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Abstract: A new discrete distribution for count data called extended biparametric Waring (EBW) dis-
tribution is developed. Its name is related to the fact that, in a specific configuration of its parameters,
it can be seen as a biparametric version of the univariate generalized Waring (UGW) distribution,
a well-known model for the variance decomposition into three components: randomness, liability
and proneness. Unlike the UGW distribution, the EBW can model both overdispersed and underdis-
persed data sets. In fact, the EBW distribution is a particular case of a UWG distribution when its
first parameter is positive; otherwise, it is a particular case of a Complex Triparametric Pearson (CTP)
distribution. Hence, this new model inherits most of their properties and, moreover, it helps to solve
the identification problem in the variance components of the UGW model. We compare the EBW
with the UGW by a simulation study, but also with other over and underdispersed distributions
through the Kullback-Leibler divergence. Additionally, we have carried out a simulation study
in order to analyse the properties of the maximum likelihood parameter estimates. Finally, some
application examples are included which show that the proposed model provides similar or even
better results than other models, but with fewer parameters.

Keywords: count data distribution; goodness of fit; overdispersion; underdispersion

1. Introduction

The univariate generalized Waring (UGW) is a triparametric distribution for overdis-
persed count data that has been studied by [1-4], among others. The interest of the UGW
distribution lies in the decomposition of its variance into three components, randomness,
liability and proneness, which allows us to get a deeper knowledge of the nature of data
variability, that is, how and why data vary. Whereas the Poisson distribution provides the
simplest answer to this issue (pure chance), any one-step Poisson mixture distributions
assume that there are only two sources of variability (for example, the negative binomial or
NB distribution which is a Poisson-Gamma mixture).

For this reason, the UGW distribution and the related regression model [5-7] have
been widely applied for modelling overdispersed count data sets in different fields, such as
lexicology [8], the number of authors in scientific articles [9], the evolution of the number
of links in the World Wide Web [10], accident theory [11], clustered data [12], sources
of variance in motor vehicle crash analysis [13], completeness errors in geographic data
sets [14] or agriculture [15].

However, the UGW distribution has a serious drawback related to the variance de-
composition. Since its first two parameters are interchangeable in the expression of the
probability mass function (pmf), it is difficult to determine which component refers to
liability or proneness. There are in the literature some suggestions available to avoid this
problem. Ref. [1] recommends choosing the values of liability and proneness according
to the researcher experience; Ref. [11] proposes the calculus of a bivariate version of the
Waring distribution and [5] solves the problem using additional information provided by
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covariates through a regression model. In all cases the solution of the indetermination
needs external information that is not always available.

Several extensions have been developed, such as the extended Waring distribution
or GHDI [4], the Stuttering generalized Waring distribution [16] and the bivariate gen-
eralized Waring distribution [11], but they do not manage to solve the identification
problem aforementioned.

In this paper, we study a specific biparametric distribution within the Gaussian hyper-
geometric distributions (GHD) family [17] and we propose it as an extension of the UGW
distribution but with only two parameters. The proposed model does not only perform
similar to the UGW distribution for overdispersed data sets but also solves the identifica-
tion problem of the variance components. Moreover, the way in which the extension is
carried out also allows for modelling underdispersed count datasets, since it can be seen as
a particular case of a complex triparametric Pearson (CTP) distribution [18,19] although,
in this case, the result of decomposition of the variance is not verified because the model
cannot be expressed as a Poisson mixture. Thus, this extension—that we will call extended
biparametric Waring (henceforward EBW) distribution—inherits the good properties of
the UGW and CTP distributions.

The rest of the paper is laid out as follows. Section 2 is devoted to defining the EBW
distribution and to exploring its main probabilistic properties. In Section 3 some estimation
methods are described and the properties of the maximum likelihood estimators are
analised by a simulation study. In Section 4 we compare the EBW distribution with some
other biparametric over- and underdispersed distributions. Some examples of application
to real over- and underdispersed data that illustrate the versatility of the proposed model
are included in Section 5. Finally, in Section 6, some conclusions of the current research
are presented.

2. The Extended Bivariate Waring Distribution
2.1. Definition

The GHD family, generated by the F; («, B; 7, A) function
0 x
(@)x(B)x A x=0,1,2...

2F1(“rﬁ}7})\):;) (1)x !’

with (), = r(ry(;)x ) ,&, B € Cand v, A € R, arises as a solution of the difference equation
GEf(x+1) - LX) =0, x=012,... W

where G and L are quadratic polynomials with real coefficients, G(x) = (y + x)(x + 1) and
L(x) = A(x —a)(x — B) [20]. When convergence, positivity and normalization conditions
are verified, the solution f(x) is the pmf of as a discrete distribution, that is

- o T(7) T(a+x)[(B+x) A
[ = PX =) = f TR @ prd) . T +x o

and the probability generating function (pgf)

@

G(t) =2 Fl(“/,BI’Y//\t)/Zpl(al,Blr)//)\), teR.

It is important to point out that the first three parameters of the GHD are the roots of
the polynomials L(x) and G(x) (except the sign of 7).

A thorough classification of the GHD family in terms of the parameters can be seen
in [4]. In the aforementioned paper, a detailed study of the GHD when «, 8 and 7 are
positive real numbers and 0 < A < 1 (denoted by type I) is made. The case when « and j
are conjugate complex numbers, vy > 0 and 0 < A < 1 (denoted by type II distributions)
has been studied in [18,19,21]. Type VII distributions, a finite case which may be seen as a
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generalization of the beta-binomial model, have been addressed by [22]. Likewise, the case
when A = 1 has been analysed by [23,24], among others.

In this paper, we focus on the case in which both GHD of type I and type II with
A =1 converge. Thus, L(x) in Equation (1) has a real double root, that is, « = B. Then,
the solution of Equation (1) is given in terms of a »F; (&, «;y;1) function leading to a
highly versatile biparametric discrete distribution with infinite range which is formalized
in the following definition. From now on we will call it EBW, the acronym of Extended
Bivariate Waring, distribution. Later on we will explain the nomenclature chosen for this
new distribution.

Definition 1. A random variable X following a EBW («, «y) distribution is defined by the follow-

ing pmf
P(X =x) = My—a)? T@+x21 .
T ()T (y —2a) T(y+x) x! =0,1,...

where & € R and y > max (0, 2a).

The mean, y, and variance, o2, of X are

o 2 oy —a—1)2 opty-1

:’y—Za—l’ 7=

2 4)

o (y—2a—1)2(y—-2a—-2) My —2a—2
so it is necessary that v > 2a + 1 and y > 2a + 2 to guarantee the existence of y and o2,
respectively. In general, it can be proved that v > 2a + m to guarantee the existence of the
m-th raw moment.

2.2. Properties

To study the properties of the EBW distribution we will distinguish among « > 0 and
x<Obuta ¢ Z~.

221.a>0

It is necessary that v > 2a, so we consider another parametrization of the distribution
in terms of « and p =  — 2a > 0. Then, the expression of the pmf given in Equation (3)

fomow T(a+p)> T(a+x)? 1
PX =) = o Tt p 1 o ¥~ %1 ©)

and the expressions in Equation (4) reduce to

2 2 2
o 2 a(a+p—-1)"  pu42a+p-—-1
e R P Vi) R S ©

To guarantee the existence of the m-th raw moment it is necessary that p > m.

Theorem 1. The EBW (, p) distribution with a,p > 0is a UGW (a, «, p) distribution.

Proof. Considering « = > 0 and A = 1 in Equation (2) and applying that

2Fi (e, B;7;1) = igz)f(ogf(f; : ggl

it is easy to see that the pmf given in Equation (5) coincides with that of a UGW(«a, , p)
distribution. O

Hence, our model may be seen as a biparametric case of a UGW distribution when
« > 0. As a consequence, it inherits the properties of the UGW distribution which are
listed below:
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1. It can be obtained from a two-step Poisson mixture:
e X|A~P(A)
e Ala, v ~ Gamma(x,v) with density

f(A|a,v) = F(ucl)v"‘)\ml AMA>0, w0>0

[

Therefore, X|a, v ~ NB(«,v) with pmf

F(xl,0) = ;!r(;c(::)“) (141%)“(110))6, x=0,1,...

*  vla,p ~ Beta(a, p) with density

r(tX + P) a—1
v, 0) = =<0 (1 +0)*P, ©>0, a,p0>0
f‘( | F)> I*(LK)I*(()) ) p
2. Since the EBW distribution with « > 0 is a Poisson mixture, it is always overdispersed.
It converges to P (i) when p and a?> — co with the same order of convergence.

4. As a consequence of the mixture, the variance of X can be split into three components
known as randomness, liability and proneness, respectively:

@

o2 a? N a?(a+1) N Ba+p—1) ' )
p=1 (p=D(p-2) (p-1)>*p-2)
Since we have got rid of one of the first two parameters of the UGW distribution,
the indetermination problem with regard to the components of the variance [4] disap-
pears in the biparametric model and, therefore, it is not necessary to provide additional
information when determining the partition of the variance.

In order to know the effect of each parameter on the variance components of the EBW
model we consider the proportion of variance explained by each one, that is:

_(p=D(p-2)  (+1)(p—-1) a
(x+p—1)2 (a+p—-12  (a+p—1)

Figure 1 shows the evolution of the variance partition percentages for each component
considering « fixed and p variable (low and high values) and then, p fixed and « variable
(low and high values). In the first column (« fixed), we can observe that the greater p
is, the more important is the proneness. In the second column (p fixed), the greater «
is, the more important is the randomness. Otherwise, if «# and p increase with the same
convergence order, the proneness has a lower limit in 50% of the variance, whereas the
other two parts tend to 25% each one.
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Figure 1. Percentages of the extended biparametric Waring (EBW) variance components: randomness
(green solid line), liability (blue dashed line) and proneness (purple dotted line). Column 1 has values
of &« = 0.5,1,5 and 20, respectively, for p from 2.1 to 20. Column 2 has values of p = 2.5,5,10 and 20,
respectively, for « from 0.1 to 20.

Due to the structure of the UGW distribution in which the first two parameters are
interchangeable and appear in a multiplicative form in the pmf, moments and decompo-
sition of the variance, the maximum likelihood estimates of its first two parameters are
usually almost equal. In fact, given a UGW(a, k, p) distribution, there exists an EBW («, p)
distribution with & = v/ak and the same parameter p, that is very close to the former. This
can be seen in Figure 2 where the maximum Kullback-Leibler (KL) divergence for more
details see [25] between the two models has been calculated for several values of 4, k and p.
We have considered the same scale in all the graphs in order to compare them. We observe
that: (1) the divergence increases as k is separated from a; (2) the difference between a and k
is less relevant as p increases; (3) in any case, the divergence is very small. Hence, the EBW
type I distribution has the property of providing in many cases a similar fit but with one
more degree of freedom. In general, the EBW distribution is able to provide acceptable
fits for data simulated from a UGW distribution. This implies that, in most cases, there
exists a EBW model reasonably similar to the UGW, but with the advantage of having
fewer parameters. To show this fact we have simulated M = 1000 samples of size N = 100,
300 and 500 from a UGW distribution with several values of its parameters and, for each
sample, we have obtained the corresponding EBW and UGW fits. All the estimates have
been computed by the maximum likelihood method. We have implemented our own
functions in R [26]: the pmf of the EBW and UGW distributions and the fitting function for
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both models. To do the latter, we have used the optim function of the stats package with
the L-BFGS-B method [27], since it allows box constraints, and considering as initial values
the estimates provided by the method of moments (see Section 3 for more details).

0.15 G 0.15 -
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Figure 2. Maximum Kullback Leibler divergence between the univariate generalized Waring
(UGW)(a, k, p) distribution and the EBW(\/@,p) distribution with a = 0.5,1,5 and 10 (from left
to right).

For each group of 1000 samples we have computed the percentage of EBW fits
achieved as well as the percentage of these fits which are better than the correspond-
ing UGW fit in two senses: the AIC value and the x?-goodness of fit test. Specifically,
for the EBW fits achieved we have computed the percentage of them whose AIC value
is less than that of the UGW fit and the percentage of p-values in the x?-goodness of fit
test greater than 0.01,0.05 and 0.1 (that is, the null hypothesis data comes from a EBW model
cannot be rejected). These results appear in Tables 1 and 2. We have also carried out the
Kolmogorov-Smirnov test for discontinuous distributions [28] using the ks.test function of
the dgof package in R, but in all the cases the p-values are greater than 0.1.

Table 1. Percentage of: (1) EBW fits achieved for UGW generated data; (2) EBW fits with less AIC
value than the corresponding UGW fit.

Achieved EBW Fits <AIC
N N

UGW(a, k,p) 100 300 500 100 300 500
(0.5,1,2.5) 94.4 93.4 95.9 92.6 89.3 86.4
(0.5,10,2.5) 99.8 100 100 53.4 25.1 9.9
(0.5,10,20) 95.2 93.8 94.4 99.1 95.5 89
(1.5,3,2.5) 100 100 100 88.3 88.8 87.2
(1.5,3,25) 97.9 99 98.5 100 100 99.9
(1.5,20,25) 100 100 100 96.9 82.3 74.3
(4,6,2.5) 99.9 100 100 90 89.8 91.1
(4,6,10) 100 100 100 96.3 91.1 92.3

(4,6,50) 95.8 96.5 97.6 100 99.9 99.8
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Table 2. Percentage of samples that come from a EBW model at the 1%, 5% and 10% significance
levels according to the x?-goodness of fit test.

p-Value > 0.01 p-Value > 0.05 p-Value > 0.1
N N N
UGW(a,k,p) 100 300 500 100 300 500 100 300 500

(0.5,1,2.5) 989 979 974 954 941 933 916 91 88.8
(0.5,10,2.5) 92.9 93 959 861 868 905 805 816 86.1
(0.5,10,20) 99.2 986 972 954 953 933 892 896 871

(1.5,3,25) 956 923 912 912 875 843 864 833 776
(1.5,3,25) 100 978 981 959 943 937 889 876 87.6
(1.5,20,25) 99 985 985 955 943 929 909 89.7 889

(4,6,2.5) 88.7 839 812 828 77 73.9 78 72.7 70
(4,6,10) 978 968 954 937 914 914 903 863 8738
(4,6,50) 981 961 96.6 94 91 918 898 873 87

222 . Caseax < Obuta & Z~

It can be seen as a particular case of a CTP distribution [18,21], which arises when the
polynomial L(x) in Equation (1) has conjugate complex roots « = a + ib and p = a — ib;
specifically, we have the following result.

Theorem 2. If o < 0 the EBW (, y) distribution with v > 0isa CTP(«,0, y) distribution.

Proof. The proof is straightforward since the pmf of the CTP(«,0,v) witha € Rand v > 0,
see for instance [21], coincides with the pmf of the EBW(«, 7) given in Equation (3). O

This result is also true when a > 0. So, a UGW (a, &, p) = CTP(a,0,2x + p).

At this point we can justify the name chosen for the model proposed. On the one
hand, when a > 0 the model may be seen as a biparametric case of the UGW distribution,
which is always overdispersed and that may replace it with fewer parameters; on the
other hand, when & < 0 the model can be underdispersed, so it may be considered as an
underdispersed extension of a biparametric UGW distribution.

Once again, the proposed distribution inherits the properties of another distribution,
in this case of the CTP distribution that we next summarize:

12
1. If “r(iZ o}—)i-l € 7, the distribution has two consecutive modes in the values

-17 @y (@—1p
v—2a+1 oy —2a+1 y—2a+1

12
Otherwise the distribution is unimodal with mode in 0 if 4> < 7 or in { 7(52021} ,

where [-] symbolises the integer part. Hence, the pmf is J-shaped or bell-shaped.
2. It may be underdispersed, equidispersed or overdispersed. Specifically:

3% +4a+1
¢ Itisunderdispersed whena < —1orwhen -1 < a < —0.5and y > %
30% +4a +1
e Itisequidispersed when —1 <« < —0.5and ¢y = %
30% +4a +1
¢ Itisoverdispersed whena > —0.50orwhen —1 < a < —0.5and y < %

3. A sufficient condition to be infinitely divisible (i.d.) is that « > —0.5 and ¢ >
a?/(1+ 2a). So, if & < —0.5 the EBW distribution is not i.d. As a consequence, an un-
derdispersed EBW cannot be i.d. since a necessary condition to be underdispersed is
a < —0.5.
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4. It converges to the:

e P(u) when v and a® — co with the same order of convergence.
. Normal distribution, N (s, ), when <y and a have the same order of convergence.

The CTP distribution cannot be expressed as a mixture, so in the EBW with a« < 0
there is no a result of variance decomposition.

3. Estimation
3.1. Methods for Obtaining Estimators

We can estimate the two parameters of the EBW distribution using the method of
moments and the maximum likelihood estimation method.

To apply the method of moments, we first solve the equations given in Equation (4).
To this end we substitute v — 2a — 1 = a?/y in the equation of ¢2. Then,

> th +zx —l—Zay
—H
which is equivalent to a2(c? — u) — 2u?a — 2 4+ ¢2) = 0. Then, replacin and ¢?
q H H Hiu P g H

by their sample counterparts, ¥ and s?, and solving the equation there are two possible
estimates for « by the method of moments:

R X2+ \/y‘* +%(s2 — %) (¥ + 52)
o= $2—x

—2_\/41 F(2 _ TV (F2 1 2
R X Xt 4+ X(s? —X) (X" +52)
2 = s2—x

It is clear that if data exhibit overdispersion, then ¥; > 0 and @, < 0. On the other
hand, if data are underdispersed both @ and @, are negative. Estimated «, the estimate of
7 is calculated as 4 = &?/x + 2& + 1. Hence, there are also two possible estimates for ¢
with the only restriction of being positive, which it is true when:

o O0<x<1lor

e I>landa<-¥—/I(x-1)ora>-x+/x(x—-1).

Using the MLE method we have to maximize the log-likelihood function. Thus,
if X' = (x1,...,x,) is a sample of size 1, the expression of the log-likelihood function is:
1% % g

n

InLy,,. x,( =) [2InT(a+x;) —InT(p 4 2a + x;)]
i—1

n2InT(a) —2InT(p+a) +InT(p)], 8)

when a > 0, using the parametrization given in Section 2.2.1, or

n

InLy,,.x (0,7) =Y [2InT(a+x;) —InT(7y + x;)]
i—1

—n[2InT(a) —2InT(y —a) + InT(y — 2a)], )

in another case. Both expressions can be maximized using numerical methods. In particular,
we have used the L — BFGS — B method implemented in the optim function of the MASS
package in R. This method allows box constraints on the parametric space, so we can
impose p > 0 or v > 0 in Equations (8) and (9), respectively. We consider the estimates
obtained by the method of moments as initial values, in such a way that we maximize
Equation (8) if & > 0 or Equation (9) in another case.
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3.2. Properties of the Estimators

We have carried out a simulation study in order to analyse the performance of the
estimates of the model parameters. Specifically, we have simulated M = 1000 samples of
size N = 500 of the EBW distribution and we have fitted the EBW model for each sample
using the MLE method described in the previous section.

We have considered two scenarios: & > 0, in which case the EBW distribution is
always overdispersed, and « < 0, in which case the EBW distribution can be under- and
overdispersed. In all cases the values of the parameters satisfy the conditions for the
existence of y and ¢2.

Results of the simulation procedure are shown in Table 3. Thus, Column 1 contains
the mean bias and the s.d., in brackets (* indicates a significant bias at 5% level based on a
normal 95% confidence interval, given that there are 1000 observations). Column 2 shows
the average of the mean square error (MSE) of the parameter estimates and Column 3 the
percentage of simulations in which the parameter estimate does not differ significantly at
5% from the true value, known as coverage.

We have only included low values of p and <y because the higher these values are
compared with «, the lower the mean and the variance are. In fact, if these parameters tend
to infinity, holding « fixed, the EBW distribution degenerates into 0. In addition, if both «
and p (or ) are high, the EBW is similar to the Poisson or the Normal distribution.

In general, we can deduce that:

e Ifa > 0the estimates are biased to the right, but the bias decreases as « increases, hold-
ing p fixed. The opposite happens with the bias of p, which increases as p increases.

. If & < 0 the estimates are also biased, those for « to the left and for  to the right,
but the bias disappears as « decreases (¢ < —1). Holding v fixed, the bias decreases
as « decreases and the same happens for 7.

¢ Theaverage MSE is low for both parameter estimates, although this measure increases
as p (or ) increases since the estimates accuracy and precision decrease.

e  Regarding the coverage, it approaches 95%, the confidence level considered, so it
shows the validity of the inference made.

Table 3. Mean bias and s.d. in brackets (* indicates a statistically significant bias at 5% level), average mean square error
(MSE) and coverage for EBW fits.

x>0 <0
Parameters Bias (s.d.) MSE Coverage Parameters Bias (s.d.) MSE Coverage
x=05 0.02 (0.10) * 0.02 96.3 « = —0.75 —0.01 (0.05) * 0.00 95.1
p=21 0.23 (0.80) * 1.30 94.8 v =075 0.02 (0.11) * 0.02 95.2
a=1 0.01 (0.10) * 0.02 95.5 a=—0.75 —0.01 (0.08) * 0.01 97.1
p=21 0.07 (0.36) * 0.27 96.3 y=15 0.07 (0.35) * 0.26 95.3
a=15 0.01 (0.13) * 0.03 94.2 a=—0.75 —0.02 (0.14) * 0.05 96.8
p=21 0.04 (0.29) * 0.16 94.5 ¥=3 0.29 (1.34) * 5.01 94
a=15 0.01 (0.14) * 0.04 94.4 a«=—-15 0.01 (0.09) 0.01 94.2
p=25 0.06 (0.39) * 0.30 94.4 v =075 0.00 (0.13) 0.03 94.1
a=15 0.03 (0.29) * 0.06 96.1 a=-25 —0.00 (0.10) 0.02 94.5
p=235 0.14 (0.70) * 1.00 96.6 v =075 0.01 (0.20) 0.07 94.2

4. Comparison with Other Count Data Distributions

Next we study the differences and similarities between the EBW and other well-
known biparametric discrete distributions for count data using again the KL divergence.
Specifically, we consider the distributions NB, Complex Biparametric Pearson or CBP [19],
which is a particular case of the CTP distribution, Generalized Poisson or GP [29,30],
COM-Poisson or CMP [31,32] and Hyper-Poisson or HP [33]. The first two are suitable



Mathematics 2021, 9, 170

10 of 15

only for overdispersed data, whereas the other three can cope with both underdispersed
and overdispersed data, although the GP has finite range in the underdispersed case.

We focus on the overdispersed scenario since the underdispersed one, for being the
EBW distribution a particular case of the CTP distribution, was already carried out by [21].

To compute the KL divergence between the EBW distribution and the above-mentioned
distributions (and vice versa), we have considered several values of i and 2, with 02 > y,
and then we have obtained the corresponding values of the parameters of each distribution
(see Appendix A). For the CMP and HP distributions it should be taken into account that
not all the combinations of y and ¢? are possible; empirically there seems to be an upper
limit for ¢ in p(p + 1). Thus, the values of the KL divergence are shown in Figure 3.

In general, we can observe that in an overdispersed scenario the most distant models
from the EBW distribution are the CBP and HP distributions and the closest ones to the
EBW distribution are the GP and NB distributions. On the other hand, in an underdis-
persed scenario the HP distribution, which is very similar to the CMP distribution, is the
closest one [21]. Nevertheless, these distances in relation to the EBW distribution are really
small, which implies that the performance of these distributions is very similar.
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Figure 3. Kullback Leibler divergence between the negative binomial (NB), Complex Biparametric
Pearson (CBP), Generalized Poisson (GP), COM-Poisson (CMP), Hyper-Poisson (HP) and EBW
distributions (and vice versa) in an overdispersed scenario. Rows 1-3 have ¢ = 1,y = 5 and
u = 10, respectively.
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5. Examples

In this section we use the EBW distribution to fit both over- and underdispersed real
data and we compare this fit with those obtained from other discrete distributions.

5.1. Overdispersed Data: Number of Some Sports Facilities by Municipality in Andalusia, 2015

We consider the variable X: number of some sports facilities by municipality in
Andalusia, in 2015. Data have been directly obtained from the System of Multiterritorial
Information of Andalusia (SIMA) of the Junta de Andalucia [34]. This category includes all
sports facilities in the municipality except sports complexes, sports courts, pelota courts
(frontons) and pools. A description of these data appears in Table 4, which contains the
mean, variance, Aggregation Index (Al), quartiles and maximum.

Table 4. Descriptive statistics for data in examples.

x s? Al Q1 Q> Qs Max
Facilities 3.57 25.89 7.26 1 2 4 55
Syllables —1 1.58 1.17 0.74 1 2 2 5

We will model these data by the following distributions: EBW, NB, GP, CBP, UGW
and CMP. AIC values, statistics and p-values corresponding to the y2-goodness of fit test
are shown in Table 5. We can see that the best fit is that provided by the EBW distribution.
The Wald test supports this statement since the null hypothesis 2 = k (the first two
parameters of the UGW distribution are equal) cannot be rejected: the statistic value is
—1.31 x 10~® and the corresponding p-value is 1. With the likelihood ratio test (LRT) we
come to the same conclusion (LRT = 2.36 x 10~1? and p-value ~ 1).

Table 5. AIC values and x?-goodness of fit test for data about some sports facilities.

EBW NB GP CBP UuGw cMP
AIC 3532.7 3579.2 3548.7 3555.1 3534.7 3579.86
X2 10.981 38.407 18.897 36.047 10.98 37.620
d.f. 15 15 15 16 14 15
p-value 0.7540 0.0008 0.2184 0.0029 0.6876 0.0010

Table 6 shows the observed and expected frequencies for the EBW, NB, GP and CBP
fits. Figure 4 shows graphically the frequencies for the values between 0 and 10 sport
facilities. We can see that, in general, the EBW distribution fit is really accurate (the greater
Pearson residual is 1.55 for the interval 18-21). In the other side, the remaining distributions
considered provide worse fits, in special in reference to the lowest values of the variable
(high Pearson residuals in 0, 1 and 2).

Additionally, we can calculate the three components of the variance. The percentage
of data variability due to randomness, liability and proneness is 14.25%, 32.83% and 52.92%,
respectively. We can observe that randomness does not play a very important role with
respect to the total variability of data and that the most important component is proneness,
which refers to specific and internal conditions instead of general conditions of the munici-
pality (external), although liability is also remarkable. The idiosyncrasy of a municipality
explains more than 50% of the variability in the number of some sports facilities, whereas
shared conditions have less influence, but also noteworthy, on this variability.
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Figure 4. Observed and expected frequencies for data about other sports facilities (from 0 to 10).

Table 6. Observed and expected frequencies for data about other sports facilities.

Expected
X Observed EBW NB GP CBP
0 140 150.41 169.71 160.56 112.72
1 159 147.58 127.08 139.42 192.40
2 123 114.40 97.78 105.46 139.44
3 82 83.53 75.90 78.25 86.61
4 60 60.27 59.18 58.32 54.66
5 36 43.68 46.27 4391 36.11
6 36 32.02 36.23 33.43 24.96
7 20 23.78 28.41 25.71 17.94
8 16 17.90 22.30 19.96 13.33
9 14 13.66 17.51 15.63 10.18
10 12 10.56 13.76 12.32 7.95
11 4 8.26 10.82 9.78 6.34
12 9 6.53 8.51 7.81 5.14
13 6 5.21 6.70 6.27
14 5 5.27 5.05 775
15 : 7.63
7.42 7.42 5.49
16 4 51
17 1 :
18 0 6.20 6.76 5.67
» 2 6.07
" 0 5.95 8.94 57
22-24 2
25-33 4 8.40 5.11
34-55 4 7.48
a = 3147 8 =0.948 A =1535 b=1.727
(0.181) (0.064) (0.059) (0.097)
p = 3.800 fi = 3.566 6 = 0570 5 = 1746
(0.383) (0.151) (0.018) (0.141)

5.2. Underdispersed Data: Turkish Poem

We consider data about the word length (in terms of number of syllables) in the turkish
poem Gidisat by Erciiment Behzat Lav available in [35]. Following these authors, the count
for 1is treated as a count for 0, and in general the count for the response variable X is treated
as X — 1, as though the data are generated by adding 1 to the distribution. These data
exhibit underdispersion with a variance-mean ratio of 0.74 (see Table 4). Table 7 contains
the parameter estimates, their standard errors (in parenthesis), the AIC, the observed and
expected frequencies and the corresponding Pearson x? test for each one of the models
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that copes with underdispersion, that is, EBW, CTP, CMP and HP (the GP distribution
has been excluded because it is of finite range).

CTP and EBW fits provide practically the same results. In fact, b = 0 using the Wald
test (zexp = 2.3 X 107° and p-value ~ 1) and the LRT (ngp = 0 and p-value = 1). Observed
and expected frequencies for each fit are represented in Figure 5 (the CTP distribution
has been suppressed). Although the three fits are very similar and really good, the EBW
distribution fit is the most accurate taking into account the expected frequencies.

Table 7. Parameter estimates, standard errors (in parenthesis), observed and expected frequencies,

AIC and x? test for fits to data about the word length of a Turkish poem.

Expected
X Observed EBW cTP CMP HP
1 64 61.24 61.24 59.69 61.20
2 131 136.23 136.23 141.87 145.24
3 122 121.68 121.68 118.70 112.60
4 61 56.93 56.93 53.92 52.17
5 13 15.27 15.27 15.88 17.27
>6 3 2.66 2.66 3.94 5.55
x = —10.530 @ = —10.530 A =2377 7 = 0.485
(2.144) (2.158) (0.276) (0.099)
v =49.843 b = 0.001 v = 1.506 A=1.151
(24.257) (14.254) (0.137) (0.104)
¥ =49.843
(24.416)
AIC 1158.3 1160.3 1160.7 11644
x> — statistic 1.000 1.000 2914 6.014
p-value 0.801 0.606 0.405 0.111
'8_ ] ,&\ Obs
, ,;*- >~\\_¢\‘\_§ ; E?AVF\’I
/ N & Hp
;’33 2 //, :
g .17 '
L
‘\*;";3~‘
o e
T T T T T T
1 2 3 4 5 6

Figure 5. Observed and expected frequencies for data about the number of syllables of a Turk-

ish poem.

6. Conclusions

The EBW distribution is a very flexible biparametric discrete distribution that allows
for modelling a wide variety of over and underdispersed count datasets. There are other
biparametric distributions that can also cope with over and underdispersion such as the
GP, CMP or HP distributions, but the EBW distribution is more general because its pmf
and moments can be explicitly obtained in terms of the parameters. In this paper we have
proposed this new model to fits data from different fields of knowledge, that shows the
versatility of this model in respect with its possible application. In addition, when the
first parameter of the EBW distribution is positive, it allows to split the variance into three
uniquely determined components. This property avoids the problem of indeterminacy
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present in the UGW distribution. In consequence, and taking into account this property,
the EBW distribution is more adequate than other biparametric discrete distributions for
modelling overdispersed data in which the non-random part of the variance has two
components, none of them negligible.

Furthermore, when the first parameter is a negative integer the EBW distribution has
finite range and it is underdispersed. Something similar happens with the GP distribution
that also has finite range but only in the underdispersed case, whereas the EBW distribution
can also be underdispersed with infinite range.
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institutodeestadisticaycartografia/sima/index2.htm and the example 2 is included in the article.
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Appendix A. Obtaining the Parameters in Terms of u# and o2
For the EBW distribution there is a pair of solutions for & and v from Equation (4):

2 4 2 _ 2 2
R N P Sope (Ala)
oF—p "
2 _ 4 2 _ 2 2
o = =V +g§‘7_y”)(” ) =2 41 (Alb)

It can be shown that if the EBW distribution is overdispersed, a1,y; > 0 and ay < 0,
but y2 > 0if y < 1. If the EBW distribution is underdispersed, both #; and «, are
negative, but:

2B
. 'yl>Owheny<1and0’2>y(1—y)orwheny21and¢72>M
e 72 >0wheny <lando? > pu(l—p).

As a consequence, if 4 > 1, the only possible solution is that given in Equation (Ala)
for both cases (over- and underdispersed).

Regarding the rest of the models, the expressions of their parameters in terms of y
and o2 can be seen in [21].
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