the
computational time of simulation cluster learners was significantly reduced.

The expected number of completed lessons for both the no-recommender and sim-
ulation clusters is plotted in Figure 11 at different checkpoints considered in the x-axis
uniformly. It was experimentally found that the proposed cluster-based recommender
improved the performance, as indicated by learners in the simulation cluster completing
more lessons than those in the no-recommender cluster category. The number of lessons
completed on the y-axis increased over the linear scale as the checkpoint time increased on
the x-axis.

The proposed hybrid intelligent recommender was evaluated based on the criteria
of simplicity, speed, accuracy, and reliability of the model; this is presented in Figure 12.
It was observed that more than 65% of the learners considered all criteria to evaluate the
proposed recommender. The learners were also satisfied with the accuracy and speed
of the recommender. The proposed strategies were thus effective in obtaining a better
recommendation for learners.
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Figure 10. Mean computational time of no-recommender versus simulation clusters.

Figure 11. Expected number of completed lessons for no-recommender versus simulation clusters.
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Figure 12. Evaluation of the hybrid intelligent recommender.

6. Conclusions and Future Work

Intelligent recommender systems are required for real-time e-learning applications to
enhance performance. A new hybrid intelligent recommender that automatically suits the
learning styles and characteristics of the learner was designed in this research. Several sim-
ulations were performed on the proposed model, and its performance measurements were
compared with those of the existing CF recommender. The proposed sequential pattern
clustering, pruning, and recommender algorithms produced better results compared to the
existing CF. It was experimentally concluded that the proposed cluster-based recommender
improved performance, as indicated by learners in the simulation cluster completing more
lessons than those in the no-recommender cluster category. The simulation of the proposed
recommender showed that for learner sizes of <1000, better metric values were produced.
When the learner size exceeded 1000, significant differences were obtained in the evaluated
metrics. The significant differences were analyzed in terms of the computational struc-
ture depending on |L| and learner attributes. It was observed that more than 65% of the
learners considered all criteria in evaluating the proposed recommender. The proposed
method obtained upper bounds on the Precision and Recall metrics for the sample dataset
of 0.326 and 0.216, respectively. The learners were also satisfied with the accuracy and
speed of the recommender. The proposed strategies were thus effective in obtaining better
recommendations for learners. The experimental results showed that the proposed method
minimized the MAE metric for the different clusters considered when compared to the
existing method. For the considered sample dataset, a significant difference was observed
in the parameters standard deviation σ and mean µ concerning the Recall (List, User) and
Ranking Score (User) measures when compared to other methods. The devised method
performed well concerning all the considered metrics in comparison to the other methods.
It was also found that the proposed model intelligently recommends learning resources
based on the characteristics and styles of learning.

Some future research guidelines are as follows [100–105]:

• To further enhance and recommend learning resources based on the specific character-
istics and learning styles of the learners;

• To apply metaheuristic strategies to further improve the performance metrics;
• To dynamically generate recommendations with minimal complexity; and
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• To apply evolutionary operators and machine learning for dynamic and hybrid rec-
ommendations.
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