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Abstract: An automorphism of a graph is a mapping of the vertices onto themselves such that
connections between respective edges are preserved. A vertex v in a graph G is fixed if it is mapped
to itself under every automorphism of G. The fixing number of a graph G is the minimum number of
vertices, when fixed, fixes all of the vertices in G. The determination of fixing numbers is important
as it can be useful in determining the group of automorphisms of a graph-a famous and difficult
problem. Fixing numbers were introduced and initially studied by Gibbons and Laison, Erwin and
Harary and Boutin. In this paper, we investigate fixing numbers for graphs with an underlying cyclic
structure, which provides an inherent presence of symmetry. We first determine fixing numbers for
circulant graphs, showing in many cases the fixing number is 2. However, we also show that circulant
graphs with twins, which are pairs of vertices with the same neighbourhoods, have considerably
higher fixing numbers. This is the first paper that investigates fixing numbers of point-block incidence
graphs, which lie at the intersection of graph theory and combinatorial design theory. We also present
a surprising result-identifying infinite families of graphs in which fixing any vertex fixes every vertex,
thus removing all symmetries from the graph.

Keywords: fixing number; circulant graph; point-block incidence graph; asymmetric graph

1. Introduction

If you look closely at a QR-code you will see that three of the corners are marked
with small nested squares. Marking these corners gives the QR-code a fixed orientation
(where the original, and rotations of 90, 180 and 270 degrees are all different). The marked
corner adjacent to two other marked corners is placed in the upper left. With this fixed
orientation a smart phone can read it and know how it should be oriented accordingly.
QR-codes are designed in black and white; however, if they included an additional colour,
say blue, we would only need to mark two adjacent corners, one with a blue nested square
and one with a black nested square. The blue square could correspond to the upper left
corner and the black square could correspond to the upper right corner. We note that it is
possible to fix two corners in black and white if the nested squares are drawn differently.
This QR-code example shows that the fixing number of C4 is 2.

In this paper, we consider the problem of removing symmetry from a graph by
fixing vertices. We say that a vertex v in a graph G is fixed if it is mapped to itself under
every automorphism of G. The fixing number of a graph G is the minimum number
of vertices, when fixed, fixes all of the vertices in G, and as a result all symmetries of
the graph are removed. The determination of fixing numbers are important as they
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provide insight into the famous problem of determining the automorphism group of
a graph. Fixing numbers were introduced by Gibbons and Laison [1], and independently
by Erwin and Harary [2]. Fixing numbers have also been called determining numbers
by Boutin [3]. Fixing/determining numbers have been investigated for many families of
graphs including complete graphs, paths, cycles [2], Cayley graphs and Frucht graphs [1],
Cartesian products [4] and Kneser graphs [5]. Recently fixing numbers were determined for
cographs and unit interval graphs [6]. We also note a concrete application as the removing
of symmetry from graphs is related to a problem in robotic manipulation where the goal is
to determine the orientation of a marked sphere from a single visual image [7].

In this paper, we investigate circulant graphs and point-block incidence graphs which
arise from combinatorial designs. In both families, the graphs are regular and their circular
structures are closely tied to modular arithmetic. We will use fix(G) to denote the fixing
number of a graph G. We will refer to a vertex v ∈ V(G) as distinguishable if it is fixed
under every automorphism of G. Following the definition from in [8] two vertices u and v
are twins if they have the same open neighbourhoods or the same closed neighbourhoods.
For any undefined notation, please see the text by West [9].

In this paper, we determine fixing numbers for multiple families of graphs. In Section 2,
we identify the fixing number for powers of paths, which motivates the results in Section 3,
including a similar result for powers of cycles. This leads us to an investigation of fixing
numbers of circulant graphs. In Section 4, we investigate fixing numbers for point-block
incidence graphs. This includes presentation of infinite families of graphs where fixing any
vertex fixes every vertex, thus removing all symmetries from the graph. In the Conclusion
section we pose ideas for future study.

2. Powers of Paths

We begin by determining the fixing number of powers of paths. The graph Pm
n (m ≤ n)

is the graph with v1, v2, ..., vn as its set of vertices and {vivj : |i− j| ≤ m} as its set of edges.
A small example is shown in Figure 1.

v1 v2 v3 v4 v5

Figure 1. The graph P3
5 .

To obtain the fixing number, we first need to examine the degrees of the vertices in a
power of a path. A vertex that is adjacent to all other vertices will be called a spanning vertex.
We note that a graph with no non-trivial automorphisms can have at most one spanning
vertex. A graph with two spanning vertices will have an automorphism that transposes
the two spanning vertices.

Lemma 1. If m ≥ n
2 , then Pm

n has 2m− n + 2 spanning vertices. Furthermore, for every i where
1 ≤ i ≤ n−m− 1, there exist exactly two vertices with degree n− 1− i.

Proof. Following the definition, we notice that the vertices vi where i ∈ [n− m, m + 1]
have the property that |i− j| ≤ m for every j ∈ [1, n]. By definition, this implies that these
vertices have degree n− 1. Thus, there are m + 1− (n−m) + 1 = 2m− n + 2 spanning
vertices. Notice that vn−m−1 and vm+2 have degree n − 2. Similarly, vn−m−2 and vm+3
have degree n− 3. In general, vn−m−i and vm+1+i have degree n− 1− i, thus completing
the proof.

Theorem 1. Let n and m be integers such that n > m.

1. If m = n− 1, then fix(Pm
n ) = n− 1.
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2. If n− 2 ≥ m ≥ n
2 , then fix(Pm

n ) = 2m− n + 2

3. If n
2 > m, then fix(Pm

n ) = 1.

Proof. The first case is a complete graph, therefore fix(Kn) = n− 1.
We now prove the second case. As m ≥ n

2 , then there exists 2m− n + 2 spanning
vertices in Pm

n . We must distinguish 2m − n + 2 − 1 of them (all but one). Let Vi =
{vi, vn−i+1} for each i ∈ [1, n−m− 1]. Notice that as automorphisms preserve degrees,
every automorphism maps Vi to itself for each i. We break these symmetries by fixing v1.
Then, vn is fixed and of the non-spanning vertices, half of the vertices vi will be adjacent to
v1 and the other half vn−i will not be adjacent to v1. Therefore, there is no automorphism
that will swap vi with vn−i. It follows that the only automorphism is the trivial one. As we
removed all symmetries by fixing only one non-spanning vertex, we conclude the fixing
number is n− 2k + 2− 1 + 1 = n− 2k + 2.

For the third case we note the graph has only one non-trivial automorphism, where vi
is swapped with vn−i+1 for all 1 ≤ i ≤

⌊ n
2
⌋
. When n is even we can fix any vertex and

remove this automorphism, when n is odd we can fix any vertex other than the centre
vertex and remove this automorphism.

3. Fixing Numbers of Circulant Graphs

The circulant graph Cn A, where A ⊆ [n], is the graph with set of vertices equal to Zn
and set of edges equal to {ij : (i− j) mod n ∈ A or (j− i) mod n ∈ A}. The numbers in
A are called the generators of A. We start our study of circulant graphs with a particular
type, the power of cycles. We note that aside from the degenerate case of P2 all circulant
graphs have a fixing number that is greater than 1. The reason is that if you fix any vertex v
in a circulant graph with at least 3 vertices, there is a non-trivial automorphism (reflection)
that fixes v.

3.1. Cycle Powers

The kth power of Cn, denoted by Ck
n, is the circulant graph where A = [k]. In our first

two theorems, we determine the fixing numbers for cycle powers.

Theorem 2. If n = 2k, then fix(Ck−1
n ) = k.

Proof. Two vertices—p and q—in Cm−1
n are not adjacent if and only if p ≡ q + k mod n.

Thus, Ck−1
n is a disconnected graph with k components each isomorphic to P2. If we fix one

vertex in each component, we will have eliminated all symmetries, and if we fix less than k
vertices, then there must be at least one component with no vertices fixed. We conclude

that fix(Ck−1
n ) = fix(Ck−1

n ) = k.

Theorem 3. If n > 2k, then fix(Ck−1
n ) = 2.

Proof. We start by fixing vertices 1 and 2. We claim that this is enough to break all
symmetries. As k + 1 is the only vertex adjacent to 2 but not to 1, the vertex k + 1 is
fixed. By a similar argument, n − k + 2 is fixed, and as n > 2k, n − k + 2 6= k + 1.
Let V1 = {i : 3 ≤ i ≤ k} and V2 = {i : n− k + 3 ≤ i ≤ n}. The vertices in V1 are adjacent
to k + 1, while the vertices in V2 are not; thus, we cannot swap a vertex in V1 with a vertex
in V2. Notice also that every vertex in V1 is adjacent to a different number of vertices in V2.
For instance, 3 is adjacent to every vertex i where n− k + 4 ≤ i ≤ n, while k is adjacent to
no vertex in V2. Thus, each vertex in V1 is distinguishable. The same argument applies to
vertices in V2. We then have a collection of 2k fixed vertices. This is enough to fix all of the
other vertices in the graph as i is the only vertex adjacent to i− 1, i− 2, i− 3 and i− 4 for
all k + 2 ≤ i ≤ n− k + 1.
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At first glance it seems that the cases where n
2 < k ≤ n have not been covered, but they

are covered by the fact that in the cases Ck
n
∼= Kn, where Kn is the complete graph on

n vertices.

3.2. The Twin Property and Circulant Graphs

We continue our study of circulant graphs by considering a relation on the set
of vertices.

Definition 1. A pair of vertices v and u are twins if N(v)− {u} = N(u)− {v}.

This topic is particularly interesting because if u and v are twins, then there exists an
automorphism φ such that φ(u) = v, φ(v) = u, and φ is the identity function for every
other vertex. Twins carry symmetry as is, but the presence of twins in circulant graphs
is particularly special because we can calculate the fixing number of any circulant graph
where such a structure is present. To achieve this goal, we need to investigate the properties
of twins in circulant graphs. It is noted in [6] that the twin property is an equivalence
relation. We restate the result for regular graphs as it will be useful in some of our proofs.

Theorem 4. The twin property is an equivalence relation in regular graphs.

Proof. Let u ∼ v denote that vertices u and v are twins. Next, let u, v and w be vertices.
It is clear that u ∼ v implies v ∼ u. For transitivity, assume that u ∼ v and v ∼ w. We will
prove that u ∈ N(v) if and only if w ∈ N(v) by contradiction. Assume without loss
of generality that u ∈ N(v) and w 6∈ N(v), and set N = N(u) − {u, v, w}. Notice that
N = N(v) − {u, v, w} = N(w) − {u, v, w}. If u ∈ N(w), then |N(u)| = |N| + 2 and
|N(v)| = |N|+ 1, which is a contradiction with the fact that G is regular. If u 6∈ N(w),
then |N(w)| = |N| and |N(v)| = |N|+ 1 which again is a contradiction. For the proof that
u ∼ w, we proceed with two cases.

Case 1: Assume uv is not an edge. Then, N(u) = N(u)− {v} = N(v)− {u} = N(v).
By the claim we proved above, we have that vw is not an edge. Thus, N(v) = N(v)−{w} =
N(w)− {v} = N(w), and so N(u) = N(w). Finally, it is easy to see that this implies that
N(u)− {w} = N(w)− {u}, i.e., u ∼ w.

Case 2: Assume uv is an edge. Let p ∈ N(u)− {w}, so p 6= u and p 6= w. If p = v,
then p ∈ N(w)− {u} as vw is an edge. Assume then that p 6= v. Then, p ∈ N(u)− {v},
so p ∈ N(v)− {u}, so p ∈ N(v)− {w}, so p ∈ N(w)− {v}, and so p ∈ N(w)− {u}. Thus
N(u)− {w} ⊂ N(w)− {u}. Through a similar argument, N(w)− {u} ⊂ N(u)− {w}, i.e.,
u ∼ w.

Definition 2. The maximal family of v, denoted by [v], as the set of all vertices that are twins with
v. Further, call any such set a maximal family and let |v| = |[v]|.

In circulant graphs, the set [v] can also be thought as the equivalence class that contains
v. This is a consequence of Theorem 4 and the fact that circulant graphs are regular.

Theorem 5. Let Cn A be a connected circulant graph. If i ∈ [i + m], then i ∈ [i + 2m].

Proof. Notice that if i and j are twins, then i + 1 and j + 1 are twins too. Thus, by this claim
vi+m is a twin of vi+2m. Since the twin property is an equivalence relation, we have that i is
a twin of i + 2m, i.e. i ∈ [i + 2m].

Theorem 6. In Cn A, if m is the smallest integer such that i is a twin of i + m, then [i] =
{i + pm : p ∈ N}. Further, m divides n.

Proof. We will prove this by contradiction. Assume that there exists a vertex j that is a
twin of i such that i + pm < j < i + (p + 1)m for some p. This implies that i + j− pm is a
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twin of i. By the definition of m, i is not a twin of i + 1, . . . , i + m− 1. However, one of these
vertices is i + j− pm which is a contradiction. As for the second part, we will prove that it
is the case when i = 0 which will be enough for every i. If m does not divide n, then set
n = pm + r where 0 < r < m. Notice that 0 is a twin of pm, so it is a twin of (p + 1)m
too, but (p + 1)m mod n is less than m, which contradicts the assumption that m was the
smallest such integer.

The above result hints at why twins are so special in circulant graphs. The fact that
a generator set, A, exists allows us to completely characterize the equivalence class that
contains any vertex v.

Theorem 7. For any v ∈ V(Cn A), Cn A has exactly n
|v| different maximal families.

Proof. First, let v = 0. Let m be the smallest integer such that 0 and m are twins, and
notice that |v| = n

m . As [0], [1], . . . , [m− 1] are all different maximal families in Cn A, we
have exactly m = n

|v| maximal families. If v 6= 0, we can repeat the proof by shifting
the index.

Theorem 8. If u and v are twins and φ is an automorphism, then φ(u) and φ(v) are twins too.

Proof. As automorphisms preserve adjacency, it must be that N(φ(u))−{φ(v)} = φ(N(u)−
{v}) = φ(N(v)− {u}) = N(φ(v))− {φ(u)}.

We need one final observation before the main result of the section. Since |v| = |u|
for every pair of vertices v, u ∈ V(Cn A), a graph having twins implies that every vertex v
has |v| > 1. We now have everything we need to calculate the fixing number of any graph
with twins.

Theorem 9. If |v| > 1 for some vertex in Cn A, then fix(Cn A) = n− n
|v| .

Proof. Notice that |v| = |u| for any two vertices. As we observed before, if v and u are
twins, then there exists an automorphism such that φ(u) = v and φ(v) = u and is the
identity for other vertices. Thus, we must fix at least |v| − 1 vertices for every maximal
family. This would fix n

|v| (|v| − 1) = n− n
|v| vertices. We only need to show that there are no

more automorphisms left. We will prove this by contradiction. Let φ be an automorphism
that is not the identity. It follows that there exist vertices u and v that have not been fixed
such that φ(v) = u. Further, it must be that u is not a twin with v because every element of
[u] is fixed but u. Let v′ ∈ [v] such that v′ 6= v. By Theorem 8, the vertices φ(v) is a twin of
φ(v′). However, this implies that u is a twin of v′ as v′ is fixed. This is a contradiction as
the twin relationship is transitive, so u ∈ [v′] implies that u ∈ [v]. Thus, every remaining
vertex in the graph is fixed.

Theorem 10. For every integer m, there exists a connected circulant graph Cn A such that |v| = m
for every v ∈ V(Cn A).

Although we have calculated the fixing number of every circulant graph with twins,
there is the open question of being able to identify circulant graphs which have twins.
To answer that question we need to investigate the connection between circulant graphs
and their generators.

In the following section, we will point out circulant graphs where |v| = 2. In a
complete graph, any two vertices are twins. As complete graphs are circulant graphs,
it follows that both |v| = 2 and |v| = n− 1, the two extremes of circulant graphs with
twins, are possible.
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3.3. Fixing Numbers and Generators

To facilitate our study of circulant graphs and their generators, it will be convenient to
restate elementary properties of circulant graphs.

Theorem 11. Let m = b n
2 c, and let {A, B} be a partition of {1, . . . , m}. Then, Cn A = CnB.

Proof. It is enough to see that two vertices are adjacent in Cn A if and only if those two
vertices are not adjacent in CnB. Let i and j be adjacent in Cn A. This happens if and only if
(i− j) = k ∈ A or (j− i) = k′ ∈ A. Further, k ∈ A or k′ ∈ A if and only if k 6∈ B or k′ 6∈ B.
Finally, k 6∈ B or k′ 6∈ B if and only if i is not adjacent to j in CnB.

Theorem 12. For a given set A where max A ≤ n, let m = gcd(A) and let k = n
gcd(m,n) .

If A
m = { a

m : a ∈ A}, then Cn A ∼= gcd(m, n)Ck
A
m .

Proof. Assume first that gcd(m, n) > 1. Let Vi = {i, i + m, i + 2m, . . . }. Notice that
|Vi| = n

gcd(m,n) = k. Furthermore, from the definition of Cn A, 1 + im is adjacent to u if and

only if u = 1 + (i + j)m or u = 1 + (i − j)m where j ∈ A
m . Thus, 1 + im is adjacent to u

if and only if u ∈ V1. This proves that Cn A is disconnected, it has a component whose
vertices are those in V1, and that this component is isomorphic to Ck

A
m . By using the same

arguments for each i, we see that the vertices of Vi corresponds to a component of Cn A and
each of these components is isomorphic to Ck

A
m . Furthermore, notice that Zn/mZ has order

gcd(m, n), so Cn A has gcd(m, n) components and each is isomorphic to Ck
A
m , thus giving

us the result. When gcd(m, n) = 1, m is a generator of the group (Zn,+n), implying that
V1 = V(Cn A). Thus, the same arguments of adjacency apply with the exception that the
graph is not disconnected.

Theorem 13. Cn A is connected if and only if gcd(A, n) = 1. Furthermore, Cn A has
gcd(A, n) components.

Proof. If Cn A is connected, then by Theorem 12 gcd(A, n) = 1. For the other direction,
assume that gcd(A, n) = 1. Set A = {m1, . . . , mk} and m = gcd(A). Theorem 12 implies
that Cn A ∼= Cn

A
m . It is enough to see that Cn

A
m is connected. Set m′i =

mi
m for every i and

notice that gcd(m′1, . . . , m′k) = gcd( A
m ) = 1. Thus, there is a path from 0 to any vertex,

and so the graph is connected. The number of components is an easy consequence of
Theorem 12 and the result we just proved.

The following fact is left without proof.

Fact 1. Cn A ∼= Cn{n− a : a ∈ A}.

This fact has the handy consequence that we can always assume the set of generators
has at most n

2 elements. We can make the additionally strong assumption that A ⊆ [d n
2 e].

With these observations, we start the calculation of fixing numbers by noting a very special
case that outcomes directly from a result due to Boutin and the fact that Cst{s, t} ∼= Cs × Ct
whenever gcd(s, t) = 1, which was proven in [8]. We next restate a result from [4].

Theorem 14. If G = Gk1
1 × · · · × Gkm

m such that Gi is prime, then fix(G) = max{fix(Gki
i )}.

Corollary 1. If gcd(s, t) = 1 and st ≥ 3, then fix(Cst{s, t}) = 2.

Our first major result characterizes the fixing number of any circulant graph with only
one generator.
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Theorem 15. If n > m > 3, then

fix(Cn{m}) =
{

2 gcd(n, m) if m 6= n
2

m if m = n
2 .

Proof. If m = n
2 , then Cn{m} ∼= mK2, so we must use m vertices to fix the graph. For the

other case, by Theorem 12 Cn{m} ∼= gcd(m, n)Ck where k = n
gcd(m,n) . Thus, fix(Cn{m}) =

gcd(m, n)fix(Ck) = 2 gcd(m, n).

As we study circulant graphs, we will notice that twins are present. When there are
two generators, we can identify these graphs easily.

Theorem 16. In the graph Cn{k1, k2}, if n = 2m and k1 + k2 = m, then N(i) = N(i + m).

Proof. We do so with a chain of double implications. u ∈ N(i)− {i + m} if and only if
u = i± k1 or u = i± k2 if and only if u ∈ N(i + m). The last double implication is due to
the fact that n = 2m. For instance, if u = i− k1, then u is adjacent to i− k1 − k2 = i−m =
i + m.

Corollary 2. If n = 2m and k1 + k2 = m, then f ix(Cn{k1, k2}) = m.

Proof. The previous result implies that |v| = 2 for every v in a circulant graph. Combining
this with Theorem 9 gives the desired result.

If it happens that fixing vertices 0 and 1 causes the vertex 2 to be fixed as well, then
fixing i and i + 1 causes i + 2 to be fixed. Thus, fixing 0 and 1 causes 2 to be fixed, so 1 and
2 causes 3 to be fixed, and so on. By repeatedly applying this method, we see that every
vertex in the graph is fixed. In other words, we have proven the following fact.

Fact 2. If fixing vertices 0 and 1 fixes vertex 2 as well, then the only available automorphism is the
identity one.

The following result gives the fixing number of any circulant graph with two genera-
tors where 1 is one of the generators.

Theorem 17. If 3 < k ≤ n
2 , then

fix(Cn{1, k}) =
{

k + 1 if n = 2(k + 1)
2 otherwise

Proof. The case where n = 2k + 2 is covered by Corollary 2 since n = 2(k + 1). Assume
then that n 6= 2k + 2 and fix 0 and 1. Notice that 8 ≤ 2k ≤ n. These two assumptions give
the following.

{1} = N(2) ∩ N(0) (1)

{−k, 1} ⊂ N(1− k) ∩ N(0) (2)

{k, 1} ⊂ N(1 + k) ∩ N(0). (3)

As the size of these intersections is preserved under automorphisms, 2 cannot be mapped
to either 1− k or 1 + k. These vertices belong to N(1). As this set must be mapped to
itself and 0 is fixed, we conclude 2 is fixed too. Thus, by Fact 2 every vertex in the graph
is fixed.

From Fact 1, we can assume that k ≤ n
2 , so indeed it covers every single case where

there are two generators and 1 is one of them. A side consequence of Theorem 17 is the
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following. The fixing number of circulant graphs with two generators where 1 is one of
them is equal to 2 if and only if the graph does not have twins. As we will see later, the
same happens when there are two generators and 2 is one of the generators.

Theorem 17 covers a surprising amount of cases. For each set of generators, there are
many other sets of generators that produce the same circulant graph. The case where 1 ∈ A
is particularly strong because of the two following results.

Theorem 18. Assume that gcd(m1, n) = 1, m1 6= m2 and m1 6= n − m2. If there exists an
integer k < n such that m2 ≡ m1k mod n, then Cn{m1, m2} ∼= Cn{1, k}.

Proof. As gcd(m1, n) = 1, then m1 is a generator of the additive group Zn. Vertices
0, m1, 2m1, . . . ,−m1 are the vertices of a cycle Cn. Let v′i = im1. We see that v′i is adjacent to
v′i−1 and v′i+1. From the hypothesis, we know that Cn{m1, m2} is 4-regular, so all we have
to do is to prove that v′i is adjacent to v′i−k and v′i+k. Note that im1 is adjacent to im1 −m2
and im1 + m2, so by our hypothesis, im1 is adjacent to im1 − km1 and im1 + km1, thus v′i is
adjacent to v′i−k and v′i+k.

Theorem 19. If there exists an integer m ∈ A such that gcd(m, n) = 1, then there exists a set A′

where 1 ∈ A′ such that Cn A ∼= Cn A′.

Proof. Let A = {m1, . . . , mp} where m1 = m. As m1 is a generator of (Zn,+n), then there
exists integers ki such that mi

∼= kim1 mod n. Thus, we can use the same technique as in
Theorem 18 to show that we can construct a circulant graph Cn A′ isomorphic to Cn A where
A′ = {1, k2, . . . , kp}.

The following two facts about automorphisms will come in handy as we prove
more results.

Fact 3. For every i, |N(0) ∩ N(2)| = |N(i) ∩ N(i + 2)|.

Fact 4. If φ is an automorphism that fixes u and v, then φ maps N(u)− N(v) to N(φ(u))−
N(φ(v)).

Many circulant graphs can be re-expressed such that 1 is one of the generators. This is
why the study of circulant graphs with 1 as a generator can be far-reaching. Having 1 as
a generator allows for many more arguments regarding the neighbourhoods. These are
presented in the following two results.

Theorem 20. Let m ≥ n
2 and ki be integers such that 1 < k1 < · · · < km ≤ n

2 . If |N(2) ∩
N(0)| = 1, then fix(Cn{1, k1, . . . , km}) = 2.

Proof. We begin by fixing 0 and 1. We will show that, under the above conditions, 2 must
be fixed. This will suffice as |N(2) ∩ N(0)| = |N(i + 2) ∩ N(i)|, so Fact 3 would give
the result.

Notice that
N(1) = {0, 2, 1± k1, . . . , 1± km}.

As {1, ki} ⊂ N(1 + ki) ∩ N(0) and {1,−ki} ⊂ N(1− ki) ∩ N(0) for every i, then it
follows that |N(v) ∩ N(0)| ≥ 2 for every v ∈ N(1) but possibly 0 and 2. Note that the size
of intersections is preserved under intersections, so since |N(2) ∩ N(0)| = 1, 2 cannot be
mapped to 1± ki for every i. However, N(1) is fixed so 2 must be mapped to itself.

Corollary 3. Let ki be integers such that 1 < k1 < · · · < km and set A = {1, k1, . . . , km}.
If n > 2 + 2km and |a− b| 6= 2 for every a, b ∈ A, then fix(Cn A) = 2.
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Proof. By Theorem 20, we only need to show that |N(2) ∩ N(0)| = 1. As 1 is in the
intersection, we only need to verify that no other vertex is in the intersection. We will prove
that every member of N(2) except for 1 cannot be in N(0). From our choice of n, it follows
that 3 6∈ N(0). Consider 2 + ki for some i. For 2 + ki to be in N(0), there must be a j such
that ±k j ∈ N(v0) and 2 + ki ≡ ±k j mod n. By our hypothesis, 2 + ki − k j 6= 0. It cannot
be that 2 + ki ≡ −k j mod n since n > 2 + 2km ≥ 2 + ki + k j, and equally it cannot be that
2 + ki ≡ k j mod n since n > |2 + ki − k j|. Thus, 2 + ki 6∈ N(0) and so the only vertex in
N(0) ∩ N(2) is 1, thus completing the proof.

We conclude this subsection, and with it our study on circulant graphs, by calculating
the fixing number of any circulant graph that has 2 as a generator. The statement assumes
that k is odd and n is even, but notice that if these are false, then we can restate the circulant
graph so that 1 becomes a generator of A, which is a case we have covered. Thus, the result
below covers those cases that have not been addressed.

Theorem 21. If k ≤ n
2 , n is even and k > 1 is odd, then

fix(Cn{2, k}) =
{

k + 2 if n = 2(k + 2)
2 otherwise

Proof. We will consider the cases of k = 3, k = 5 and k > 5. For k = 3, we will consider
the cases of n < 10, n = 10 and n > 10. When k = 3 and n < 10, we only have the cases
of C6{2, 3} and C8{2, 3}. It is easy to verify manually that the fixing number is 2 in both
of these cases. When k = 3 and n = 10, we have that n = 2(2 + k), so by Corollary 2 the
fixing number is indeed 2 + k. The rest of the paragraph will be the proof of the case where
k = 3 and n > 10. Fix 0 and 1. We claim 2 is fixed. Notice that N(0)− N(1) = {2,−3}
must be mapped to itself by Fact 4, and by similar arguments {−1, 4} maps to itself too.
Notice however that {−1, 4} ⊂ N(2) and {−1, 4} 6⊂ N(−3). As {−1, 4} is fixed, it follows
that 2 cannot be mapped to −3, so 2 must be fixed, and so by Fact 2 every vertex is fixed.

For k = 5, the cases where n ≤ 14 can be covered in the same way that k = 3 and
n ≤ 10 were covered. So assume that k = 5 and n > 14. Fix 0 and 1. We claim 2 is
fixed. It can be seen that the path 1, 6, 4, 2 is a shortest path from 1 to 2, so d(1, 2) = 3.
Similarly, the path 1,−1,−3,−5 is a shortest path from 1 to -5. Thus, d(1, 2) = d(1,−5) =
3. By similar arguments, we can see that d(1, 5) = 2 = d(1,−2). As automorphisms
preserve distance and N(0) gets mapped to itself, we see that {2,−5} and {−2, 5} both
get mapped to themselves. Now if there exists an automorphism that maps 2 to −5, then
{d(2,−2), d(2, 5)} = {d(−5,−2), d(−5, 5)}, but it can be seen that these sets are not equal
to each other for the chosen n. Thus, 2 is fixed, so by Fact 2 every vertex is fixed.

The last case of possible values of k is when k > 5. The subcases where n = 2k + 4
and n = 4k are special, so we will treat them separately. When k > 5 and n = 2k + 4,
the fixing number is given by Corollary 2 as n = 2(k + 2). When k > 5 and n = 4k, fix
0 and 1. Notice that there are exactly two paths from 0 to 2k: 0, k, 2k and 0, −k, 2k. As
these paths are preserved under automorphisms, then {k,−k} is mapped to itself. Thus, as
N(0) is mapped to itself, {2,−2} is also mapped to itself. Additionally, d(2, 1) = d(1, 0) <
d(3, 0) = d(2,−1), and since distance is preserved under automorphisms, then 2 cannot be
mapped to −2. We conclude 2 is fixed. By Fact 2, every vertex is fixed.

Finally, assume that k > 5, n 6= 4k and n 6= 2k + 4. Fix 0 and 2. We start by proving
that this fixes 4 from which we conclude that every vertex with an even index is fixed.
The set N(2) = {0, 4, 2− k, 2 + k} must be mapped to itself. By our choice of n and k
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we can prove by exhaustion that the first line in the equations below is true. The others
follow easily.

{2} = N(4) ∩ N(0)

{2,−k} ⊂ N(2− p) ∩ N(0)

{2, k} ⊂ N(2 + k) ∩ N(0).

As the size of these intersections is preserved, 4 cannot be mapped to 2− k or 2 + k so
4 is fixed. Thus, every vertex with an even index is mapped to itself. We will now prove
that the neighbourhood of every even index is fixed too, and as every odd vertex is adjacent
to an even vertex, it would follow that every vertex is fixed. We prove the case for N(0);
other cases follow by a change in index. The only two vertices not yet fixed in N(0) are k
and −k. If n = 2k, then these are equal and so it must be fixed. Thus, assume that n > 2k.
These vertices are adjacent to 2k and −2k correspondingly, and as these vertices are fixed,
we only need to show that 2k 6= −2k. Notice that 2k is equal to −2k if and only if n|4k. If
n > 4k or 2k < n < 4k, then this is impossible. As these two are the only possibilities left,
we are done.

Again, note that the fixing number of Cn A, where |A| = 2 and 2 ∈ A, is equal to 2 if
and only if Cn A does not have twins. The natural question, and one way in which the study
of circulant graphs can be furthered, is if this always holds. We state this as a conjecture.

Conjecture 1. If A is a set such that |A| = 2 and Cn A is connected, then f ix(Cn A) = 2 if and
only if Cn A does not have twins.

The family of graphs C5t(5, t) where t ≥ 2 does not have twins and has a fixing
number of 2t. In addition, the circulant graph C24{2, 4, 5, 6, 7, 10} does not have twins. Yet,
by exhaustion it can also be verified that its fixing number is higher than 2. Thus, these are
circulant graphs without twins whose fixing number is not 2, so this conjecture does not
generalize to all circulant graphs.

4. Point-Block Incidence Graphs

In this section, we investigate point-block incidence graphs which have similar circu-
lar/modular properties of circulant graphs. In fact, there is an overlap between the two
families which we present in Theorem 22.

A point-block incidence graph is a bipartite graph G = (P, B) with a set of point vertices
P = {p1, p2, . . . , pr} and a set of blocks B = {B1, B2, . . . , Bs} where pi ∈ P is adjacent to
Bj ∈ B if and only if pi ∈ Bj.

In this section, we will consider point-block incidence graphs where the blocks have
size 3 and are generated by a single triple with computations performed mod k. We will
use Gn[ar, as, at] to denote a point-block incidence graph on n = 2k vertices with a starter
block [ar, as, at], where the points are a1, a2, ..., ak and the blocks are [(ar+i)mod k, (as+i)
mod k, (at+i)mod k] for all 0 ≤ i ≤ k − 1. Despite the simplicity of this construction,
point-block incidence graphs can differ in their respective automorphism groups and
fixing numbers.

The main goals of this section are to

(i) Determine the fixing numbers of 3-regular point block incidence graphs.

(ii) Determine the conditions when Gn[u, v, w] ∼= Gn[x, y, z].

In our next theorem, we present a connection between circulant graphs and point-block
incidence graphs.

Theorem 22. Let k ≥ 6. Then G4k+2[0, 1, 2] ∼= C4k+2[1, 2k + 1].
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Proof. We will show that both graphs are Möbius ladders with 4k+ 2 vertices. For the point-
block incidence graph generated by the block [0, 1, 2] with computations performed mod k,
for 0 ≤ i ≤ k

2 − 1 we label the vertices with either points or blocks. We begin by constructing
the graph P2 × Pk with P2 and Pk where V(P2) = {u0, u1} and V(Pk) = {v0, v1, . . . , vk−1}.
Then, V(P2 × Pk) = {u0v0, u0v1, . . . , u0vk−1, u1v0, u1v1, . . . , u1vk−1}. We will use u0vi and
u1vi to denote the i-th vertex on the left and right sides of the circular ladder, respectively.
Later, we will add connecting edges to from a Möbius ladder.

u0v2i = 2i
u1v2i+1 = 2i + 1
u0v2i+1 = [2i, 2i + 1, 2i + 2]
u1v2i = [2i− 1, 2i, 2i + 1]
For the point-block incidence graph generated by the block [0, 1, 2] with computations

performed mod k, for 0 ≤ i ≤ k+1
2 − 1 we label the vertices as in the previous case. Then

edges are added between vertices u0vk−1 and u1v0 and between vertices u1vk−1 and u0v0.
This will create a Möbius Ladder Graph with 2k vertices.

Label the vertices of the circulant graph with w0, w2, ..., w4k+1 where wi is adjacent to
wi−1, wi+1, and wi+2k+1 with arithmetic performed modulo 4k + 1. Then, we can define an
isomorphism from the circulant to the point-block incidence graph:

f (wi) =

{
u0vi if 0 ≤ i ≤ 2k
u1vi if 2k + 1 ≤ i ≤ 4k + 1.

We continue with two elementary lemmas that show that point-block incidence graphs
generated by a single block are invariant under arithmetic shifts and negation.

Lemma 2. Let k ≥ 6. Then, we have the following.

1. G2k[0, a, b] ∼= G2k[i, a + i, b + i] for any 0 ≤ i ≤ k− 1.

2. Gn[0, a, b] ∼= Gn[0, ta, tb] for all 1 ≤ t ≤ k where gcd(n, t) = 1.

where all computations are performed modulo k.

Proof. For for the first condition we will prove that the mapping φ : i → (a + i) mod k
between points is an isomorphism. It is clear that this mapping is bijective. We will
show next that the neighbours of a vertex a, map to the neighbours of a + i. The blocks
adjacent to a are [0, a, b], [a, 2a, b + a] and [a− b, 2a− b, a], and the blocks adjacent to a + i
are [0, a + i, b + i], [a + i, 2a + i, b + a + i] and [a− b + i, 2a− b + i, a + i].

For the second condition we will prove that the mapping ψ : a→ ta between points
is an isomorphism. This mapping is also bijective. We will show that the neighbours of
a vertex a, map to the neighbours of ta. The blocks adjacent to a are [0, a, b], [a, 2a, b + a]
and [a− b, 2a− b, a], and the blocks adjacent to ta are [0, ta, tb], [ta, 2ta, t(b + a)] and [t(a−
b), t(2a− b), ta].

Lemma 3. For any k ≥ 6, G2k[0, a, b] ∼= G2k[0, b − a, b] where computations are performed
modulo k.

Proof. We will prove that the mapping ψ : i → −i between points is an isomorphism.
It is clear that this mapping is bijective. We will show next that the neighbours of a
vertex a, map to the neighbours of −a. The blocks adjacent to a are [0, a, b], [a, 2a, b + a],
and [a− b, 2a− b, a], and the blocks adjacent to −a are [0,−a,−b], [−a,−2a,−b− a], and
[b− a,−2a + b,−a].
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The two previous lemmas allow us to identify starter blocks where the resulting
point-block incidence graphs are isomorphic. Our goal is to minimize the set of starter
blocks for a given m ≥ 6.

In the next theorem, we start with the block families of triples and remove duplicates
that arise by the two previous lemmas to obtain a family of starter blocks for each m ≥ 6.

Lemma 4. Let ms ≥ 3. Then, G2ms[0, ma, mb] ∼= mG2s[0, a, b].

Proof. For each 0 ≤ i ≤ 2s− 1 there exists an isomorphism of the block G2s[i, a + i, b + i]
to G2ms[mi, m(a + i), m(b + i)] where point a is mapped to ma.

Next, we give an example of family of point-block incidence graphs which have a
fixing number of 1, and furthermore the fixing of any point or block vertex removes all
non-trivial automorphisms.

Lemma 5. If any vertex in a point-block incidence graph is fixed then any automorphism maps
points to points and blocks to blocks.

Proof. Let G = (P, B). Suppose a point vertex p ∈ P is fixed. Then, all of the point
vertices have an even distance from p and all block vertices have an odd distance from
p. These different parities force points to be mapped to points and blocks to be mapped
to blocks.

Theorem 23. The point-block incidence graph generated with single block [0, 1, 3] with computa-
tions done mod k when k ≥ 9, has a fixing number of 1. Furthermore, fixing any vertex fixes all
other vertices.

Proof. The graph contains the point vertices 0, 1, . . . , k− 1 and the block vertices [0, 1, 3],
[1, 2, 4], . . . , [k− 3, k− 2, 0] and [k− 1, 0, 2]. We show that fixing any point vertex fixes all
vertices in the graph (including both point and block vertices). We begin by fixing the
vertex 0, which permutes its neighbouring blocks [0, 1, 3], [k− 3, k− 2, 0] and [k− 1, 0, 2].
We have to consider all of the possible cases of 0, 1, or 3 fixed blocks. For the sake of
completeness we include the details. We include the first subcases of the case of 0 and 1
fixed blocks. The remaining subcases can be found in the Supplementary Materials section.

1. 0 Fixed blocks

[0, 1, 3] → [k− 3, k− 2, 0] → [k− 1, 0, 2] → [0, 1, 3]. We note that we do not need to
check the reverse direction as applying the given direction twice gives the reverse
direction. This implies that 1→ {k− 3, k− 2}, 3→ {k− 3, k− 2}, k− 3→ {k− 1, 2},
k− 2→ {k− 1, 2}, k− 1→ {1, 3}, 2→ {1, 3}. We then consider the block [2, 3, 5]. It
would have to be mapped to a block with either a 1 or 3 and either a k− 3 or k− 2.
We consider the four following cases:

• 2→ 1, 3→ k− 3

In this case, the block [2, 3, 5] has to be mapped to a block with a 1 and a k− 3.
This does not exist.

• 2→ 1, 3→ k− 2

In this case, [2, 3, 5] has to be mapped to a block with a 1 and a k− 2. This would
be the block [k− 2, k− 1, 1], implying that 5→ k− 1 and also that k− 1→ 3 and
1→ k− 3. In that case, the block [1, 2, 4] must be mapped to a block with a 1 and
a k− 3, which does not exist.

• 2→ 3, 3→ k− 3
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In this case, the block [2, 3, 5] would have to be mapped to a block with a 3 and
k− 3. For all other cases when k > 9, we are done because no such block exists.
For the mod 9 case, [2, 3, 5] would be mapped to [3, 4, 6], implying 5 → 4, and
also that k− 1 → 1 and 1 → k− 2. Then, the block [7, 8, 1] would have to be
mapped to a block with a 1 and a 7. However, the only block with this property
is itself, which would contradict our assumption that we have 0 fixed blocks.

• 2→ 3, 3→ k− 2

For this case, the block [2, 3, 5] would have to be mapped to a block with a 3 and
a k− 2. Such block does not exist.

2. 1 fixed block - first possibility

[0, 1, 3]→ [0, 1, 3], [k− 3, k− 2, 0]→ [k− 1, 0, 2], [k− 1, 0, 2]→ [k− 3, k− 2, 0]

This implies that 1 → {1, 3}, 3 → {1, 3}, k − 3 → {k − 1, 2}, k − 2 → {k − 1, 2},
k− 1→ {k− 3, k− 2} and 2→ {k− 3, k− 2}.

We then consider the block [2, 3, 5]. It has to be mapped to a block with a 1 or a 3 and
either a k− 3 or k− 2. We consider the four following cases:

• 3→ 1, 2→ k− 3

If this is the case, then block [2, 3, 5] must be mapped to a block with a 1 and a
k− 3. Such block does not exist.

• 3→ 1, 2→ k− 2

In this case, block [2, 3, 5] must be mapped to a block with a 1 and a k − 2.
This would be the block [k − 2, k − 1, 1], implying that 5 → k − 1. This is a
contradiction because only k− 3 or k− 2 can be mapped to a k− 1.

• 3→ 3, 2→ k− 3

If this is the case, then block [2, 3, 5] has to be mapped to a block with a 3 and a
k− 3. No such block exists for all mod k cases where k > 9. For mod 9, [2, 3, 5] has
to be mapped to the block [3, 4, 6], implying that 5→ 4, 1→ 1 and k− 1→ k− 2.
Then, the block [7, 8, 1] must be mapped to a block with a 1 and a 7 which does
not exist.

• 3→ 3, 2→ k− 2

In this case, the block [2, 3, 5] has to be mapped to a block with a 3 and a k− 2.
Such block does not exist.

3. 3 Fixed blocks

[0, 1, 3]→ [0, 1, 3], [k− 3, k− 2, 0]→ [k− 3, k− 2, 0], [k− 1, 0, 2]→ [k− 1, 0, 2]

This implies that 1→ {1, 3}, 3→ {1, 3}, k− 3→ {k− 3, k− 2}, k− 2→ {k− 3, k− 2}
k− 1→ {k− 1, 2}, 2→ {k− 1, 2}.

We then consider the block [2, 3, 5]. It must be mapped to a block with a k− 1 or 2 and
either a 1 or 3.

• 2→ 2, 3→ 3

In this case, [2, 3, 5] would be mapped to itself, implying 5 → 5, k− 1 → k− 1
and 1→ 1. Then, the block [k− 2, k− 1, 1] would be mapped to a itself, implying
that k− 2 → k− 2. Then, the block [k− 3, k− 2, 0] would be mapped to itself,
further implying that k− 3→ k− 3, Then the vertices 0, . . . , k− 1 are now fixed
and because the other vertices are adjacent to distinct triples of these vertices,
they are now fixed as well.
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• 2→ 2, 3→ 1

In this case, the block [2, 3, 5] would be mapped to [1, 2, 4], implying that 5→ 4,
1→ 3 and k− 1→ k− 1. In that case, the block [k− 2, k− 1, 1] would be mapped
to a block with a k− 1 and a 3, which does not exist.

• 2→ k− 1, 3→ 3

In this case, the block [2, 3, 5] has to be mapped to a block with a k− 1 and a 3.
Such block does not exist.

• 2→ k− 1, 3→ 1

In this case, the block [2, 3, 5] must be mapped to a block with a [k− 2, k− 1, 1],
implying that 5→ k− 2. This is a contradiction because only k− 3 or k− 2 can
be mapped to k− 2.

Suppose we fix the block [1, 2, 4], then the vertices 1, 2 and 4 have either 0,1 or 3
fixed points

This completes the proof.

In the next theorem, we consider point-block incidence graphs generated by the block
[0, 1, 2]. We will show these graphs are either the Cartesian product of P2 and a cycle, or a
Möbius Ladder Graph with 2k vertices. These graphs have a fixing number of 2.

Theorem 24. Let G2k[0, 1, 2] be the point-block incidence graph generated by the block [0, 1, 2]
with computations performed mod k ≥ 6. Then

G2k[0, 1, 2] ∼=
{

P2 × Ck if k is even
M2k if k is odd.

Furthermore, the fixing numbers of each of these graphs is 2.

Proof. We begin by constructing the graph P2 × Pk with P2 and Pk where V(P2) = {u0, u1}
and V(Pk) = {v0, v1, . . . , vk−1}. Then, V(P2 × Pk) = {u0v0, u0v1, . . . , u0vk−1, u1v0,
u1v1, . . . , u1vk−1}.

We first consider the case where k is even. For the point-block incidence graph
generated by the block [0, 1, 2] with computations performed mod k, for 0 ≤ i ≤ k

2 − 1 we
label the vertices with either points or blocks.

u0v2i = 2i

u1v2i+1 = 2i + 1

u0v2i+1 = [2i, 2i + 1, 2i + 2]

u1v2i = [2i− 1, 2i, 2i + 1]

Then edges are added between vertices u0vk−1 and u0v0 and between vertices u1vk−1
and u1v0. This will create a graph of the form C2 × Pk.

Next, we consider the case where k is odd. For the point-block incidence graph
generated by the block [0, 1, 2] with computations performed mod k, for 0 ≤ i ≤ k+1

2 − 1
we label the vertices as in the previous case. Then, edges are added between vertices u0vk−1
and u1v0 and between vertices u1vk−1 and u0v0. This will create a Möbius ladder graph
with 2k vertices.

These graphs have a fixing number of 2. We first note that fixing only one vertex still
leaves a non-trivial reflection automorphism. If two vertices u and v are fixed then all
remaining vertices w correspond to a unique pair (d(u, w), d(v, w)). Therefore, the fixing
number of these graphs is 2.
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In our next two theorems we give examples of graph families which have considerably
larger fixing numbers.

Theorem 25. (triplets) Let k be divisible by 3. Then, fix(G k2
3
[0, k

3 , 2k
3 ]) =

2k
3 .

Proof. This follows as a consequence of Lemma 4.3, where m = k
3 .

Next, we present a family of connected graphs where the fixing number is n
4 . An

example is shown in Figure 2.
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[0, 1, 6]
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[3, 4, 9]

[9, 10, 3]

[4, 5, 10] [4, 10, 11]

[5, 0, 11]

[5, 6, 11]

Figure 2. A half-step graph G24[0, 1, 6].

Theorem 26. (half-steps) f ix(G4k[0, 1, k]) = k.

Proof. It may be helpful to refer to Figure 2. The graph G4k[0, 1, k] consists of k copies of
C4 which are connected by pairs of edges. The vertices in each C4 are {i, [i, i + 1, k + i], k +
i, [k + i, k + i + 1, i]} for all 0 ≤ i ≤ k− 1. As there exists an automorphism that transposes
[i, i + 1, k + i] and [k + i, k + i + 1, i] along with i + 1 and k + i + 1, one of these four vertices
must be fixed to remove this automorphism. Therefore, the fixing number of G4k[0, 1, k]
is at least k. For the other bound we assume that point vertices 0, 1, . . . , k− 1 are all fixed.
Then, the block vertices [0, 1, k], [1, 2, k + 1], . . . , [k − 1, 0, 2k − 1] are all fixed as they are
each adjacent to a different pair of fixed point vertices. Then, all of the block vertices
[k, k + 1, 0], [k + 1, k + 2, 1], . . . , [k− 1, k, 2k− 1] are all fixed as they are each adjacent to a
different vertex that was fixed in our first step. Then, the vertices k, k + 1, . . . , 2k− 1 are all
fixed since they are each adjacent to a different triple of already fixed vertices. Therefore,
fix(G4k[0, 1, k]) = k.

5. Conclusions

There are two main approaches to studying the fixing number of circulant graphs that
our paper uses, and each one has its own advantages. The first approach is by considering
the generators of the circulant graph. This technique has the advantage of giving a concrete
description of the neighbourhood of every vertex. As neighbourhoods are preserved in
isomorphisms, this route is effective when proving that the fixing number is 2. Most of
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our results concerning this technique are an outcome of fixing 2 vertices and proving by
examining the neighbourhoods that all other vertices are fixed. For the case with arbitrary
generators, there needs to be more understanding as to which generators cause the fixing
number to be higher than 2. In the cases we covered, those scenarios where the fixing
number is not 2 are exactly the cases where twins occur but there are circulant graphs
that do not have twins that still have a fixing number higher than 2. This leads to the
second approach for investigating fixing numbers: studying structures such as twins. These
structures which generate symmetry are key to understanding when the fixing number
is larger than 2. A development of both of these techniques would result in a concrete
understanding of when the fixing number is 2 and when it is not, thus hopefully leading to
a general formula that gives the fixing number of any circulant graph.

On the other topic of point-block incidence graphs, Lemmas 2 and 3 were useful for
investigating when Gn[u, v, w] ∼= Gn[x, y, z]. However, the second part of Lemma 3 depends
on the modulus where the arithmetic is being performed. For example, the point-block
incidence graphs when arithmetic is being performed mod 11, all point-block incidence
graphs are isomorphic to either G22[0, 1, 2], or G22[0, 1, 3]. We investigated the cases for
even values of n, 8 ≤ n ≤ 32 and the results are found in the Supplementary Materials
section, but we note the problem gets increasingly more complex, particularly in cases
where n

2 is highly composite.

Supplementary Materials: Supplementary materials are available online at https://www.mdpi.
com/2227-7390/9/2/166/s1.
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