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Abstract: In this paper, we introduced controlled discrete-time semi-Markov random evolutions.
These processes are random evolutions of discrete-time semi-Markov processes where we consider a
control. applied to the values of random evolution. The main results concern time-rescaled weak
convergence limit theorems in a Banach space of the above stochastic systems as averaging and
diffusion approximation. The applications are given to the controlled additive functionals, controlled
geometric Markov renewal processes, and controlled dynamical systems. We provide dynamical
principles for discrete-time dynamical systems such as controlled additive functionals and controlled
geometric Markov renewal processes. We also produce dynamic programming equations (Hamilton–
Jacobi–Bellman equations) for the limiting processes in diffusion approximation such as controlled
additive functionals, controlled geometric Markov renewal processes and controlled dynamical
systems. As an example, we consider the solution of portfolio optimization problem by Merton for
the limiting controlled geometric Markov renewal processes in diffusion approximation scheme. The
rates of convergence in the limit theorems are also presented.

Keywords: semi-Markov chain; controlled discrete-time semi-Markov random evolutions; averaging;
diffusion approximation; diffusion approximation with equilibrium; rates of convergence; controlled
additive functional; controlled dynamical systems; controlled geometric Markov renewal processes;
HJB equation; Merton problem; Banach space

1. Introduction

Random evolutions were introduced over 40 years ago, see, e.g., in [1,2] and for
its asymptotic theory in [3–6] and references therein. Discrete-time random evolutions,
induced by discrete-time Markov chains, are introduced by Cohen [7] and Keepler [8], and
discrete-time semi-Markov random evolutions (DTSMRE) by Limnios [9]. See also [10].
Koroliuk and Swishchuk [4], Swishchuk and Wu [5], Anisimov [11–14], and Koroliuk and
Limnios [3], studied discrete-time random evolutions induced by the embedded Markov
chains of continuous time semi-Markov processes. This is equivalent to discrete-time
Markov random evolution stopped at random time (continuous). One of the examples
of discrete-time random evolutions is the geometric Markov renewal process (GMRP).
Applications of GMRP in finance have been considered in [15–17]. Optimal stopping of
GMRP and pricing of European and American options for underlying assets modelled by
GMRP have been studied in [18].

Discrete-time semi-Markov chains (SMC) have only recently been used in applications.
Especially, in DNA analysis, image and speech processing, reliability theory, etc., see
in [19] and references therein. These applications have stimulated a research effort in this
area. While the literature in discrete-time Markov chains theory and applications is quite
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extensive, there is only a small amount of the literature on SMC and most of them are
related to hidden semi-Markov models for estimation.

The present article is a continuation of our previous work [20]. Thus, we keep all
our notation and definitions the same as in the latter paper. Compared with our previous
work [20], where we studied random evolutions of semi-Markov chains, here we consid-
ered additionally a control on the random evolution, which we call controlled discrete-time
semi-Markov random evolution (CDTSMRE) in a Banach space, and we presented time-
rescaled convergence theorems. In particular, we get weak convergence theorems in
Skorokhod space D[0, ∞) for càdlàg stochastic processes, see, e.g., in [21]. The limit the-
orems include averaging, diffusion approximation, and diffusion approximation with
equilibrium. For the above limit theorems we also presented rates of convergence results.
Finally, we give some applications regarding the above mentioned results, especially to
controlled additive functionals (CAF), CGMRP, and controlled dynamical systems (CDS),
and optimization problems.

Regarding the optimization problems, we provide dynamical principles for discrete-
time dynamical systems such as CAF and CGMRPs (see Section 2.4), see, e.g., [22–24]. We
also produce dynamic programming equations (Hamilton–Jacobi–Bellman equations) for
the limiting processes in diffusion approximation such as CAF, CGMRP, and CDS. As an
example, we consider the solution of portfolio optimization problem by Merton for the
limiting CGMRP in DA (see Section 4.4). Merton problem, or Merton portfolio’s problem,
is a problem in continuous-time finance associated with portfolio choice. In (B, S)-security
market, which consists of a stock and a risk-free asset, an investor must choose how much
to consume, and must allocate his wealth between the stock and the risk-free asset in a
such way that maximizes expected utility. The problem was formulated and first solved by
Robert Merton in 1969, and published in 1971 [25].

Results presented here are new and deals with CDTSMRE on Banach spaces. This pa-
per contains new and original results on dynamical principle for CDTSMRE and DPE
(HJB equations) for the limiting processes in DA. One of the new remarkable results is the
solution of Merton portfolio problem for the limiting CGMRP in DA. The method of proofs
was based on the martingale approach together with convergence of transition operators of
the extended semi-Markov chain via a solution of a singular perturbation problem [3,4,26].
As in our previous work [20], the tightness of these processes is proved via Sobolev’s
embedding theorems [27–29]. It is worth mentioning that, as in the Markov case, the results
presented here cannot be deduced directly from the continuous-time case. We should also
note that that DTSMREs have been completely studied in [20]. For semi-Markov processes
see, e.g., [30–33]. For Markov chains and additive functionals see, e.g., [34–38].

The paper is organized as follows. Definition and properties of discrete-time semi-
Markov random evolutions and Controlled DTSMREs, as well as particular stochastic
systems as applications, are introduced in Section 2. The main results of this paper, limit
theorems of CDTSMRE, as averaging, diffusion approximation and diffusion approxima-
tion with equilibrium of controlled DTSMREs are considered in Section 3. In Section 4,
we provide three applications of averaging, diffusion approximation, and diffusion ap-
proximation with equilibrium of controlled DTSMREs: controlled additive functionals,
controlled GMRP, and controlled dynamical systems. Section 5 deals with the analysis
of the rates of convergence in the limit theorems, presented in the previous sections, for
controlled DTSMREs and for CAF and CGMRP. In Section 6, we give the proofs of theorems
presented in the previous sections. The last section concludes the paper and indicates some
future works.

2. Controlled Discrete-Time Semi-Markov Random Evolutions
2.1. Semi-Markov Chains

The aim of this section is to present some notation and to make this paper as au-
tonomous as possible. The reader may refer to our article in [20] for more details.



Mathematics 2021, 9, 158 3 of 26

Let (E, E) be a measurable space with countably generated σ-algebra and (Ω,F ,
(Fn)n∈IN, P) be a stochastic basis on which we consider a Markov renewal process (xn, τn, n ∈
IN) in discrete time k ∈ IN, with state space (E, E). Notice that IN is the set of non-negative
integer numbers. The semi-Markov kernel q is defined by (see, e.g., in [9,19]),

q(x, B, k) := P(xn+1 ∈ B, τn+1 − τn = k | xn = x), x ∈ E, B ∈ E , k, n ∈ IN. (1)

We will denote also q(x, B, Γ) = ∑n∈Γ q(x, B, n), where Γ ⊂ IN. The process (xn) is the
embedded Markov chain of the MRP (xn, τn) with transition kernel P(x, dy). The semi-
Markov kernel q is written as

q(x, dy, k) = P(x, dy) fxy(k),

where fxy(k) := P(τn+1 − τn = k | xn = x, xn+1 = y), the conditional distribution of the
sojourn time in state x given that the next visited state is y.

Define also the counting process of jumps νk = max{n : τn ≤ k}, and the discrete-time
semi-Markov chain zk by zk = xνk , for k ∈ IN. Define now the backward recurrence time
process γk := k− τνk , k ≥ 0, and the filtration Fk := σ(z`, γ`; ` ≤ k), k ≥ 0.

Let us consider a separable Banach space B of real-valued measurable functions
defined on E× IN, endowed with the sup norm ‖·‖ and denote by B its Borel σ-algebra.
The Markov chain (zk, γk), k ≥ 0, has the following transition probability operator P] on B

P]ϕ(x, k) =
1

Hx(k)

∫
E\{x}

q(x, dy, k + 1)ϕ(y, 0) +
Hx(k + 1)

Hx(k)
ϕ(x, k + 1), (2)

where ϕ ∈ B, and its stationary distribution, if there exist, is given by

π](dx× {k}) = ρ(dx)Hx(k)/m,

where

m :=
∫

E
ρ(dx)m(x), m(x) = ∑

k≥0
Hx(k),

and ρ(dx) is the stationary distribution of the EMC (xn), Hx(k) := q(x, E, [0, k]), and
Hx(k) := 1− Hx(k) = q(x, E, [k + 1, ∞)). The probability measure π defined by π(B) =
π](B× IN) is the stationary probability of the SMC (zk). Define also the r-th moment of
holding time in state x ∈ E,

mr(x) := ∑
k≥1

krq(x, E, k), r = 1, 2, . . .

Of course, m(x) = m1(x), for any x ∈ E.
Define now the stationary projection operator Π on the null space of the (discrete)

generating operator Q] := P] − I,

Πϕ(x, s) = ∑
`≥0

∫
E

π](dy× {`})ϕ(y, `)1(x, s),

where 1(x, s) = 1 for any x ∈ E, and s ∈ IN. This operator satisfies the equations

ΠQ] = Q]Π = 0.

The potential operator of Q], denoted by R0, is defined by

R0 := (Q] + Π)−1 −Π = ∑
k≥0

[(P])k −Π].
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2.2. General Definition and Properties of DTSMREs

We define here controlled discrete-time semi-Markov random evolutions. Let U
denote a compact Polish space representing the control, and let uk be U-valued control
process and we suppose that it is a Markov chain. We note that we could also define the
process uνk which is a semi-Markov control process, considered in many papers (see, e.g.,
in [39,40]). We suppose that homogeneous Markov chain uk is independent of zk, and
transition probability kernel Pu = P(uk+1 ∈ dy | uk = u) = Q(u, dy).

Let us consider a family of bounded contraction operators D(z, u), z ∈ E, u ∈ U,
defined on B, where the maps D(z, u)ϕ : E×U → B are E × U -measurable, ϕ ∈ B. Denote
by I the identity operator on B. Let ΠB = N (Q]) be the null space, and (I−Π)B = R(Q])
be the range values space of operator Q]. We will suppose here that the Markov chain
(zk, γk, k ∈ IN) is uniformly ergodic, that is,

∥∥∥((P])n −Π)ϕ
∥∥∥ → 0, as n → ∞, for any

ϕ ∈ B. In that case, the transition operator is reducible-invertible on B. Thus, we have
B = N (Q])⊕R(Q]), the direct sum of the two subspaces. The domain of an operator A
on B is denoted by D(A) := {ϕ ∈ B : Aϕ ∈ B}.

Definition 1. A controlled discrete-time semi-Markov random evolution (CDTSMRE) Φu
k , k ∈ IN,

on the Banach space B, is defined by

Φu
k ϕ = D(zk, uk)D(zk−1, uk−1) · · ·D(z2, u2)D(z1, u1)ϕ, (3)

for k ≥ 1, Φu
0 = I, u0 = u ∈ U, and for any ϕ ∈ B0 := ∩x∈E,u∈UD(D(x, u)). Thus we have

Φk = D(zk, uk)Φk−1.

The process (zk, γk, uk) is a Markov chain on E × IN×U, adapted to the filtration
Fu

k := σ(z`, γ`, u`; ` ≤ k), k ≥ 0. We also note that (Φu
k ϕ, zk, γk, uk) is a Markov chain on

B× E× IN×U with discrete generator

Lu ϕ = [P̃ +
∫

E

∫
U

P̃(·, dv)(D(v, u)− I)]ϕ, (4)

where ϕ := ϕ(x, z, s, u), and

P̃ϕ(z, s, u) := P]Pu ϕ(z, s, u) = ∑
s′∈IN

∫
E×U

P](z, s; dz′, s′)Pu(u; du′)ϕ(z′, s′, u′).

The process Mu
k defined by

Mu
k := Φu

k − I −
k−1

∑
`=0

E[Φu
`+1 −Φu

` | F
u
` ], k ≥ 1, M0 = 0, (5)

on B, is an Fu
k -martingale. The random evolution Φu

k can be written as follows

Φu
k := I +

k−1

∑
`=0

[D(z`+1, u`+1)− I]Φu
` ,

and then, the martingale (5) can be written as follows,

Mu
k := Φu

k − I −
k−1

∑
`=0

E[(D(z`+1, u`+1)− I)Φu
` | F

u
` ],

or

Mu
k := Φu

k − I −
k−1

∑
`=0

[E(D(z`+1, u`+1) | Fu
` )− I]Φu

` .
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Finally, as E[D(z`+1, u`+1)Φu
` ϕ | Fu

` ] = [(P] + Pu)D(·)Φ`ϕ](z`, γ`, u`), one takes

Mu
k := Φu

k − I −
k−1

∑
`=0

[P̃D(·, u)− I]Φu
` .

2.3. Some Examples

Example 1. Controlled Additive Functional or Markov Decision Process.
Let define the following controlled additive functional,

yu
k =

k

∑
l=0

a(zl , ul), k ≥ 0, y0 = y.

If we define the operator D(z, u) on C0(IR) in the following way,

D(z, u)ϕ(y) := ϕ(y + a(z, u)),

then the controlled discrete-time semi-Markov random evolution Φk ϕ has the following presentation,

Φu
k ϕ(y) = ϕ(yu

k ).

Process yu
k is usually called in the literature the Markov decision process (see, e.g., in [41–44]).

Example 2. Controlled geometric Markov renewal process.
The CGMRP is defined in the following way,

Su
k := S0

k

∏
l=1

(1 + a(zl , ul)), k ∈ IN, S0 = s.

We suppose that ∏0
k=1 = 1.

If we define the operator D(z, u) on C0(IR) in the following way,

D(z, u)ϕ(s) := ϕ(s(1 + a(z, u))),

then the controlled discrete-time semi-Markov random evolution Φu
k ϕ can be given as follows,

Φu
k ϕ(s) = ϕ(Su

k ).

To the authors opinion, this process is defined for the first time in the literature and the notion
of controlled GMRP is a new one as well.

2.4. Dynamic Programming for Controlled Models

Here, we present dynamic programming for controlled models given in Examples
in previous section. Let us consider a Markov control model (see in [45]) (E, A, {A(z)|z ∈
E}, Q, c). Here, E is the state space; A is the control or action set; Q is the transition kernel,
i.e., a stochastic kernel on E given K, where K := {(z, u)|z ∈ E, u ∈ A(z)}; and c : K → R
is a measurable function called the cost-per-stage function.

We are interested in is to minimize the finite-horizon performance criterion either (see
Example 1)

J1(π, z) := Eπ
z [

N−1

∑
l=0

a(zl , ul) + aN(zN)]

or (see Example 2)

J2(π, z) := Eπ
z [ln(

k

∏
l=1

(1 + a(zl , ul))(1 + aN(zN)))],
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where aN(zN) is the terminal cost function, π ∈ Π is the set of control policies.
In this way, denoting by J∗ the value function

J∗i (z) := inf
Π

Ji(π, z), z ∈ E, i = 1, 2,

the problem is to find a policy π∗ ∈ Π such that

Ji(π
∗, z) = J∗i (z), z ∈ E, i = 1, 2, .

Example 3. Controlled Additive Functional.
Let us provide an algorithm for finding both the value function J∗ and an optimal policy π∗

for the example with function J1(π, z) (see Example 1).
Let J0,1, J1,1, . . . , JN,1 be the functions on E defined from l = N to l = 0 by (backwards)

JN,1(z) := aN(z), l = N

and
Jl,1(z) := min

A(z)
[a(z, u) +

∫
E

Jl+1,1(y)Q(u, dy)], l = N − 1, N − 2, . . . , 0.

Suppose that there is a selector ft ∈ F such that fl(z) ∈ A(z) attains the minimum in the
above expression for Jl(z) for all z ∈ E, meaning for any z ∈ E and l = 0, . . . , N − 1,

Jl,1(z) = a(z, fl) +
∫

E
Jl+1,1(y)Q( fl , dy).

Then, the optimal policy is the deterministic Markov one π∗ = { f0, . . . , fN−1}, and the value
function J∗ equals J0, i.e.,

J∗1 (z) = J0(z) = J1(π
∗, z), z ∈ E.

Example 4. Controlled Geometric Markov Renewal Chain.
Let us provide an algorithm for finding both the value function J∗ and an optimal policy π∗

for the example with function J2(π, z) (see Example 2). We will modify the expression for Su
k in

Example 2. Let ln( Su
k

S0
) be a log-return, then

ln(
Su

k
S0

) =
k

∑
l=1

ln(1 + a(zl , ul).

Thus, we are interested in minimizing the finite-horizon performance criterion for

J2(π, z) := Eπ
z [

N−1

∑
l=0

ln(1 + a(zl , ul) + ln(1 + aN(zN)]

Let J0,2, J1,2, . . . , JN,2 be the functions on E defined from l = N to l = 0 by (backwards)

JN,2(z) := ln(1 + aN(z)), l = N

and

Jl,2(z) := min
A(z)

[ln(1 + a(z, u)) +
∫

E
Jl+1,1(y)Q(u, dy)], l = N − 1, N − 2, . . . , 0.

Suppose that there is a selector ft ∈ F such that fl(z) ∈ A(z) attains the minimum in the
above expression for Jl(z) for all z ∈ E, meaning for any z ∈ E and l = 0, . . . , N − 1,

Jl,2(z) = ln(1 + a(z, fl)) +
∫

E
Jl+1,2(y)Q( fl , dy|z).
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Then, the deterministic Markov policy π∗ = { f0, . . . , fN−1} is optimal, and the value function
J∗ equals J0, i.e.,

J∗2 (z) = J0(z) = J2(π
∗, z), z ∈ E.

3. Limit Theorems for Controlled Semi-Markov Random Evolutions

In this section, we present averaging, diffusion approximation, and diffusion approx-
imation with equilibrium results for the controlled discrete-time semi-Markov random
evolutions. It is worth noticing that the main scheme of results are almost the same as
in our previous works in particular [20]. Nevertheless, the additional component of the
control allows us to study more interesting problems.

3.1. Averaging of CDTSMREs

We consider here CDTSMREs defined in Section 2. Let us now set k := [t/ε] and
consider the continuous time process Mε

t

Mε,u
t := Mu

[t/ε] = Φε,u
[t/ε]
− I −

[t/ε]−1

∑
`=0

[P̃Dε(·, u)− I]Φε,u
`

We will prove here asymptotic results for this process as ε→ 0.
The following assumptions are needed for averaging.

A1: The MC (zk, γk, k ∈ IN) is uniformly ergodic with ergodic distribution π](B ×
{k}), B ∈ E , k ∈ IN.

A2: The moments m2(x), x ∈ E, are uniformly integrable.
A3: The perturbed operators Dε(x) have the following representation on B

Dε(x, u) = I + εD1(x, u) + εDε
0(x, u),

where operators D1(x, u) on B are closed and B0 := ∩x∈E,u∈UD(D1(x, u)) is dense
in B, B0 = B. Operators Dε

0(x, u) are negligible, i.e., limε→0
∥∥Dε

0(x, u)ϕ
∥∥ = 0 for any

ϕ ∈ B0.
A4: We have

∫
E

∫
U [π(dx)π1(du)]‖D1(x, u)ϕ‖2 < ∞. (See A7.)

A5: There exists Hilbert spaces H and H∗ such that compactly embedded in Banach
spaces B and B∗, respectively, where B∗ is a dual space to B.

A6: Operators Dε(x) and (Dε)∗(x) are contractive on Hilbert spaces H and H∗, respec-
tively.

A7: The MC (uk, k ∈ IN), is independent of (zk), and is uniformly ergodic with stationary
distribution π1(du), k ∈ IN.

We note that if B = C0(IR), then H = W l,2(IR) is a Sobolev space, and W l,2(IR) ⊂ C0(IR)
and this embedding is compact (see [29]). For the spaces B = L2(IR) and H = W l,2(IR) the
situation is the same.

We also note, that semi-Markov chain (zk, uk) is uniformly ergodic on E×U with
stationary probabilities π(dx)π1(du), which follows from conditions A1 and A7.

Theorem 1. Under Assumptions A1–A7, the following weak convergence takes place,

Φε
[t/ε,u] =⇒ Φ(t), ε ↓ 0,

where the limit random evolution Φ(t) is determined by the following equation,

Φ(t)ϕ− ϕ−
∫ t

0
ÎLΦ(s)ϕds = 0, 0 ≤ t ≤ T, ϕ ∈ B0, (6)
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or, equivalently,

d
dt

Φ(t)ϕ = ÎLΦ(t)ϕ,

where the limit contracted operator is then given by

ÎL = D̂1 =
∫

E

∫
U
[π(dx)π1(du)]D1(x, u). (7)

This result generalize the classical Krylov–Bogolyubov averaging principle [46] on a
Banach and a controlled spaces.

3.2. Diffusion Approximation of DTSMREs

For the diffusion approximation of CDTSMREs, we will consider a different time-
scaling and some additional assumptions.

D1: Let us assume that the perturbed operators Dε(x, u) have the following representation
in B,

Dε(x, u) = I + εD1(x, u) + ε2D2(x, u) + ε2Dε
0(x, u),

where operators D2(x, u) on B are closed and B0 := ∩x∈E,u∈UD(D2(x, u)) is dense in
B, B0 = B; operators Dε

0(x, u) are a negligible operator, i.e., limε↓0
∥∥Dε

0(x, u)ϕ
∥∥ = 0.

D2: The following balance condition holds,

ΠD1(x, u)Π = 0, (8)

where

Πϕ(x, k, u) := ∑
l≥0

∫
E

∫
U

π](dy× `)π1(du)ϕ(y, `, u)1(x, k). (9)

D3: The moments m3(x), x ∈ E, are uniformly integrable.

Theorem 2. Under Assumptions A1, A5–A7 (see Section 3.1), and D1-D3, the following weak
convergence takes place,

Φε
[t/ε2] =⇒ Φ0(t), ε ↓ 0,

where the limit random evolution Φ0(t) is a diffusion random evolution determined by the following
generator

IL = ΠD2(x)Π + ΠD1(x)R0D1(x)Π−ΠD2
1(x)Π,

where

R0 := [Q̃ + Π]−1 −Π, (10)

and

Q̃ := P̃− I. (11)

3.3. Diffusion Approximation with Equilibrium

The diffusion approximation with equilibrium or the normal deviation is obtained by
considering the difference between the rescaled initial processes and the averaging limit
process. This is of great interest when we have no balance condition as previously in the
standard diffusion approximation scheme.
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Consider now the controlled discrete-time semi-Markov random evolution Φε
[t/ε,u],

averaged evolution Φ(t) (see Section 3.1) and the deviated evolution

Wε,u
t := ε−1/2[Φε,u

[t/ε]
−Φ(t)]. (12)

Theorem 3. Under Assumptions A1, A5–A6 (see Section 3.1), and D3, with operators Dε(x) in
A3, instead of D1, the deviated controlled semi-Markov random evolution Wε,u

t weakly convergence,
when ε→ 0, to the diffusion random evolution W0

t defined by the following generator

IL = Π(D1(x, u)− D1)R0(D1(x, u)− D1)Π, (13)

where Π is defined in (9).

4. Applications to Stochastic Systems

In this section, we give two applications in connection with the above results: additive
functionals that has many application, e.g., in storage, reliability, and risk theories (see,
e.g., in [3,4,19,47]), and to geometric Markov renewal processes, that also have many
application including finance (see [15–18]). Our main goal here is to get the limiting
processes and apply optimal control methods to receive the solutions of optimization
problems. The limiting results for MC such as LLN and CLT were considered in [11,12].

4.1. Controlled Additive Functionals

Let us consider here the CAF, (yu
k ), described previously in Example 1.

Averaging of CAF. Now, if we define the continuous time process

yε,u
t := ε

[t/ε]

∑
l=0

a(zl , ul),

then from Theorem 1 it follows that this process has the following limit y0(t) = limε→0 yε
t

y0(t) = y + ât,

where â =
∫

E

∫
U π(dz)π1(du)a(z, u). We suppose that

∫
E

∫
U π(dz)π1(du)|a(z, u)| < +∞.

Diffusion Approximation of CAF. If we consider the continuous time process ξε,u
t

as follows

ξε,u
t := ε

[t/ε2]

∑
l=0

a(zl , ul), ξε
0 = y,

then under balance condition
∫

E

∫
U π(dz)π1(du)a(z, u) = 0 and

∫
E

∫
U π(dz)π1(du)|a(z, u)|2 <

+∞ we get that the limit process ξ0(t) = limε→0 ξε
t has the following form,

ξ0(t) = y + bwt,

where b2 = 2â0 − â2, and

â0 =
∫

E

∫
U

π(dz)π1(du)a(z, u)R0a(z, u), â2 =
∫

E

∫
U

π(dz)π1(du)a2(z, u),

and wt is a standard Wiener process.
Diffusion Approximation with Equilibrium of CAF. Let us consider the following

normalized additive functional,

wε,u
t := ε−1/2[yε,u

t − ât].
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Then, this process converges to the following process, σwt, where

σ2 =
∫

E

∫
U

π(dz)π1(du)(a(z, u)− â)R0(a(z, u)− â),

and wt is a standard Wiener process.
In this way, the AF yε

t may be presented in the following approximated form,

yε
t ≈ ât +

√
εσwt.

4.2. Controlled Geometric Markov Renewal Processes

The CGMRP is defined in the following way (see in [15,16]),

Su
k := S0

k

∏
l=1

(1 + a(zl , ul)), k ∈ IN, τ0 = s.

We suppose that ∏0
k=1 = 1.

If we define the operator D(z) on C0(IR) in the following way,

D(z, u)ϕ(s) := ϕ(s(1 + a(z, u))),

then the discrete-time semi-Markov random evolution Φu
k ϕ has the following presentation,

Φu
k ϕ(s) = ϕ(Su

k ).

Averaging of CGMRP. Now, define the following sequence of processes,

Sε,u
t := S0

[t/ε]

∏
k=1

(1 + εa(zk, uk)), t ∈ IR+, S0 = s.

Then, under averaging conditions the limit process S̄t has the following form,

S̄t = S0eât,

where â =
∫

E

∫
U π(dz)π1(du)a(z, u).

Diffusion Approximation of CGMRP. If we define the following sequence of pro-
cesses,

Sε,u(t) := S0

[t/ε2]

∏
k=1

(1 + εa(zk, uk)), t ∈ IR+, S0 = s,

then, in the diffusion approximation scheme, we have the following limit process, S0(t)

S0(t) = S0e−tâ2/2eσaw(t),

where
â2 :=

∫
E

∫
U

π(dz)π1(du)a2(z, u),

σ2
a :=

∫
E

∫
U

π(dz)π1(du)[a2(z, u)/2 + a(z, u)R0a(z, u)].

It means that S0(t) satisfies the following stochastic differential equation,

dS0(t)
S0(t)

=
1
2
(σ2

a − â2)dt + σadwt,

where wt is a standard Wiener process.
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Diffusion Approximation with Equilibrium of CGMRP. Let us consider the follow-
ing normalized GMRP:

wε,u
t := ε−1/2[ln(Sε,u

t /S0)− ât].

It is worth noticing that in finance the expression ln(Sε,u
t /S0) represents the log-return

of the underlying asset (e.g., stock) Sε,u
t .

Then, this process converges to the following process, σwt, where

σ2 =
∫

E

∫
U

π(dz)π1(du)(a(z, u)− â)R0(a(z, u)− â),

and wt is a standard Wiener process.
In this way, the GMRP Sε

t may be presented in the following approximated form,

Sε
t ≈ S0eât+

√
εσwt .

4.3. Controlled Dynamical Systems

We consider here discrete-time CDS and their asymptotic behaviour in series scheme:
average and diffusion approximation ([9]).

Define the measurable function C on IR× E×U. Let us consider the difference equa-
tion

yε,u
k+1 = yε,u

k + εC(yε
k; zk+1, uk+1), k ≥ 0, and yε

0 = u, (14)

switched by the SMC (zk).
The perturbed operators Dε(z, u), x ∈ E, are defined now by

Dε(z, u)ϕ(u) = ϕ(z + εC(z, x, u)).

Averaging of CDS. Under averaging assumptions the following weak convergence
takes place,

yε,u
[t/ε]
⇒ y(t), as ε ↓ 0,

where y(t), t ≥ 0 is the solution of the following (deterministic) differential equation,

d
dt

y(t) = C(y(t)), and y(0) = u, (15)

where C(z) =
∫

E

∫
U π(dx)π1(du)C(z, x, u).

Diffusion Approximation of CDS. Under diffusion approximation conditions the
following weak convergence takes place

yε,u
[t/ε2]

⇒ xt, as ε ↓ 0,

where xt, t ≥ 0, is a diffusion processes, with initial value x0 = u, determined by the opera-
tor

ILϕ(z) = a(z)ϕ′(z) +
1
2

b2(z)ϕ′′(z),

provided that b2(z) > 0, and drift and diffusion coefficients are defined as follows,

b2(z) := 2C0(z)− C2(z),

a(z) := C01(z)− C1(z),

with:
C0(z) :=

∫
E

∫
U π(dx)π1(du)C0(z, x, u), C0(z, x, u) := C(z, x, u)R0C(z, x, u),
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C2(z) :=
∫

E

∫
U π(dx)π1(du)C∗(z, x, u)C(z, x, u), where C∗ means transpose of the

vector C,
C01(z) :=

∫
E

∫
U π(dx)π1(du)C01(z, x, u), C01(z, x, u) := C(z, x, u)R0C′z(z, x, u),

C1(z) :=
∫

E

∫
U π(dx)π1(du)C1(z, x, u), C1(z, x, u) := C(z, x, u)C′z(z, x, u).

4.4. The Dynamic Programming Equations for Limiting Models in Diffusion Approximation

In this section, we consider the DPE, i.e., HJB Equations, for the limiting models
in DA from Sections 4.1–4.3. As long as all limiting processes in DA in Sections 4.1–4.3
are diffusion processes, then we will set up a general approach to control for diffusion
processes, see in [48].

Let xu
t be a diffusion process satisfying the following stochastic differential equation,

dxu
t = µ(xu

t , ut)dt + σ(xu
t , ut)dwt,

where ut is the control process, wt is a standard Wiener process. Let us also introduce the
following performance criterion function, Ju(t, x)

Ju(t, x) := Et,x[G(xu
T) +

∫ T

t
F(s, xu

s , us)ds],

where G(x) : R → R is a terminal reward function (uniformly bounded), F(t, x, u) :
R+ × R2 → R is a running penalty/reward function (uniformly bounded), 0 ≤ t ≤ T. The
problem is to maximize this performance criteria, i.e., to find the value function

J(t, x) := sup
u∈Ut,T

Ju(t, x),

where Ut,T is the admissible set of strategies/controls which are F -predictable, non-
negative, and bounded.

The Dynamic Programming Principle (DPP) for diffusions states that the value func-
tion J(t, x) satisfies the DPP

J(t, x) = sup
u∈Ut,T

Et,x[Ju(T, xu
T) +

∫ T

t
F(s, xu

s , us)ds]

for all (t, x) ∈ [0, T]× R.
Moreover, the value function J(t, x) above satisfies the Dynamic Programming Equa-

tion (DPE) or Hamilton–Jacobi–Bellman (HJB) Equation:

∂J(t, x)
∂t

+ sup
u∈Ut,T

[Lu
t J(t, x) + F(t, x, u)] = 0 (16)

J(T, x) = G(x),

where Lu
t is an infinitesimal generator of the diffusion process xu

t above, i.e.,

Lu
t = µ(x, u)

∂

∂x
+

σ2(x, u)
2

∂2

∂x2 .

• DPE/HJB Equation for the Limiting CAF in DA (see Section 4.1)

We remind that the limiting process ξ0(t) = limε→0 ξε
t in this case has the follow-

ing form
ξ0(t) = y + bwt,

where b2 = 2â0 − â2, and

â0 =
∫

E

∫
U

π(dz)π1(du)a(z, u)R0a(z, u), â2 =
∫

E

∫
U

π(dz)π1(du)a2(z, u),
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and wt is a standard Wiener process.
In this case, the DPE or HJB Equation (16) reads with the generator

Lu
t =

1
2

b2(u)
∂2

∂x2 ,

with b2(u) := 2â0(u)− â2(u), and

â0(u) :=
∫

E
π(dz)a(z, u)R0a(z, u), â2(u) :=

∫
E

π(dz)a2(z, u).

• DPE/HJB Equation for the Limiting CGMRP in DA (see Section 4.2)

We recall that we have the following limiting process S0(t) in this case:

S0(t) = S0e−tâ2/2eσaw(t),

where
â2 :=

∫
E

∫
U

π(dz)π1(du)a2(z, u),

σ2
a :=

∫
E

∫
U

π(dz)π1(du)[a2(z, u)/2 + a(z, u)R0a(z, u)].

Furthermore, S0(t) satisfies the following stochastic differential equation (SDE),

dS0(t)
S0(t)

=
1
2
(σ2

a − â2)dt + σadwt,

where wt is a standard Wiener process.
In this case, the DPE or HJB Equation (16) reads with the generator

Lu
t =

1
2
(σ2

a (u)− a2(u))
∂

∂s
+

1
2

σ2
a (u)

∂2

∂s2 ,

and â2(u) :=
∫

E π(dz)a2(z, u), σ2
a (u) :=

∫
E π(dz)[a2(z, u)/2 + a(z, u)R0a(z, u)].

• DPE/HJB Equation for the Limiting CDS in DA (see Section 4.3)

We remind that in the diffusion approximation the limiting process is a diffusion
process xt with a generator

Lϕ(z) = a(z)ϕ′(z) +
1
2

b2(z)ϕ′′(z),

provided that b2(z) > 0, and drift and diffusion coefficients are defined as follows,

b2(z) := 2C0(z)− C2(z),

a(z) := C01(z)− C1(z),

with
C0(z) :=

∫
E

∫
U π(dx)π1(du)C0(z, x, u), C0(z, x, u) := C(z, x, u)R0C(z, x, u),

C2(z) :=
∫

E

∫
U π(dx)π1(du)C∗(z, x, u)C(z, x, u), where C∗ means transpose of the

vector C,
C01(z) :=

∫
E

∫
U π(dx)π1(du)C01(z, x, u), C01(z, x, u) := C(z, x, u)R0C′z(z, x, u),

C1(z) :=
∫

E

∫
U π(dx)π1(du)C1(z, x, u), C1(z, x, u) := C(z, x, u)C′z(z, x, u).

In this case the DPE or HJB Equation (16) reads with the generator

Lu
t = a(z, u)ϕ′(z) +

1
2

b2(z, u)ϕ′′(z),
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and

b2(z, u) := 2C0(z, u)− C2(z, u),

a(z, u) := C01(z, u)− C1(z, u),

with:
C0(z, u) :=

∫
E π(dx)C0(z, x, u), C0(z, x, u) := C(z, x, u)R0C(z, x, u),

C2(z, u) :=
∫

E π(dx)C∗(z, x, u)C(z, x, u), where C∗ means transpose of the vector C,
C01(z, u) :=

∫
E π(dx)C01(z, x, u), C01(z, x, u) := C(z, x, u)R0C′z(z, x, u),

C1(z, u) :=
∫

E π(dx)C1(z, x, u), C1(z, x, u) := C(z, x, u)C′z(z, x, u).

Remark 1. Our construction here is equivalent to some extend to “Recurrent Processes of a
semi-Markov type (RPSM)” studied first in [13,14] including limit theorems. Those results were
described in more detail in [11,12]. In particular, “RPSM with Markov switching” reflects the case
of independent Markov components zk and uk, and “General case of RPSM” reflects the case when
uk is dependent on zk.

• The Merton Problem
This is an example of solution of DPE/HJB equation for the limiting CGMRP in DA.

Let us consider the portfolio optimization problem proposed by Merton (1971), see in [25].
We will apply this approach to the limiting CGMRP in DA above. In this problem, the
agent seeks to maximize expected wealth by trading in a risky asset and the risk-free bonds
(or bank account). She/he places $πt for a total wealth Xt in the risky asset S0(t) and looks
to obtain the value function (performance criterion)

Jπ(t, S, x) := sup
π∈U′,T

Et,S,x[U(Xπ
T )],

which depends on the current wealth x and asset price S, and the optimal trading strategy
π, U(x) is the agent’s utility function (e.g., exponential (−e−γx) or power xγ). We suppose
that the asset price S0(t) satisfies the following SDE

dS0(t)
S0(t)

= (µ− r)dt + σadwt, S0(0) = S,

where
µ :=

1
2
(σ2

a − â2),

â2 :=
∫

E

∫
U

π(dz)π1(du)a2(z, u),

σ2
a :=

∫
E

∫
U

π(dz)π1(du)[a2(z, u)/2 + a(z, u)R0a(z, u)].

Here, µ represents the expected continuously compounded rate of growth of the
traded asset, r is the continuously compounded rate of return of the risk-free asset (bond
or bank account).

The wealth process Xπ
t follows the following SDE,

dXπ
t = (πt(µ− r) + rXπ

t )dt + πtσadwt, Xπ
0 = x.

From the SDEs for S0(t) and for Xπ
t above we conclude that the infinitesimal generator

for the pair (S0(t), Xπ
t ) is

Lπ
t = (rx + (µ− r)π)

∂

∂x
+

1
2

σ2
a π

∂2

∂x2 + (µ− r)S
∂

∂S
+

1
2

σ2
a S2 ∂2

∂S2 + σaπ
∂2

∂x∂S
.
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From HJB equation for the limiting CGRMP in DA it follows that the value function

J(t, S, x) = sup
π∈Ut,T

Jπ(t, S, x)

should satisfy the equation

∂J(t, S, x)
∂t

+ sup
π

[Lπ
t J(t, S, x)] = 0

with terminal condition J(T, S, x) = U(x).
The explicit solution of this PDE depends on the explicit form of the utility function

U(x). Let us take the exponential utility function

U(x) = −e−γx, γ > 0, x ∈ R.

In this case we can find that the optimal amount to invest in the risky asset is a
deterministic function of time

π∗t =
(σ2

a − â2)/2− r
γσ2

a
e−r(T−t).

5. Rates of Convergence in Averaging and Diffusion Approximations

The rate of convergence in a limit theorem is important in several ways, both theoreti-
cal and practical. We present here the rates of convergence of CDTSMRE in the averaging,
diffusion approximation and diffusion approximation with equilibrium schemes and, as
corollaries, we give the rates of convergence for CAF and CGMRP in the corresponding
limits.

Proposition 1. The Rate of Convergence of CDTSMRE in the Averaging has the following form,

||E[Φε,u
[t/ε]

ϕ]−Φ(t)ϕ|| ≤ εA(T, ϕ, ||R0||, D1(z, u)),

where A(T, ϕ, ||R0||, D1(z, u)) is a constant, and 0 ≤ t ≤ T.

The proof of this proposition is given in Section 6.4.

Proposition 2. The Rate of Convergence of CDTSMRE in the Diffusion Approximation takes the
following form,

||E[Φε,u
[t/ε2]

ϕ]−Φ0(t)ϕ|| ≤ εD(T, ||ϕ||, ||R0||, ||D1||, ||D2||),

where D(T, ||ϕ||, ||R0||, ||D1||, ||D2||) is a constant, and 0 ≤ t ≤ T.

Proposition 3. The Rate of Convergence of CDTSMRE in Diffusion Approximation with Equilib-
rium has the following form,

||E[Wε,u
t ϕ]−W0

t ϕ|| ≤
√

εN(T, ||ϕ||, ||R0||, ||D1||, ||D2
1 ||),

where N(T, ||ϕ||, ||R0||, ||D1||, ||D2
1 ||) is a constant and 0 ≤ t ≤ T.

The proofs of the above Propositions 2 and 3 are similar as the proof of Proposition 1.
We give in what follows some rate of convergence results (Corollaries 1 and 2) concerning
applications.

Corollary 1. The Rate of Convergence in the Limit Theorems for CAF:
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- Rate of Convergence in Averaging:

||Eyε,u
t − y0(t)|| ≤ εa(T, ||R0||, ||a||),

where a(T, ||R0||, ||a||) is a constant, and 0 ≤ t ≤ T.
- Rate of Convergence in Diffusion Approximation

||Eξε,u
t − ξ0(t)|| ≤ εd(T, ||R0||, ||a||, ||a2||),

where d(T, ||R0||, ||a||, ||a2||) is a constant, and 0 ≤ t ≤ T.
- Rate of Convergence in diffusion approximation with equilibrium for CAF

||EWε,u
t − wt|| ≤

√
εn(T, ||R0||, ||a||, ||a2||),

where n(T, ||R0||, ||a||, ||a2||) is a constant, and 0 ≤ t ≤ T.

Corollary 2. The Rate of Convergence in the Limit Theorems for CGMRP:
- Rate of Convergence in Averaging

||ESε,u
t − τ̄t|| ≤ εa(T, ||R0||, ||a||),

where a(T, ||R0||, ||a||) is a constant, and 0 ≤ t ≤ T.
- Rate of Convergence in Diffusion Approximation

||ESε,u
t − τ0(t))|| ≤ εd(T, ||R0||, ||a||, ||a2||),

where d(T, ||R0||, ||a||, ||a2||) is a constant, and 0 ≤ t ≤ T.
- Rate of Convergence in diffusion approximation with equilibrium

||EWε,u
t − wt|| ≤

√
εn(T, ||R0||, ||a||, ||a2||),

where n(T, ||R0||, ||a||, ||a2||) is a constant, and 0 ≤ t ≤ T.

6. Proofs

The proofs here have almost the same general construction scheme as in our paper [20]
except that we consider also the control process. Let CB[0, ∞) be the space of B-valued
continuous functions defined on [0, ∞).

6.1. Proof of Theorem 1

The proof of the relative compactness of CDTSMRE in the average approximation is
based on the following four lemmas.

The CDTSMRE Φε,u
[t/ε]

ϕ, see (3), is weakly compact in DB[0, ∞) with limit points into
CB[0, ∞).

Lemma 1. Under Assumptions A1–A7, the limit points of Φε,u
[t/ε]

ϕ, ϕ ∈ B0, as ε→ 0, belong to
CB[0, ∞).

Proof. Assumptions A5–A6 imply that the discrete-time semi-Markov random evolution
Φu

k ϕ is a contractive operator in H and, therefore, ||Φu
k ϕ||H is a supermartingale for any ϕ ∈

H, where || · ||H is a norm in Hilbert space H ([4,9]) Obviously, the same properties satisfy
the following family Φε,u

[t/ε]
. Using Doob’s inequality for the supermartingale ||Φε,u

[t/ε]
||H we

obtain
P{Φε,u

[t/ε]
∈ K∆} ≥ 1− ∆,

where K∆ is a compact set in B and ∆ is any small number. It means that sequence Φε,u
[t/ε]

is
tight in B. Taking into account conditions A1–A6, we obtain that discrete-time semi-Markov
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random evolution Φε,u
[t/ε]

is weakly compact in DB[0,+∞) with limit points in CB[0,+∞),
ϕ ∈ B0.

Let Jε,u
t := J(Φε,u

[t/ε]
; [t/ε]) := supk≤[t/ε]

∥∥∥Φε,u
[t/ε]+k ϕ−Φε,u

[t/ε]
ϕ
∥∥∥, and let K∆ be a compact

set from compact containment condition ∆ > 0. It is sufficient to show that Jε,u
t weakly

converges to zero. This is equivalent to the convergence of Jε,u
t in probability as ε→ 0.

From the very definition of Jε,u
t and A3, we obtain

Jε,u
t 1K∆ ≤ ε sup

k≤[t/ε]

sup
ϕ∈S∆

(‖D1(zk, uk)ϕ‖+ ‖Dε
0(zk, uk)ϕ‖),

where 1K∆ is the indicator of the set K∆, and S∆ is the finite δ-set for K∆. Then, for δ < ∆,
we have

Pπ×π1(Jε,u
t 1K∆ > ∆) ≤ Pπ×π1( sup

k≤[t/ε]

Dk > (∆− δ)/ε)

=
[t/ε]

∑
i=1

Pπ×π1({ sup
k≤[t/ε]

Dk > (∆− δ)/ε} ∩ Di)

≤ ε2[t/ε] sup
ϕ∈S∆

[P̃[t/ε](‖D1(x, u)ϕ‖2

+2‖D1(x, u)ϕ‖‖Dε
0(x, u)ϕ‖+ ‖Dε

0(x, u)ϕ‖2)],

where Dk := supϕ∈S∆
(‖D1(zk, uk)ϕ‖+

∥∥Dε
0(zk, uk)ϕ

∥∥), and
Di := {ω : Dk contains the maximum for the first time on the variable Di}.
It is worth noticing that the operator P̃k is bounded when k → ∞. So is the case for

P̃[t/ε] when ε→ 0.
Taking both ε and δ go to 0 we obtain the proof of the this lemma.

Let us now consider the continuous time martingale

Mε,u
t := Mε

[t/ε] = Φε,u
[t/ε]
− I −

[t/ε]−1

∑
k=0

Eπ×π1 [Φ
ε,u
k+1 −Φε,u

k | Fk]. (17)

Lemma 2. The process

Mε,u
t := Φε,u

[t/ε]
− I −

[t/ε]−1

∑
`=0

[P̃Dε(·, u)− I]Φε,u
` ,

is an Fu
[t/ε]

-martingale.

Proof. As long as Mε,u
k := Φε,u

k − I−∑k−1
`=0[P̃Dε(·, u)− I]Φε,u

` , is a martingale Mε,u
t = Mε,u

[t/ε]

is an Fu
[t/ε]

-martingale. Here, we have Eπ×π1 [M
ε
k+1 | F

u
k ] = Mε,u

k which can be easily
checked.

Lemma 3. The family `(∑
[t/ε]
k=0 Eπ×π1 [Φ

ε,u
k+1 ϕ−Φε,u

k ϕ | Fu
k ]) is relatively compact for all ` ∈ B∗0 ,

dual of the space B0.

Proof. Let

Nε,u
t :=

[t/ε]

∑
k=0

Eπ×π1 [(Φ
ε,u
k+1 −Φε,u

k )ϕ | Fu
k ].

Then,

Nε,u
t =

[t/ε]

∑
k=0

[P̃Dε(·, u)− I]Φε,u
k .



Mathematics 2021, 9, 158 18 of 26

As long as Φε,u
k+1 = Dε(zk+1, uk+1)Φ

ε,u
k , we obtain

Eπ×π1 [Φ
ε,u
k+1 ϕ | Fu

k ] = Eπ×π1 [D
ε(zk+1, uk+1)Φ

ε,u
k ϕ | Fu

k ].

Then, ∣∣∣∣∣∣`(
[(t+η)/ε]

∑
k=[t/ε]+1

Eπ×π1 [Φ
ε,u
k+1 ϕ−Φε,u

k ϕ | Fu
k ])

∣∣∣∣∣∣
=

∣∣∣∣∣∣`(
[(t+η)/ε]

∑
k=[t/ε]+1

[P̃Dε(zk+1, zk+1)− I]Φε,u
k ϕ)

∣∣∣∣∣∣
≤ ε‖`‖([(t + η)/ε]− [t/ε]− 1)

∥∥∥P̃(D1(zk+1, uk+1) + Dε
0(zk+1, uk+1))ϕ

∥∥∥
≤ ε‖`‖η

ε

∥∥∥P̃(D1(·, u) + Dε
0(·, u))ϕ

∥∥∥
= η‖`‖

∥∥∥P̃(D1(·, u) + Dε
0(·, u))ϕ

∥∥∥→ 0, η → 0,

as
∥∥∥P̃(D1(·, u) + Dε

0(·, u))ϕ
∥∥∥ is bounded for any ϕ ∈ B0.

It means that the family `(∑
[t/ε]
k=0 Eπ×π1 [Φ

ε,u
k+1 ϕ−Φε,u

k ϕ | Fu
k ]), is relatively compact

for any ` ∈ B∗0 .

Lemma 4. The family `(Mε,u
[t/ε]

ϕ) is relatively compact for any ` ∈ B∗0 , and any ϕ ∈ B0.

Proof. It is worth noticing that the martingale Mε,u
[t/ε]

can be represented in the form of the
martingale differences

Mε,u
[t/ε]

=
[t/ε]−1

∑
k=0

Eπ×π1 [Φ
ε,u
k+1 ϕ− Eπ×π1(Φ

ε,u
k+1 ϕ | Fu

k )].

Then, using the equality

Eπ×π1 [Φ
ε,u
k+1 ϕ | Fu

k ] = Eπ×π1 [D
ε(zk+1, uk+1)Φ

ε,u
k ϕ | Fu

k ],

we get

Mε,u
[(t+η)/ε]

ϕ−Mε,u
[t/ε]

ϕ =
[(t+η)/ε]

∑
k=[t/ε]+1

[Dε(zk+1, uk+1)Φ
ε,u
k ϕ− Eπ×π1 [D

ε(zk+1, uk+1)Φ
ε,u
k ϕ | Fu

k ]}

=
[(t+η)/ε]

∑
k=[t/ε]+1

[Dε(zk+1, uk+1)Φ
ε,u
k ϕ− P̃Dε(zk+1, uk+1)Φ

ε,u
k ϕ]

=
[(t+η)/ε]

∑
k=[t/ε]+1

[Dε(zk+1, uk+1)− P̃Dε(zk+1, uk+1)]Φ
ε,u
k ϕ,

for any η > 0. Now, from the above, we get

Eπ×π1

∣∣∣`(Mε,u
[(t+η)/ε]

ϕ−Mε,u
[t/ε]

ϕ)
∣∣∣

≤ ([t + η)/ε]− [t/ε])εEπ×π1(‖D1(zk+1, uk+1)ϕ‖+ ‖Dε
0(zk+1, uk+1)ϕ‖

+
∥∥∥P̃D1(·, u)ϕ

∥∥∥+ ∥∥∥P̃Dε
0(·, u)ϕ

∥∥∥)
≤ 2η(

∥∥∥P̃D1(·, u)ϕ
∥∥∥+ ∥∥∥P̃Dε

0(·, u)ϕ
∥∥∥)→ 0, η → 0,
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which proves the lemma.

Now the proof of Theorem 1 is achieved as follows.
From Lemmas 2–4 and the representation (17) it follows that the family `(Φε,u

[t/ε]
ϕ) is

relatively compact for any ` ∈ B∗0 , and any ϕ ∈ B0.
Moreover, let ILε(x), x ∈ E, be a family of perturbed operators defined on B as follows,

ILε,u(x) := ε−1Q̃ + P̃D1(x, u) + P̃Dε
0(x, u). (18)

Then, the process

Mε,u
t = Φε,u

[t/ε]
− I − ε

[t/ε]−1

∑
`=0

ILε,uΦε,u
` , (19)

is an F ε,u
t -martingale.

The following singular perturbation problem, for the non-negligible part of compen-
sating operator, ILε,u, denoted by ILε,u

0 (x) := ε−1Q̃ + P̃D1(x, u),

ILε,u
0 ϕε = ILϕ + εθε,u, (20)

on the test functions ϕε(z, x) = ϕ(z) + εϕ1(z, x), has the solution (see [3] Proposition 5.1):
ϕ ∈ N (Q̃), ϕ1 = R0D̃1 ϕ, with D̃1(x, u) = P̃D1(x, u)− D̂1, D̂1 =

∫
E π × π1(dx)D1(x, u),

and θε,u(x) = (P] × Pu)D1(x, u)R0D̃1(x, u)ϕ.
The limit operator is then given by

ILΠ = ΠD1(·, u)Π, (21)

form which we get the contracted limit operator

ÎL = D̂1. (22)

We note that martingale Mε,u
t has the following asymptotic representation,

Mε,u
t = Φε,u

[t/ε]
− I − ε

[t/ε]−1

∑
`=0

ÎLΦε,u
` + Oϕ(ε), (23)

where ||Oϕ(ε)|| → 0, as ε → 0. The families l(M[t/ε]) and l(∑[t/ε]−1
`=0 [(P] × Pu)Dε(·, u)−

I]Φε,u
` ) are weakly compact for all l ∈ B∗0 in a dense subset B∗0 ⊂ B. It means that family

l(Φε,u
[t/ε]

) is also weakly compact. In this way, the sum ε ∑
[t/ε]−1
`=0 ÎLΦε,u

` ϕ converges, as ε→ 0,

to the integral
∫ t

0 ÎLΦ(s)ϕds. The quadratic variation of the martingale l(Mε,u
t ϕ) tends to

zero when ε→ 0, thus, Mε,u
t ϕ→ 0 when ε→ 0, for any f ∈ B0 and for any l ∈ B∗0 . Passing

to the limit in (23), when ε→ 0, we get Φε,u
[t/ε]

ϕ→ε→0 Φ(t)ϕ, where Φ(t) is defined in (6).

The quadratic variation of the martingale Mε,u
t , in the average approximation, is

〈`(Mε,u
[t/ε]
〉 =

[t/ε]

∑
k=0

Eπ×π1 [`
2(Mε,u

k+1 ϕε −Mε,u
k ϕε) | Fu

k ], (24)

where ϕε(x) = ϕ(x) + εϕ1(x). Hence

`(Mε,u
k+1 ϕε −Mε,u

k ϕε) = `((Mε,u
k+1 −Mε,u

k )ϕ) + ε`((Mε,u
k+1 −Mε,u

k )ϕ1),

and

Mε,u
k+1 −Mε,u

k = Φε,u
k+1 −Φε,u

k − Eπ×π1 [Φ
ε,u
k+1 −Φε,u

k | F
u
k ]. (25)
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Therefore,

`(Mε,u
k+1 ϕε −Mε,u

k ϕε)

= `((D(zk+1, uk+1)
ε − I)Φε,u

k ϕ)− Eπ×π1 [(Dε(zk+1, uk+1)− I)ϕ | Fu
k ]

+ε`((Dε(zk+1, uk+1)− I)ϕ1)− Eπ×π1 [(D(zk+1, uk+1)
ε − I)ϕ1 | Fu

k ]

= ε`((D1(zk+1, uk+1) + Dε
0(zk+1, uk+1))ϕ) (26)

−εEπ×π1 [(D1(zk+1, uk+1) + Dε
0(zk+1, uk+1))ϕ | Fu

k ]

+ε2`((D1(zk+1, uk+1) + Dε
0(zk+1, uk+1))ϕ1)

−ε2Eπ [(D1(zk+1, uk+1) + Dε
0(zk+1, uk+1))ϕ1 | Fu

k ].

Now, from (24) and (26) and from boundedness of all operators in (26) with respect to
Eπ×π1 , it follows that 〈`(Mε,u

[t/ε]
〉 goes to 0 when ε→ 0, and the quadratic variation of limit

process M0,u
t , for the martingale Mε,u

t , is equals to 0.
In this case, the limit martingale M0

t equals to 0. Therefore, the limit equation for
Mε,u

t has the form (6). As long as the solution of the martingale problem for operator ÎL is
unique, then it follows that the solution of the Equation (6) is unique as well [49,50]. It is
worth noticing that operator ÎL is a first order operator (D̂1, see (22)). Finally, the operator
ÎL generates a semigroup, then Φ(t)ϕ = exp[ÎLt]ϕ and the latter representation is unique.

6.2. Proof of Theorem 2

We can prove the relative compactness of the family Φε,u
[t/ε2]

exactly on the same way,
and following the same steps as above. However, in the case of diffusion approximation
the limit continuous martingale M0(t) for the martingale Mε

t has quadratic variation that is
not zero, that is,

M0(t)ϕ = Φ0(t)ϕ− ϕ−
∫ t

0
ÎLΦ0(s)ds,

and so 〈`(M0)〉 6= 0, for ` ∈ B∗0 .
Moreover, operator ÎL defined in Theorem 2 is a second-order kind operator as it

contains operator D̂2 and ΠD1R0P̃D1Π, compare with the first-order operator ÎL in (22).
Let ILε,u(x), x ∈ E, be a family of perturbed operators defined on B as follows,

ILε,u(x) := ε−2Q̃ + ε−1P̃D1(x, u) + P̃D2(x, u) + P̃Dε
0(x, u). (27)

Then, the process

Mε,u
t = Φε,u

[t/εε ]
− I − ε2

[t/ε2]−1

∑
k=0

ILε,uΦε,u
k , (28)

is an F ε,u
t -martingale with mean value zero.

For the non-negligible part of compensating operator, ILε,u, denoted by ILε,u
0 (x) :=

ε−2Q̃ + ε−1P̃D1(x, u) + P̃D2(x, u), consider the following singular perturbation problem,

ILε,u
0 ϕε = ILϕ + εθε,u(x), (29)

where ϕε(z, x) = ϕ(z) + εϕ1(z, x) + ε2 ϕ2(z, x). The solution of this problem is realized by
the vectors (see in [3], Proposition 5.2)

ϕ1 = R0P̃D1(x, u)ϕ, ϕ2 = R0 Ãϕ,

with Ã(x, u) := A(x, u)− Â. Finally, the negligible term θε,u(x) is

θε,u(x) = [P̃D1(x, u) + εP̃D2(x, u)]ϕ2 + P̃D2(x, u)ϕ1.
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Of course, ϕ ∈ N (Q̃).
Now the limit operator IL is given by

IL = P̃D2(·, u) + P̃D1(·, u)R0P̃D1(·, u), (30)

from which, the contracted operator on the null space N (Q̃) is

ÎL = D̂2Π + ΠD1(x, u)R0P̃D1(x, u)Π. (31)

Moreover, due to the balance condition (8) we get the limit operator.
We worth noticing that Assumptions A5–A7 and D1–D3 imply that discrete-time

semi-Markov random evolution Φε,u
[t/ε2]

ϕ is a contractive operator in H and, therefore,

||Φε,u
[t/ε2]

ϕ||H is a supermartingale for any ϕ ∈ H, where || · ||H is a norm in Hilbert space

H ([4,9]). By Doob’s inequality for the supermartingale ||Φε,u
[t/ε2]
||H we obtain

P{Φε,u
[t/ε2]

∈ K1
∆} ≥ 1− ∆,

where K1
∆ is a compact set in B and ∆ is any positive small real number.

We conclude that under Assumptions A5–A7 and D1–D3, the family Mε,u
t is tight and

is weakly compact in DB[0,+∞) with limit points in CB[0,+∞).
Moreover, under Assumptions A5–A6 and D1–D2, the martingale Mε,u

t has the follow-
ing asymptotic presentation:

Mε,u
t ϕ = Φε,u

[t/ε2]
ϕ− ϕ− ε2

[t/ε2]−1

∑
k=0

ÎLΦε,u
k ϕ + Oϕ(ε), (32)

where ||Oϕ(ε)|| → 0, as ε→ 0. The families l(Mε,u
t φ) and l(ε2 ∑

[t/εε ]−1
k=0 ÎLΦε,u

k ϕ) are weakly
compact for all l ∈ B∗ and ϕ ∈ B0. It means that Φε,u

[t/ε2]
is also weakly compact and has

a limit.
Let us denote the previous limit by Φ0(t), then the sum ε2 ∑

[t/εε ]−1
k=0 ÎLΦε,u

k ϕ converges
to the integral

∫ t
0 ÎLΦ0(s)ϕds. Let M0(t) also be a limit martingale for Mε,u

t when ε → 0.
Then, from the previous steps and (32), we obtain

M0(t)ϕ = Φ0(t)ϕ− ϕ−
∫ t

0
ÎLΦ0(s)ϕds. (33)

As long as martingale Mε,u
t has mean value zero, the martingale M0(t) has also mean

value zero. If we take the mean value from both parts of (33) we get

0 = EΦ0(t)ϕ− ϕ−
∫ t

0
ÎLEΦ0(t)ϕds, (34)

or, solving it, we get

EΦ0(t)ϕ = exp[ÎLt]ϕ. (35)

The last equality means that the operator ÎL generates a semigroup, namely, U(t) :=
EΦ0(t)ϕ = exp[ÎLt]ϕ. Now, the uniqueness of the limit evolution Φ0(t) in diffusion ap-
proximation approximation follows from the uniqueness of solution of the martingale
problem for Φ0(t) (uniqueness of the limit process under weak compactness). As long as
the solution of the martingale problem for operator ÎL is unique, then it follows that the
solution of the Equation (34) is unique as well [49,50].
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6.3. Proof of Theorem 3

We note that Wε,u
t in (12) has the following presentation,

Wε,u
t = ε−1/2{

[t/ε]

∑
k=1

[Dε(zk−1, uk−1)− I]Φε,u
k −

∫ t

0
D1Φ(s)ds}. (36)

As the balance condition Π(D1 − D̂1) = 0, holds, then we apply the diffusion approx-
imation algorithm (see Section 3.2), i.e., to the right-hand side of (36) with the following
operators, D2 = 0 and (D1(z) − D1) instead of D1(z). It is worth mentioning that the
family Wε,u

t is weakly compact and the result is proved (see Sections 6.1 and 6.2).

6.4. Proof of Proposition 1

The proof of this proposition is based on the estimation of

||Eπ [Φε,u
[t/ε]

ϕε]−Φ(t)ϕ||,

for any ϕ ∈ B0, where ϕε(x) = ϕ(x) + εϕ1(x).
We note that

(P̃− I)ϕ1(x) = −(D̂1 − P̃D1(x, u))ϕ. (37)

As long as Π(D̂1 − (P] × Pu)D1(x, u))ϕ = 0, ϕ ∈ B0, Equation (37) has the solution
in domainR(P̃− I), ϕ1(x) = R0D̃1 ϕ.

In this way,

Eπ×π1‖ϕ1(x)‖ ≤ 2‖R0‖
∫

E

∫
U

π(dz)π1(du)
∥∥∥P̃D1(·, u)ϕ

∥∥∥ := 2C1(ϕ1‖R0‖), (38)

where R0 is a potential operator of Q̃ := P̃− I.
From here we obtain

Eπ×π1

∥∥∥(Φε,u
[t/ε]
− I)ϕ1

∥∥∥ ≤ 4C1(ϕ1‖R0‖), (39)

as Φε,u
k are contractive operators.
We note also that∥∥∥∥∥Eπ×π1 [ε

[t/ε]

∑
k=0

ÎLΦε,u
k ϕ−

∫ t

0
ÎLΦ̄(s)ϕds]

∥∥∥∥∥ ≤ εC2(t, ϕ), (40)

where C2(t, ϕ) := 4T
∫

E

∫
U π(dz)π1(du)

∥∥∥P̃D1(·, u)ϕ
∥∥∥, t ∈ [0, T]. This follows from stan-

dard argument about the convergence of Riemann sums in Bochner integral (see Lemma 4.14,
p. 161, [4]).

We note that

||Eπ×π1 [Φ
ε,u
[t/ε]

ϕε]−Φ(t)ϕ|| ≤ ||Eπ×π1 [Φ
ε,u
[t/ε]

ϕ−Φ(t)ϕ||+ εC1(ϕ1‖R0‖), (41)

where we applied representation ϕε = ϕ + εϕ1.
We also note that Φ̄(t) satisfies the equation

Φ̄(t)ϕ− ϕ−
∫ t

0
ÎLΦ̄(s)ϕds = 0. (42)
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Let us introduce the following martingale,

Mε,u
[t/ε]+1 ϕε := Φε,u

[t/ε]
ϕε − ϕε −

[t/ε]

∑
k=0

Eπ×π1 [Φ
ε,u
k+1 ϕε −Φε,u

k ϕε | Fu
k ]. (43)

This is of zero mean-value martingale

Eπ×π1 Mε,u
[t/ε]

ϕε = 0, (44)

which comes directly from (43).
Again, from (43), we get the following asymptotic representation

Mε,u
[t/ε]

ϕε = Φε,u
[t/ε]

ϕ− ϕ + ε[Φ[t/ε] − I]ϕ1 − ε
[t/ε]

∑
k=0

ÎLΦε,u
k ϕ

−ε2
[t/ε]

∑
k=0

[P̃D1(·, u)Φε,u
k ϕ1 + oϕ(1)], (45)

where oϕ(1)→ 0, as ε→ 0, for any ϕ ∈ B0.
Now, from Equation (6) and expressions (44) and (45), we obtain the following repre-

sentation

Eπ×π1 [Φ
ε,u
[t/ε]

ϕ− Φ̄(t)ϕ] = εEπ×π1 [Φ[t/ε]ε,u − I]ϕ1 + Eπ×π1 [ε
[t/ε]

∑
k=0

ÎLΦε,u
k ϕ

−
∫ t

0
ÎLΦ̄(s)ϕds] + ε2Eπ×π1 [

[t/ε]−1

∑
k=0

Ru
k (ϕ1)], (46)

where Ru
k (ϕ1) := P̃D1(·, u)Φε,u

k ϕ1 + oϕ(1).
Let us estimate

∥∥Ru
k (ϕ1)

∥∥ in (46).

‖Ru
k (ϕ1)‖ ≤ sup

g∈K∆

(
∥∥∥P̃D1(z, u)g

∥∥∥+ ∥∥og(1)
∥∥) := C2(z, g, K∆, u), (47)

where K∆ is a compact set, ∆ > 0,because Φε,u
k ϕ1 satisfies compactness condition for any

ε > 0 and any k.
In this way, we get from (46) that∥∥∥∥∥Eπ×π1 [

[t/ε]−1

∑
k=0

Ru
k (ϕ1)]

∥∥∥∥∥ ≤ T
∫

E
π(dz)π1(du)C3(z, g, K∆, u), t ∈ [0, T]. (48)

Finally, from inequalities (38)–(41) and from (47)–(48), we obtain the desired rate of
convergence of the CDTSMRE in averaging scheme

||Eπ×π1 [Φ
ε,u
[t/ε]

ϕε]−Φ(t)ϕ|| ≤ εA(T, ϕ, ‖R0‖, D1(z, u)),

where the constant

A(T, ϕ, ‖R0‖, D1(z, u)) := 5C1(ϕ, ‖R0‖) + C2(T, ϕ) + T
∫

E
π(dz)π1(du)C3(z, g, K∆, u), (49)

and C3(z, g, K∆, u) is defined in (48). Therefore, the proof of Proposition 1 is done.

Remark 2. In a similar way, we can obtain the rate of convergence results in diffusion approxima-
tion (see Propositions 2–3).
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7. Concluding Remarks and Future Work

In this paper, we introduced controlled semi-Markov random evolutions in discrete-
time in Banach space. The main results concerned time-rescaled limit theorems, namely,
averaging, diffusion approximation, and diffusion approximation with equilibrium by
martingale weak convergence method. We applied these results to various important
families of stochastic systems, i.e., the controlled additive functionals, controlled geometric
Markov renewal processes, and controlled dynamical systems. We provided dynamical
principles for discrete-time dynamical systems such as controlled additive functionals and
controlled geometric Markov renewal processes. We also produced dynamic programming
equations (Hamilton–Jacobi–Bellman equations) for the limiting processes in diffusion
approximation such as CAF, CGMRP, and CDS. As an example, we considered the solution
of portfolio optimization problem by Merton for the limiting CGMRP in DA. We also
point out the importance of convergence rates and obtained them in the limit theorems for
CDTSMRE and CAF, CGMRP, and CDS.

The future work will be associated with the study of optimal control for the initial, not
limiting models, such as CAF in Section 4.1, CGMRP in Section 4.2, and CDS in Section 4.3.
Other optimal control problems would be also interesting to consider for diffusion models
with equilibrium, e.g., CAF in Section 4.1 and CGMRP in Section 4.2. In our future work,
the latter models will be considered for solutions of Merton portfolio’s problems as well.
We will also consider in our future research the case of dependent SMC zk and the MC uk.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The research of the first author is partially supported by NSERC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Not applicable.

Acknowledgments: We thank to four anonymous referees for valuable remarks and suggestions
that improved the paper. The research of the first author is partially supported by NSERC. The first
author also thanks to the Laboratory of Applied Mathematics of the Université de Technologie de
Compiègne, Compiègne, France, very much for their hospitality during his visit.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

SMC Discrete-time semi-Markov chain;
DTSMRE Discrete-time semi-Markov random evolution;
CDTSMRE Controlled discrete-time semi-Markov random evolution;
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