Supplementary Material

Part A: Graph Families

```
1. mod 4
   Class 1: G_8[0, 1, 2]: Cube fix(G) = 3
2. mod 5
   Class 1: G_{10}[0, 1, 2]: Circulant Graph C_{10}(1, 5), fix(G) = 2
3. mod 6
   Class 1: G_{12}[0, 1, 2]: P_2 \times C_6, fix(G) = 2
   Class 2: G_{12}[0,1,3]: Half-step graph (Theorem 4.5), fix(G) = 3
   Class 3: G_{12}[0, 2, 4]: 2K_{3,3}: fix(G) = 10
4. mod 7
   Class 1: G_{14}[0, 1, 2]: Circulant Graph C_{14}(1, 7), fix(G) = 2
   Class 2: G_{14}[0, 1, 3]: fix(G) \le 3
5. mod 8
   Class 1: G_{16}[0, 1, 2]: P_2 \times C_8, fix(G) = 2
   Class 2: G_{16}[0, 1, 3]: fix(G) \le 3
   Class 3: G_{16}[0, 1, 4]: Half-step graph, (Theorem 4.5) fix(G) = 4
   Class 4: G_{16}[0, 2, 4]: 2(P_2 \times C_4), fix(G) = 4
6. mod 9
   Class 1: ML_{18}, fix(G) = 2, G_{18}[0, 1, 2], G_{18}[0, 2, 4], and G_{18}[0, 1, 5].
   Class 2: G_{18}[0, 1, 3], fix(G) = 1, G_{18}[0, 1, 3], G_{18}[0, 1, 7], G_{18}[0, 1, 4],
   G_{18}[0,1,6], G_{18}[0,2,5], \text{ and } G_{18}[0,2,6].
   Class 3: 3K_{3,3}, fix(G) = 12, G_{18}[0,3,6]
7. \ \mathrm{mod} \ 10
   Class 1: P_2 \times C_{10}, fix(G) = 2: G_{20}[0, 1, 2], and G_{20}[0, 3, 6]
   Class 2: 2ML_{10}, fix(G) = 4: G_{20}[0, 2, 4], and G_{20}[0, 4, 8]
   Class 3: fix(G) = 1 (any vertex can be fixed): G_{20}[0, 1, 3], G_{20}[0, 1, 4], G_{20}[0, 1, 7], and G_{20}[0, 1, 8]
   Class 4: Half-step (Theorem 4.5), fix(G) = 5: G_{20}[0, 1, 5], G_{20}[0, 1, 6], G_{20}[0, 2, 5], and G_{20}[0, 2, 7]
8. mod 11
   Class 1: ML_{22}, fix(G) = 2: G_{22}[0, 1, 2], G_{22}[0, 2, 4], G_{22}[0, 3, 6], G_{22}[0, 4, 8], and G_{22}[0, 5, 10].
   Class 2: fix(G) = 1 (any vertex can be fixed): G_{22}[0, 1, 3], G_{22}[0, 1, 4], G_{22}[0, 1, 5], G_{22}[0, 1, 7],
   G_{22}[0,1,8], G_{22}[0,1,9], G_{22}[0,2,5], G_{22}[0,2,6], G_{22}[0,2,7], \text{ and } G_{22}[0,2,8].
9. mod 12
   Class 1: P_2 \times C_{12}, fix(G) = 2: G_{24}[0, 1, 2], G_{24}[0, 5, 10]
   Class 2: fix(G) = 1 (any vertex can be fixed): G_{24}[0,1,3], G_{24}[0,1,10], G_{24}[0,2,5], and G_{24}[0,2,9].
   Class 3: fix(G) = 1 (any vertex can be fixed): G_{24}[0, 1, 4], G_{24}[0, 1, 9], G_{24}[0, 3, 7], and G_{24}[0, 3, 8].
```

```
Class 4: fix(G) = 2: G_{24}[0, 1, 5], G_{24}[0, 1, 8]
```

Class 5: Half-step graph,
$$fix(G) = 6$$
, $G_{24}[0, 1, 6]$, $G_{24}[0, 1, 7]$

Class 6:
$$G_{24}[0, 2, 4]$$
: $2(P_2 \times C_6)$, fix $(G) = 4$

Class 7:
$$G_{24}[0, 2, 6]$$
, $G_{24}[0, 2, 8]$: Two half-step graphs, fix $(G) = 6$

Class 8:
$$G_{24}[0,3,6]$$
: $3(P_2 \times C_4)$, $fix(G) = 6$

Class 9:
$$G_{24}[0, 4, 8]$$
: $4K_{3,3}$, fix $(G) = 16$

10. mod 13

Class 1:
$$ML_{26}$$
, fix $(G) = 2:G_{26}[0,1,2]$, $G_{26}[0,2,4]$, $G_{26}[0,3,6]$, $G_{26}[0,4,8]$, $G_{26}[0,5,10]$, and $G_{26}[0,6,12]$

Class 2:
$$fix(G) = 1$$
 (any vertex can be fixed): $G_{26}[0, 1, 3]$, $G_{26}[0, 1, 5]$, $G_{26}[0, 1, 6]$, $G_{26}[0, 1, 8]$,

$$G_{26}[0,1,9], G_{26}[0,1,11], G_{26}[0,2,5], G_{26}[0,2,6], G_{26}[0,2,9], G_{26}[0,2,10], G_{26}[0,3,7], \text{ and } G_{26}[0,3,9]$$

Class 3:
$$fix(G) = 1$$
 (any vertex can be fixed): $G_{26}[0, 1, 4]$, $G_{26}[0, 1, 10]$, $G_{26}[0, 2, 7]$, and $G_{26}[0, 2, 8]$.

11. mod 14

Class 1:
$$P_2 \times C_{14}$$
, fix $(G) = 2$: $G_{28}[0, 1, 2]$, $G_{28}[0, 3, 6]$, and $G_{28}[0, 5, 10]$

Class 2:
$$2ML_{14}$$
, fix $(G) = 4$: $G_{28}[0, 2, 4]$, $G_{28}[0, 4, 8]$, and $G_{28}[0, 6, 12]$

Class 3:
$$fix(G) = 1$$
, any vertex: $G_{28}[0, 1, 3]$, $G_{28}[0, 1, 12]$, $G_{28}[0, 1, 5]$, $G_{28}[0, 1, 10]$, $G_{28}[0, 3, 8]$, and $G_{28}[0, 3, 9]$.

Class 4:
$$fix(G) = 1$$
, any vertex: $G_{28}[0, 1, 4]$, $G_{28}[0, 1, 11]$, $G_{28}[0, 1, 6]$,

$$G_{28}[0,1,9], G_{28}[0,2,5], \text{ and } G_{28}[0,2,11].$$

Class 5: half-step,
$$fix(G) = 7$$
, $G_{28}[0, 1, 7]$, $G_{28}[0, 1, 8]$, $G_{28}[0, 2, 7]$,

$$G_{28}[0,2,9], G_{28}[0,3,7], \text{ and } G_{28}[0,3,10].$$

Class 6. Two disjoint graphs, fix(G) = 6: $G_{28}[0, 2, 6]$, and $G_{28}[0, 2, 10]$.

12. mod 15

Class 1:
$$ML_{15}$$
, fix $(G) = 2$: $G_{30}[0, 1, 2]$, $G_{30}[0, 2, 4]$, $G_{30}[0, 4, 8]$, and

$$G_{30}[0,7,14].$$

Class 2:
$$3ML_5$$
, fix $(G) = 6$: $G_{30}[0, 3, 6]$, and $G_{30}[0, 6, 12]$.

Class 3:
$$5ML_3$$
, fix $(G) = 10$: $G_{30}[0, 5, 10]$.

Class 4:
$$fix(G) = 1$$
:any vertex: $G_{30}[0, 1, 3], G_{30}[0, 1, 13], G_{30}[0, 1, 7],$

$$G_{30}[0,1,9],G_{30}[0,2,6],G_{30}[0,2,11],G_{30}[0,3,7],$$
 and $G_{30}[0,3,11].$

Class 5:
$$fix(G) = 2$$
: $G_{30}[0, 1, 4]$, $G_{30}[0, 1, 12]$, $G_{30}[0, 2, 8]$, and $G_{30}[0, 2, 9]$.

Class 6:
$$fix(G) = 2$$
: $G_{30}[0, 1, 5]$, $G_{30}[0, 1, 11]$, $G_{30}[0, 2, 7]$, and $G_{30}[0, 2, 10]$.

Class 7:
$$fix(G) = 1$$
: any vertex: $G_{30}[0, 1, 6]$, $G_{30}[0, 1, 10]$, $G_{30}[0, 2, 5]$, $G_{30}[0, 2, 12]$,

$$G_{30}[0,3,8], G_{30}[0,3,10], G_{30}[0,4,9], \text{ and } G_{30}[0,4,10].$$

13. mod 16

Class 1:
$$P_2 \times C_{16}$$
: fix $(G) = 2$: $G_{32}[0, 1, 2]$, $G_{32}[0, 3, 6]$, $G_{32}[0, 5, 10]$, and $G_{32}[0, 7, 14]$.

Class 2:
$$2(P_2 \times C_8)$$
, fix $(G) = 4$: $G_{32}[0, 2, 4]$, and $G_{32}[0, 6, 12]$.

Class 3:
$$4(P_2 \times C_4)$$
: $G_{32}[0,4,8]$.

Class 4:
$$fix(G) = 1$$
: any vertex: $G_{32}[0, 1, 3]$, $G_{32}[0, 1, 14]$, $G_{32}[0, 1, 6]$, $G_{32}[0, 1, 11]$,

$$G_{32}[0,2,7]$$
, $G_{32}[0,2,11]$, $G_{32}[0,3,9]$, and $G_{32}[0,3,10]$.

Class 5: fix(G) = 1: any vertex: $G_{32}[0, 1, 4]$, $G_{32}[0, 1, 13]$, $G_{32}[0, 1, 5]$, $G_{32}[0, 1, 12]$,

 $G_{32}[0,3,7]$, $G_{32}[0,3,12]$, $G_{32}[0,4,9]$, and $G_{32}[0,4,11]$.

Class 6: fix(G) = 2: $G_{32}[0, 1, 7]$, $G_{32}[0, 1, 10]$, $G_{32}[0, 2, 5]$, and $G_{32}[0, 2, 13]$.

Class 7: half-step: fix(G) = 8: $G_{32}[0, 1, 8]$, $G_{32}[0, 1, 9]$, $G_{32}[0, 3, 8]$, and $G_{32}[0, 3, 11]$.

Class 8: fix(G) = 4: $G_{32}[0, 2, 6]$, and $G_{32}[0, 2, 12]$.

Class 9: fix(G) = 4: $G_{32}[0, 2, 8]$, and $G_{32}[0, 2, 10]$.

We note the cases become increasingly complex for cases when n is highly composite.

Part B: Remaining cases from Theorem 4.2

1. 1 fixed block - second possibility $[k-1,0,2] \rightarrow [k-1,0,2], [0,1,3] \rightarrow [k-3,k-2,0], [k-3,k-2,0] \rightarrow [0,1,3]$

This implies that $k-1 \to \{k-1,2\}$, $2 \to \{k-1,2\}$, $1 \to \{k-3,k-2\}$, $3 \to \{k-3,k-2\}$, $k-3 \to \{1,3\}$ and $k-2 \to \{1,3\}$.

We then consider the block [2,3,5]. It has to be mapped to a block with a k-1 or 2 and either a k-3 or k-2. We consider the four following cases:

• $2 \to k - 1, 3 \to k - 3$

Then the block [2,3,5] would be mapped to a block with a k-1 and a k-3. This would be the block [k-4,k-3,k-1], implying that $5 \to k-4$, and also that $k-1 \to 2$ and $1 \to k-2$. Then the block [1,2,4] has to be mapped to a block with a k-2 and a k-1. This would be the block [k-2,k-1,1], implying that $4 \to 1$. This is a contradiction because only k-3 or k-2 can be mapped to 1.

• $2 \to k - 1, 3 \to k - 2$

In this case, [2,3,5] is going to be mapped to a block with a k-1 and a k-2. This is the block [k-2,k-3,1], further implying that $5 \to 1$. This is a contradiction because only k-3 or k-2 can be mapped to 1.

• $2 \to 2, 3 \to k-2$

In this case, the block [2,3,5] must be mapped to a block with a 2 and a k-2. Such block does not exist.

• $2 \rightarrow 2, 3 \rightarrow k - 3$

In this case, [2,3,5] must be mapped to a block with a 2 and a k-3. Such block does not exist.

1. 1 Fixed block - third possibility

$$\begin{array}{c} [k-3,k-2,0] \rightarrow [k-3,k-2,0], \ [0,1,3] \rightarrow [k-1,0,2], \ [k-1,0,2] \rightarrow [0,1,3] \\ \text{This implies that } k-3 \rightarrow \{k-3,k-2\}, \ k-2 \rightarrow \{k-3,k-2\}, \ 1 \rightarrow \{k-1,2\}, \ 3 \rightarrow \{k-1,2\}, \\ k-1 \rightarrow \{1,3\} \ \text{and} \ 2 \rightarrow \{1,3\} \end{array}$$

We first consider the block [2,3,5]. It must be mapped to a block with a 1 or 3 and either a k-1 or 2. We consider the four following cases:

• $2 \rightarrow 1, 3 \rightarrow 2$

In this case, [2,3,5] would have to be mapped to a block with a 1 and a 2, which would be the block [1,2,4], implying $5 \to 4$, $k-1 \to 3$ and $1 \to k-1$. Then the block [1,2,4] would be mapped to a block with a k-1 and a 1, which would be the block [k-2,k-1,1], implying that $4 \to k-2$. This is a contradiction because only k-3 or k-2 can be mapped to k-2.

• $2 \to 1, 3 \to k-1$

In this case, [2,3,5] would have to be mapped to a block with a 1 and a k-1. This would be the block [k-2,k-1,1], implying that $5 \to k-2$. This is a contradiction because only k-3 or k-2 can be mapped to k-2.

• $2 \rightarrow 3, 3 \rightarrow 2$

In this case, [2,3,5] has to be mapped to a block with a 3 and a 2. This would mean $[2,3,5] \rightarrow [2,3,5]$, implying $5 \rightarrow 5$, $k-1 \rightarrow 1$ and $1 \rightarrow k-1$. In this case, the block [1,2,4] would have to be mapped to a block with a 3 and a k-1. Such block does not exist.

• $2 \to 3, 3 \to k-1$

In this case, the block [2,3,5] would have to be mapped to a block with a 3 and a k-1. Such block does not exist.