Supplementary Material

Part A: Graph Families

1. $\bmod 4$

Class 1: $G_{8}[0,1,2]$: Cube $\operatorname{fix}(G)=3$
2. $\bmod 5$

Class 1: $G_{10}[0,1,2]$: Circulant Graph $C_{10}(1,5)$, fix $(G)=2$
3. $\bmod 6$

Class 1: $G_{12}[0,1,2]: P_{2} \times C_{6}, \operatorname{fix}(G)=2$
Class 2: $G_{12}[0,1,3]:$ Half-step graph (Theorem 4.5), fix $(G)=3$
Class 3: $G_{12}[0,2,4]: 2 K_{3,3}: \operatorname{fix}(G)=10$
4. $\bmod 7$

Class 1: $G_{14}[0,1,2]$: Circulant Graph $C_{14}(1,7), \operatorname{fix}(G)=2$
Class 2: $G_{14}[0,1,3]$: fix $(G) \leq 3$
5. $\bmod 8$

Class 1: $G_{16}[0,1,2]: P_{2} \times C_{8}, \operatorname{fix}(G)=2$
Class 2: $G_{16}[0,1,3]: \operatorname{fix}(G) \leq 3$
Class 3: $G_{16}[0,1,4]$: Half-step graph, (Theorem 4.5) fix $(G)=4$
Class 4: $G_{16}[0,2,4]: 2\left(P_{2} \times C_{4}\right), \operatorname{fix}(G)=4$
6. $\bmod 9$

Class 1: $M L_{18}, \operatorname{fix}(G)=2, G_{18}[0,1,2], G_{18}[0,2,4]$, and $G_{18}[0,1,5]$.
Class 2: $G_{18}[0,1,3]$, fix $(G)=1, G_{18}[0,1,3], G_{18}[0,1,7], G_{18}[0,1,4]$,
$G_{18}[0,1,6], G_{18}[0,2,5]$, and $G_{18}[0,2,6]$.
Class 3: $3 K_{3,3}$, $\operatorname{fix}(G)=12, G_{18}[0,3,6]$
7. $\bmod 10$

Class 1: $P_{2} \times C_{10}, \operatorname{fix}(G)=2: G_{20}[0,1,2]$, and $G_{20}[0,3,6]$
Class 2: $2 M L_{10}$, $\operatorname{fix}(G)=4: G_{20}[0,2,4]$, and $G_{20}[0,4,8]$
Class 3: $\operatorname{fix}(G)=1$ (any vertex can be fixed): $G_{20}[0,1,3], G_{20}[0,1,4], G_{20}[0,1,7]$, and $G_{20}[0,1,8]$
Class 4: Half-step (Theorem 4.5), fix $(G)=5: G_{20}[0,1,5], G_{20}[0,1,6], G_{20}[0,2,5]$, and $G_{20}[0,2,7]$
8. $\bmod 11$

Class 1: $M L_{22}$, fix $(G)=2: G_{22}[0,1,2], G_{22}[0,2,4], G_{22}[0,3,6], G_{22}[0,4,8]$, and $G_{22}[0,5,10]$.
Class 2: $\operatorname{fix}(G)=1$ (any vertex can be fixed): $G_{22}[0,1,3], G_{22}[0,1,4], G_{22}[0,1,5], G_{22}[0,1,7]$,
$G_{22}[0,1,8], G_{22}[0,1,9], G_{22}[0,2,5], G_{22}[0,2,6], G_{22}[0,2,7]$, and $G_{22}[0,2,8]$.
9. $\bmod 12$

Class 1: $P_{2} \times C_{12}, \operatorname{fix}(G)=2: G_{24}[0,1,2], G_{24}[0,5,10]$
Class 2: $\operatorname{fix}(G)=1$ (any vertex can be fixed): $G_{24}[0,1,3], G_{24}[0,1,10], G_{24}[0,2,5]$, and $G_{24}[0,2,9]$.
Class 3: fix $(G)=1$ (any vertex can be fixed): $G_{24}[0,1,4], G_{24}[0,1,9], G_{24}[0,3,7]$, and $G_{24}[0,3,8]$.

Class 4: $\operatorname{fix}(G)=2: G_{24}[0,1,5], G_{24}[0,1,8]$
Class 5: Half-step graph, $\operatorname{fix}(G)=6, G_{24}[0,1,6], G_{24}[0,1,7]$
Class 6: $G_{24}[0,2,4]: 2\left(P_{2} \times C_{6}\right)$, fix $(G)=4$
Class 7: $G_{24}[0,2,6], G_{24}[0,2,8]$: Two half-step graphs, $\operatorname{fix}(G)=6$
Class 8: $G_{24}[0,3,6]: 3\left(P_{2} \times C_{4}\right), \operatorname{fix}(G)=6$
Class 9: $G_{24}[0,4,8]: 4 K_{3,3}, \operatorname{fix}(G)=16$
10. $\bmod 13$

Class 1: $M L_{26}, \operatorname{fix}(G)=2: G_{26}[0,1,2], G_{26}[0,2,4], G_{26}[0,3,6], G_{26}[0,4,8], G_{26}[0,5,10]$, and $G_{26}[0,6,12]$
Class 2: $\operatorname{fix}(G)=1$ (any vertex can be fixed): $G_{26}[0,1,3], G_{26}[0,1,5], G_{26}[0,1,6], G_{26}[0,1,8]$,
$G_{26}[0,1,9], G_{26}[0,1,11], G_{26}[0,2,5], G_{26}[0,2,6], G_{26}[0,2,9], G_{26}[0,2,10], G_{26}[0,3,7]$, and $G_{26}[0,3,9]$
Class 3: $\operatorname{fix}(G)=1$ (any vertex can be fixed): $G_{26}[0,1,4], G_{26}[0,1,10], G_{26}[0,2,7]$, and $G_{26}[0,2,8]$.
11. $\bmod 14$

Class 1: $P_{2} \times C_{14}, \operatorname{fix}(G)=2: G_{28}[0,1,2], G_{28}[0,3,6]$, and $G_{28}[0,5,10]$
Class 2: $2 M L_{14}, \operatorname{fix}(G)=4: G_{28}[0,2,4], G_{28}[0,4,8]$, and $G_{28}[0,6,12]$
Class 3: $\operatorname{fix}(G)=1$, any vertex: $G_{28}[0,1,3], G_{28}[0,1,12], G_{28}[0,1,5], G_{28}[0,1,10], G_{28}[0,3,8]$, and $G_{28}[0,3,9]$.

Class 4: $\operatorname{fix}(G)=1$, any vertex: $G_{28}[0,1,4], G_{28}[0,1,11], G_{28}[0,1,6]$,
$G_{28}[0,1,9], G_{28}[0,2,5]$, and $G_{28}[0,2,11]$.
Class 5: half-step, $\operatorname{fix}(G)=7, G_{28}[0,1,7], G_{28}[0,1,8], G_{28}[0,2,7]$,
$G_{28}[0,2,9], G_{28}[0,3,7]$, and $G_{28}[0,3,10]$.
Class 6. Two disjoint graphs, $\operatorname{fix}(G)=6: G_{28}[0,2,6]$, and $G_{28}[0,2,10]$.
12. $\bmod 15$

Class 1: $M L_{15}, \operatorname{fix}(G)=2: G_{30}[0,1,2], G_{30}[0,2,4], G_{30}[0,4,8]$, and
$G_{30}[0,7,14]$.
Class 2: $3 M L_{5}, \operatorname{fix}(G)=6: G_{30}[0,3,6]$, and $G_{30}[0,6,12]$.
Class 3: $5 M L_{3}$, $\operatorname{fix}(G)=10: G_{30}[0,5,10]$.
Class 4: $\operatorname{fix}(G)=1$:any vertex: $G_{30}[0,1,3], G_{30}[0,1,13], G_{30}[0,1,7]$,
$G_{30}[0,1,9], G_{30}[0,2,6], G_{30}[0,2,11], G_{30}[0,3,7]$, and $G_{30}[0,3,11]$.
Class 5: $\operatorname{fix}(G)=2: G_{30}[0,1,4], G_{30}[0,1,12], G_{30}[0,2,8]$, and $G_{30}[0,2,9]$.
Class 6: $\operatorname{fix}(G)=2: G_{30}[0,1,5], G_{30}[0,1,11], G_{30}[0,2,7]$, and $G_{30}[0,2,10]$.
Class 7: $\operatorname{fix}(G)=1$: any vertex: $G_{30}[0,1,6], G_{30}[0,1,10], G_{30}[0,2,5], G_{30}[0,2,12]$,
$G_{30}[0,3,8], G_{30}[0,3,10], G_{30}[0,4,9]$, and $G_{30}[0,4,10]$.
13. $\bmod 16$

Class 1: $P_{2} \times C_{16}: \operatorname{fix}(G)=2: G_{32}[0,1,2], G_{32}[0,3,6], G_{32}[0,5,10]$, and $G_{32}[0,7,14]$.
Class 2: $2\left(P_{2} \times C_{8}\right)$, $\operatorname{fix}(G)=4: G_{32}[0,2,4]$, and $G_{32}[0,6,12]$.
Class 3: $4\left(P_{2} \times C_{4}\right): G_{32}[0,4,8]$.
Class 4: $\operatorname{fix}(G)=1$: any vertex: $G_{32}[0,1,3], G_{32}[0,1,14], G_{32}[0,1,6], G_{32}[0,1,11]$, $G_{32}[0,2,7], G_{32}[0,2,11], G_{32}[0,3,9]$, and $G_{32}[0,3,10]$.

Class 5: $\operatorname{fix}(G)=1$: any vertex: $G_{32}[0,1,4], G_{32}[0,1,13], G_{32}[0,1,5], G_{32}[0,1,12]$,
$G_{32}[0,3,7], G_{32}[0,3,12], G_{32}[0,4,9]$, and $G_{32}[0,4,11]$.
Class 6: fix $(G)=2$: $G_{32}[0,1,7], G_{32}[0,1,10], G_{32}[0,2,5]$, and $G_{32}[0,2,13]$.
Class 7: half-step: $\operatorname{fix}(G)=8: G_{32}[0,1,8], G_{32}[0,1,9], G_{32}[0,3,8]$, and $G_{32}[0,3,11]$.
Class 8: $\operatorname{fix}(G)=4: G_{32}[0,2,6]$, and $G_{32}[0,2,12]$.
Class 9: $\operatorname{fix}(G)=4: G_{32}[0,2,8]$, and $G_{32}[0,2,10]$.
We note the cases become increasingly complex for cases when n is highly composite.

Part B: Remaining cases from Theorem 4.2

1. 1 fixed block - second possibility $[k-1,0,2] \rightarrow[k-1,0,2],[0,1,3] \rightarrow[k-3, k-2,0],[k-3, k-2,0] \rightarrow$ $[0,1,3]$

This implies that $k-1 \rightarrow\{k-1,2\}, 2 \rightarrow\{k-1,2\}, 1 \rightarrow\{k-3, k-2\}, 3 \rightarrow\{k-3, k-2\}, k-3 \rightarrow\{1,3\}$ and $k-2 \rightarrow\{1,3\}$.

We then consider the block $[2,3,5]$. It has to be mapped to a block with a $k-1$ or 2 and either a $k-3$ or $k-2$. We consider the four following cases:

- $2 \rightarrow k-1,3 \rightarrow k-3$

Then the block $[2,3,5]$ would be mapped to a block with a $k-1$ and a $k-3$. This would be the block $[k-4, k-3, k-1]$, implying that $5 \rightarrow k-4$, and also that $k-1 \rightarrow 2$ and $1 \rightarrow k-2$. Then the block $[1,2,4]$ has to be mapped to a block with a $k-2$ and a $k-1$. This would be the block $[k-2, k-1,1]$, implying that $4 \rightarrow 1$. This is a contradiction because only $k-3$ or $k-2$ can be mapped to 1 .

- $2 \rightarrow k-1,3 \rightarrow k-2$

In this case, $[2,3,5]$ is going to be mapped to a block with a $k-1$ and a $k-2$. This is the block [$k-2, k-3,1]$, further implying that $5 \rightarrow 1$. This is a contradiction because only $k-3$ or $k-2$ can be mapped to 1 .

- $2 \rightarrow 2,3 \rightarrow k-2$

In this case, the block $[2,3,5]$ must be mapped to a block with a 2 and a $k-2$. Such block does not exist.

- $2 \rightarrow 2,3 \rightarrow k-3$

In this case, $[2,3,5]$ must be mapped to a block with a 2 and a $k-3$. Such block does not exist.

1. 1 Fixed block - third possibility

$$
[k-3, k-2,0] \rightarrow[k-3, k-2,0],[0,1,3] \rightarrow[k-1,0,2],[k-1,0,2] \rightarrow[0,1,3]
$$

This implies that $k-3 \rightarrow\{k-3, k-2\}, k-2 \rightarrow\{k-3, k-2\}, 1 \rightarrow\{k-1,2\}, 3 \rightarrow\{k-1,2\}$, $k-1 \rightarrow\{1,3\}$ and $2 \rightarrow\{1,3\}$

We first consider the block $[2,3,5]$. It must be mapped to a block with a 1 or 3 and either a $k-1$ or 2. We consider the four following cases:

- $2 \rightarrow 1,3 \rightarrow 2$

In this case, $[2,3,5]$ would have to be mapped to a block with a 1 and a 2 , which would be the block $[1,2,4]$, implying $5 \rightarrow 4, k-1 \rightarrow 3$ and $1 \rightarrow k-1$. Then the block $[1,2,4]$ would be mapped to a block with a $k-1$ and a 1 , which would be the block $[k-2, k-1,1$], implying that $4 \rightarrow k-2$. This is a contradiction because only $k-3$ or $k-2$ can be mapped to $k-2$.

- $2 \rightarrow 1,3 \rightarrow k-1$

In this case, $[2,3,5]$ would have to be mapped to a block with a 1 and a $k-1$. This would be the block [$k-2, k-1,1]$, implying that $5 \rightarrow k-2$. This is a contradiction because only $k-3$ or $k-2$ can be mapped to $k-2$.

- $2 \rightarrow 3,3 \rightarrow 2$

In this case, $[2,3,5]$ has to be mapped to a block with a 3 and a 2 . This would mean $[2,3,5] \rightarrow[2,3,5]$, implying $5 \rightarrow 5, k-1 \rightarrow 1$ and $1 \rightarrow k-1$. In this case, the block [$1,2,4$] would have to be mapped to a block with a 3 and a $k-1$. Such block does not exist.

- $2 \rightarrow 3,3 \rightarrow k-1$

In this case, the block $[2,3,5]$ would have to be mapped to a block with a 3 and a $k-1$. Such block does not exist.

