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Abstract: In this paper, a new approximate analytical method is proposed for solving the fractional
biological population model, the fractional derivative is described in the Caputo sense. This method
is based upon the Aboodh transform method and the new iterative method, the Aboodh transform is
a modification of the Laplace transform. Illustrative cases are considered and the comparison between
exact solutions and numerical solutions are considered for different values of alpha. Furthermore,
the surface plots are provided in order to understand the effect of the fractional order. The advantage
of this method is that it is efficient, precise, and easy to implement with less computational effort.
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1. Introduction

Fractional calculus is a field of Mathematics that consists of ordinary and partial
derivatives of positive non-integer order, it has attracted huge attention because it provides
practical models than the integer derivative [1–6], for comprehensive study on fractional
calculus see [7–11].

Integral transform for solving problems in science can be traced back to the work
of P.S. Laplace (1749–1827) on probability theory in the 1780’s, also to the treatise of J.B.
Fourier (1768–1830) titled “La Thèorie Analytique de La chaleur” published in 1822 [12].
Since then, the establishment and development of new integral transforms with various
modifications have been of great interest to researchers [13–18].

A new iterative method was proposed by Daftardar–Gejji and Jafari [19] to solve
functional equations, the solutions were presented in series form. The new iterative method
is formulated on the basis of decomposing the nonlinear terms. Several authors have
used the new iterative method to solve linear and nonlinear fractional partial differential
equations [20–24]. Nonlinear SEI1 I2R fractional-order epidemic model for the transmission
of dynamics of HIV epidemics has been solved in [25] using generalized mean value
theorem. Nonlinear fractional-order SIR epidemic model with memory was solved in [26]
using a numerical scheme that considered past activity. The fractional-order model of an
energy supply–demand system was examined in [27], this fractional model can also be
used to adjust and control the supply and demand of energy in countries with limited
energy resources, for more fractional biological models, see [28,29].

The main objective of this paper is to use Aboodh transform iterative method to obtain
the approximate analytical solution of the time-fractional biological population model [30].

Dα
t Q = (Q2)xx + (Q2)yy + G (Q), t > 0, x, y ∈ R, 0 < α ≤ 1 , (1)

G (Q) = hQq(1− rQp) , (2)
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with the initial condition
Q(x, y, 0) = Q0(x, y) , (3)

where Q represents the population density and G (Q) the population supply by reason of
deaths and births, h, q, p, r are real numbers, Dα denotes the differential operator in Caputo
sense, for Hölder estimates and its solution see [31], the constitutive equations are given as

G (Q) = CQ , (4)

C is a constant, Malthusian Law [32].

G (Q) = C1Q− C2Q , (5)

for positive constant C1 and C2, Verhulst Law [31].

G (Q) = CQθ , (C > 0, 0 < θ ≤ 1) , (6)

C is a constant, Porous media [33,34].
The fractional differential equation is very useful in modeling biological systems

because it is naturally related to biological systems with memory which is a major advan-
tage over the classical integer order mathematical models and they are related to fractals
which are plenty in biological systems. A class of traveling wave solutions for nonlin-
ear one-dimensional space–time fractional biological population model was considered

in [35] using

(
G
′

G

)
expansion method. Linear and nonlinear biological population models

were solved using Adomian decomposition method, homotopy analysis method, homo-
topy perturbation method, variational iteration method and iterative Laplace transform
method [36–38]. The draw back with most of the aforementioned methods is that they
require complex and so much computational effort. To reduce the computational effort and
complexity, we proposed a new method called the Aboodh transform iterative method,
which is a combination of the Aboodh transform and the new iterative method for solving
the time-fractional biological population model which is the novelty of this study. The
proposed method provides a solution in the form of a convergent series.

This paper is arranged as follows, we discussed briefly some definitions and prelimi-
nary concepts of Aboodh transform in Section 2, in Section 3, we considered the idea of
the Aboodh transform iterative method and in Section 4, we illustrate the accuracy and
efficiency of the method by considering some cases of practical importance. Finally, we
presented the conclusion in Section 5.

2. Preliminary Concepts

This section is devoted to some known definitions and results which are used further
in this paper.

Definition 1. Aboodh transform for function Q(t) of exponential order over the set of functions is
defined as [16]

A =
{

Q : | Q(t) |< Mekj |t|, i f t ∈ (−1)j × [0, ∞), j = 1, 2; (M, k1, k2 > 0)
}

, (7)

where Q(t) is denoted by
A [Q(t)] = H (ν) , (8)

and defined as

A [Q(t)] =
1
ν

∫ ∞

0
Q(t)e−νtdt = H (ν), t ≤ 0, k1 ≤ ν ≤ k2 . (9)



Mathematics 2021, 9, 155 3 of 21

Definition 2. Inverse Aboodh transform of function Q(t),

I f A [Q(t)] = H (ν) ,

then the inverse Aboodh transform of a function Q(t), t ∈ (0, ∞) is defined as [39]

Q(t) = A−1[H (ν)] . (10)

Definition 3. The Mittag–Leffler function for one parameter is given as [40]

Eα(z) =
∞

∑
k=0

zk

Γ(kα + 1)
, α, z ∈ C, Re(α) ≥ 0 . (11)

Lemma 1. (Linearity property of Aboodh transform) If Aboodh transform of Q1(t) and Q2(t) are
P(ν) and H (ν) respectively [41],

A [γ1Q1(t) + γ2Q2(t)] = A [γ1Q1(t)] +A [γ2Q2(t)]

= γ1P(ν) + γ2H (ν) , (12)

where γ1 and γ2 are arbitrary constants.

Lemma 2. Aboodh transformation of Caputo fractional derivative of order α is [42]

A [(Dα
t Q(t)); ν] = ναA [Q(t)]−

n−1

∑
s=0

Q(s)(0)
ν2−α+s , n− 1 < α ≤ n, n ∈ N . (13)

See Table 1 for Aboodh transform of some functions.

Table 1. Aboodh transform for some elementary functions [42].

Q(t) A [Q(t)] = H (ν)

1 1
ν2

t 1
ν3

tn n!
νn+2 n = 0, 1, 2, . . .

tα Γ(α + 1)
να+2

3. Aboodh Transform Iterative Method

In this section, we describe the fundamental idea of Aboodh transform iterative
method. Aboodh transform is a modification of the Laplace transform and it is defined in
the time domain t ≥ 0. Consider the initial value problem of the form

DαQ(x, y, t) = R(Q(x, y, t)) + N(Q(x, y, t)) + G (x, y, t), n− 1 < α ≤ n , (14)

with initial condition

Q(s)(x, y, 0) = Qs(x, y), s = 0, 1, 2, . . . , n− 1 . (15)

G (x, y, t) is the source function, whileR andN are the linear and nonlinear operators
respectively. Applying Aboodh transform on both sides of Equation (14) and using the
initial condition, we get

A [Q(x, y, t)] =
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)
+

1
να

(A [R(Q(x, y, t)) + N(Q(x, y, t)) + G (x, y, t)]) . (16)
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Simplifying and taking the inverse Aboodh transform of both sides of Equation (16),
we get

Q(x, y, t) = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s +A [G (x, y, t)]

)
+

1
να

(A [R(Q(x, y, t)) + N(Q(x, y, t))])

]
. (17)

The nonlinear operator N is decomposed as [19]

N(Q(x, y, t)) = N

(
∞

∑
s=0

Qs(x, y, t)

)

= N(Q0(x, y, t)) +
∞

∑
s=1

{
N

(
s

∑
i=0

Qi(x, y, t)

)
− N

(
s−1

∑
i=0

Qi(x, y, t)

)}
. (18)

In a similar manner, linear operator R can be decomposed as

R(Q(x, y, t)) = R

(
∞

∑
s=0

Qs(x, y, t)

)

= R(Q0(x, y, t)) +
∞

∑
s=1

{
R

(
s

∑
i=0

Qi(x, y, t)

)
− R

(
s−1

∑
i=0

Qi(x, y, t)

)}
. (19)

Next, we define the m-th order approximate series as

Q(m)(x, y, t) =
m

∑
k=0

Qk(x, y, t)

= Q0(x, y, t) + Q1(x, y, t) + Q2(x, y, t) + · · ·+ Qm(x, y, t), m ∈ N . (20)

If we assume that the solution of Equation (14) is

Q(x, y, t) = lim
m→∞

Q(m)(x, y, t) =
m

∑
k=0

Qk(x, y, t). (21)

Then, the series in Equation (21) absolutely and uniformly converges to unique solution
for Equation (14) [19] if N and R are contractions. By substituting Equations (18) and (20)
into (17) with the application of the linearity property, we get

∞

∑
s=0

Qs(x, y, t) = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)
+A [G (x, y, t)]

]

+ A −1
[

1
να

(A [R(Q0(x, y, t)) + N(Q0(x, y, t))])
]

+A −1

[
1
να

(
A

[
∞

∑
s=1

(
R(Qs(x, y, t)) +

{
N

(
s

∑
i=0

Qi(x, y, t)

)
− N

(
s−1

∑
i=0

Qi(x, y, t)

)})])]
. (22)

Then, we create the following iterations

Q0(x, y, t) = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)
+ A [G (x, y, t)]

]
, n− 1 < α ≤ n , (23)

Q1(x, y, t) = A −1
[

1
να

(A [R(Q0(x, y, t)) + N(Q0(x, y, t))])
]

, (24)

...
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Qs+1(x, y, t) =

A −1

[
1
να

(
A

[
∞

∑
s=1

(
R(Qs(x, y, t)) +

{
N

(
s

∑
i=0

Qi(x, y, t)

)
− N

(
s−1

∑
i=0

Qi(x, y, t)

)})])]
,

s = 1, 2, . . . . (25)

The series solution converges, for a classical approach to the convergence of this series
see [19,43].

4. Applications

In this section, we considered some cases to demonstrate the efficiency and the effec-
tiveness of the proposed method.

4.1. Case 1

If h = q = r = p = 1 ( Verhulst Law [32] ) and Q0(x) = exp
( x

3

)
for one dimensional

time-fractional biological population model Equation (1) becomes

Dα
t Q = (Q2)xx + Q(1− 4

9
Q), t > 0, 0 < α ≤ 1 , (26)

from case 1, we set

R(Q(x, t)) = Q ,

N(Q(x, t)) = (Q2)xx − 4
9 Q2 ,

Q(x, 0) = exp
( x

3

)
.

Using the iterative procedure described in Section 3,

Q0 = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, 0)
ν2−α+s

)]

= A −1
[

Q(x, 0)
ν2

]
(27)

= exp
( x

3

)
.

Q1 = A −1
[

1
να

(A [R(Q0(x, t)) + N(Q0(x, t))])
]

= A −1
[

1
να

(
A

[
Q0 + (Q2

0)xx −
4
9

Q2
0

])]
(28)

= exp
( x

3

) tα

Γ(α + 1)
.

Q2 = A −1
[

1
να

(A [R(Q1(x, t)) + {N(Q0(x, t) + Q1(x, t))− N(Q0(x, t))}])
]

= A −1
[

1
να

(
A

[
Q1 +

{
((Q0 + Q1)

2)xx −
4
9
(Q0 + Q1)

2 − (Q2
0)xx +

4
9

Q2
0

}])]
(29)

= exp
( x

3

) t2α

Γ(2α + 1)
.

...
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Qm = A −1

[
1
να

(
A

[
R(Qm−1(x, t)) +

{
N

(
m−1

∑
i=0

Qi(x, t)

)
− N

(
m−2

∑
i=0

Qi(x, t)

)}])]

= A −1
[

1
να

(A [Qm−1(x, t)])
]

(30)

= exp
( x

3

) tmα

Γ(mα + 1)
.

The m-th order approximate series is derived as

Qm(x, t) =
m

∑
k=0

Qk(x, t) = Q0(x, t) + Q1(x, t) + Q2(x, t) + · · ·+ Qm(x, t)

= exp
( x

3

)
+ exp

( x
3

) tα

Γ(α + 1)
+ exp

( x
3

) t2α

Γ(2α + 1)
+ · · ·+ exp

( x
3

) tmα

Γ(mα + 1)
(31)

= exp
( x

3

)(
1 +

tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+ · · ·+ tmα

Γ(mα + 1)

)

= exp
( x

3

) m

∑
k=0

tkα

Γ(kα + 1)
.

So, the m-th order approximate series solution approach the exact solution as m→ ∞ ,

Q(x, t) = lim
m→∞

Q(m)(x, t)

= exp
( x

3

)
lim

m→∞

tkα

Γ(kα + 1)
(32)

= exp
( x

3

)
Eα(tα) ,

taking α = 1, the exact solution to Equation (26) is

Q(x, t) = exp
( x

3

)
E1(t)

= exp
( x

3
+ t
)

.

Table 2 shows the absolute error Eabs = ‖Q− Q10‖ when α = 0.25, 0.5, 0.75 and 1,
Figure 1 shows the comparison between the exact solution and the approximate solution
while Figure 2 shows the surface plot of the population density when α = 0.25, 0.5, 0.75
and 1.

Table 2. Absolute error for Case (1) when t = 0.2.

x α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 2.3× 10−10 3.9× 10−14 0 0
0.5 5.2× 10−10 8.8× 10−14 0 0
0.9 7.0× 10−10 1.2× 10−13 0 0
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Figure 1. Comparison between exact and approximate solutions for Case (1).

(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 1
Figure 2. The surface plot for Case (1) with different values for α.

4.2. Case 2

If h =
1
4

, q = 1, r = 0, (Malthusian Law [32] ) and Q0(x) = x1/2 for one dimensional
time-fractional biological population model Equation (1) becomes

Dα
t Q = (Q2)xx +

1
4

Q, t > 0, 0 < α ≤ 1 , (33)
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from case 2, we set

R(Q(x, t)) =
1
4

Q ,

N(Q(x, t)) = (Q2)xx ,

Q(x, 0) = x1/2 .

Using the iterative procedure described in Section 3,

Q0 = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, 0)
ν2−α+s

)]

= A −1
[

Q(x, 0)
ν2

]
(34)

= x1/2 .

Q1 = A −1
[

1
να

(A [R(Q0(x, t)) + N(Q0(x, t))])
]

= A −1
[

1
να

(
A

[
1
4

Q0 + (Q2
0)xx

])]
(35)

= x1/2
1
4 tα

Γ(α + 1)
.

Q2 = A −1
[

1
να

(A [R(Q1(x, t)) + {N(Q0(x, t) + Q1(x, t))− N(Q0(x, t))}])
]

= A −1
[

1
να

(
A

[
1
4

Q1 +
{
((Q0 + Q1)

2)xx − (Q2
0)xx

}])]
(36)

=

x1/2
(

1
4

tα

)2

Γ(2α + 1)
.

...

Qm = A −1

[
1
να

(
A

[
R(Qm−1(x, t)) +

{
N

(
m−1

∑
i=0

Qi(x, t)

)
− N

(
m−2

∑
i=0

Qi(x, t)

)}])]

= A −1
[

1
να

(
A

[
1
4

Qm−1(x, t)
])]

(37)

=

x1/2
(

1
4

tα

)m

Γ(mα + 1)
.

The m-th order approximate series is derived as

Qm(x, t) =
m

∑
k=0

Qk(x, t) = Q0(x, t) + Q1(x, t) + Q2(x, t) + · · ·+ Qm(x, t)

= x1/2 +
x1/2 1

4
tα

Γ(α + 1)
+

x1/2
(

1
4

tα

)2

Γ(2α + 1)
+ · · ·+

x1/2
(

1
4

tα

)m

Γ(mα + 1)
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= x1/2


1
4

tα

Γ(α + 1)
+

(
1
4

tα

)2

Γ(2α + 1)
+ · · ·+

(
1
4

tα

)m

Γ(mα + 1)

 (38)

= x1/2
m

∑
k=0

(
1
4

tα

)k

Γ(kα + 1)
.

So, the m-th order approximate series solution approach the exact solution as m→ ∞ ,

Q(x, t) = lim
m→∞

Q(m)(x, t)

= x1/2 lim
m→∞

m

∑
k=0

(
1
4

tα

)k

Γ(kα + 1)
(39)

= x1/2Eα

(
1
4

tα

)
, (40)

taking α = 1, the exact solution to Equation (33) is

Q(x, t) = x1/2E1

(
1
4

t
)

= x1/2 exp
(

t
4

)
. (41)

Table 3 shows the absolute error Eabs = ‖Q− Q10‖ when α = 0.25, 0.5, 0.75 and 1,
Figure 3 shows the comparison between the exact solution and the approximate solution
while Figure 4 shows the surface plot of the population density when α = 0.25, 0.5, 0.75
and 1.

Table 3. Absolute error for Case (2) when t = 0.2.

x α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 5.4× 10−3 6.2× 10−7 2.7× 10−11 4.4× 10−16

0.5 6.2× 10−3 7.1× 10−7 3.1× 10−11 6.7× 10−16

0.9 7.1× 10−3 8.2× 10−4 3.5× 10−11 6.7× 10−16

Figure 3. Comparison between exact and approximate solutions for Case (2).
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(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 1
Figure 4. The surface plot for Case (2) with different values for α.

4.3. Case 3

If q = 1, r = 0, (Malthusian Law [32] ) and Q0(x, y) =
√

xy the time-fractional
biological population model Equation (1) becomes

Dα
t Q = (Q2)xx + (Q2)yy + hQ, t > 0, 0 < α ≤ 1 , (42)

from case 3, we set

R(Q(x, y, t)) = hQ ,

N(Q(x, y, t)) = (Q2)xx + (Q2)yy ,

Q(x, y, 0) =
√

xy .

Using the iterative procedure described in Section 3,

Q0 = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)]

= A −1
[

Q(x, y, 0)
ν2

]
(43)

=
√

xy .

Q1 = A −1
[

1
να

(A [R(Q0(x, y, t)) + N(Q0(x, y, t))])
]
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= A −1
[

1
να

(
A
[

hQ0 + (Q2
0)xx + (Q2

0)yy

])]
(44)

=
√

xy
htα

Γ(α + 1)
.

Q2 = A −1
[

1
να

(A [R(Q1(x, y, t)) + {N(Q0(x, y, t) + Q1(x, y, t))− N(Q0(x, y, t))}])
]

= A −1
[

1
να

(
A
[

hQ1 +
{
((Q0 + Q1)

2)xx + ((Q0 + Q1)
2)yy − N((Q2

0)xx + (Q2
0)yy)

}])]
(45)

=
√

xy
(htα)2

Γ(2α + 1)
.

...

Qm = A −1

[
1
να

(
A

[
R(Qm−1(x, y, t)) +

{
N

(
m−1

∑
i=0

Qi(x, y, t)

)
− N

(
m−2

∑
i=0

Qi(x, y, t)

)}])]

= A −1
[

1
να

(A [hQm−1(x, y, t)])
]

(46)

√
xy

(htα)m

Γ(mα + 1)
.

The m-th order approximate series is derived as

Qm(x, y, t) =
m

∑
k=0

Qk(x, y, t) = Q0(x, y, t) + Q1(x, y, t) + Q2(x, y, t) + · · ·+ Qm(x, y, t)

=
√

xy +
√

xy
htα

Γ(α + 1)
+
√

xy
(htα)2

Γ(2α + 1)
+ · · ·+√xy

(htα)m

Γ(mα + 1)

=
√

xy

(
1 +

htα

Γ(α + 1)
+

(htα)2

Γ(2α + 1)
+ · · ·+ (htα)m

Γ(mα + 1)

)
(47)

=
√

xy
m

∑
k=0

(htα)k

Γ(kα + 1)
.

So, the m-th order approximate series solution approaches the exact solution as m→
∞,

Q(x, y, t) = lim
m→∞

Q(m)(x, y, t)

=
√

xy lim
m→∞

m

∑
k=0

(htα)k

Γ(kα + 1)
(48)

=
√

xy Eα(htα) ,

taking α = 1, the exact solution to Equation (42) is

Q(x, y, t) =
√

xy E1(ht)

=
√

xy exp(ht) , (49)

which is the exact solution to the standard biological population model in [37] when h = 1
5

and α = 1. Table 4 shows the absolute error Eabs = ‖Q−Q10‖ when α = 0.25, 0.5, 0.75 and
1, Figure 5 shows the comparison between the exact solution and approximate solution
while Figure 6 shows the surface plot of the population density when α = 0.25, 0.5, 0.75
and 1.
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Table 4. Absolute error for Case (3) when t = 0.2.

x y α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 0.2 8.7× 10−12 1.5× 10−15 0 0
0.1 0.6 1.5× 10−11 2.7× 10−15 0 0
0.1 1 1.9× 10−11 3.4× 10−15 0 0
0.5 0.2 1.9× 10−11 3.4× 10−15 0 0
0.5 0.6 3.4× 10−11 5.8× 10−15 0 0
0.5 1 4.3× 10−11 7.4× 10−15 0 0
0.9 0.2 2.6× 10−11 4.6× 10−15 0 0
0.9 0.6 4.5× 10−11 7.8× 10−15 0 0
0.9 1 5.8× 10−11 1.0× 10−14 0 0

In Table 5, we compared the absolute error of the present method with the method
in [44] when t = 0.2.

Figure 5. Comparison between exact and approximate solutions for Case (3).

Table 5. Comparison of the absolute error for Case (3) when t = 0.2.

x y Present Method
Eabs, α = 0.5

Present Method
Eabs, α = 1

Method in [44]
Eabs, α = 0.5

Method in [44]
Eabs, α = 1

0.1 0.2 1.5× 10−15 0 1.5× 10−15 2.7× 10−17

0.1 0.6 2.6× 10−15 0 2.6× 10−15 5.5× 10−17

0.1 1 3.4× 10−15 0 3.4× 10−15 5.5× 10−17

0.5 0.2 3.4× 10−15 0 3.4× 10−15 5.5× 10−17

0.5 0.6 5.9× 10−15 0 5.9× 10−15 1.1× 10−16

0.5 1 7.4× 10−15 0 7.6× 10−15 2.2× 10−16

0.9 0.2 4.6× 10−15 0 4.6× 10−15 2.2× 10−16

0.9 0.6 7.9× 10−15 0 7.9× 10−15 2.2× 10−16

0.9 1 1.0× 10−14 0 1.0× 10−14 2.2× 10−16
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(a). α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 1
Figure 6. The surface plot for Case (3) with different values of α, h = 1/5, t = 10.

4.4. Case 4

If q = p = 1, ( Verhulst Law [32] ) and Q0(x, y) = exp

(
1
2

√
hr
2

(x + y)

)
, the time-

fractional biological population model Equation (1) becomes

Dα
t Q = (Q2)xx + (Q2)yy + hQ(1− rQ), t > 0, 0 < α ≤ 1 , (50)

from case 4, we set

R(Q(x, y, t)) = hQ ,

N(Q(x, y, t)) = (Q2)xx + (Q2)yy − hrQ2 ,

Q(x, y, 0) = exp

(
1
2

√
hr
2

(x + y)

)
.

Using the iterative procedure described in Section 3,

Q0 = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)]

= A −1
[

Q(x, y, 0)
ν2

]
(51)

= exp

(
1
2

√
hr
2

(x + y)

)
.
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Q1 = A −1
[

1
να

(A [R(Q0(x, y, 0)) + N(Q0(x, y, 0))])
]

= A −1
[

1
να

(
A
[

hQ0 + (Q2
0)xx + (Q2

0)yy − hrQ2
0

])]
(52)

= exp

(
1
2

√
hr
2

(x + y)

)
htα

Γ(α + 1)
.

Q2 = A −1
[

1
να

(A [R(Q1(x, y, 0)) + {N(Q0(x, y, t) + Q1(x, y, t))− N(Q0(x, y, t))}])
]

= A −1
[

1
να

(A [hQ1])

]
+

A −1
[

1
να

(
A
[
(((Q0 + Q1)

2)xx + ((Q0 + Q1)
2)yy − hr(Q0 + Q1)

2)− ((Q2
0)xx + (Q2

0)yy − hrQ2
0)
])]

(53)

= exp

(
1
2

√
hr
2

(x + y)

)
(htα)2

Γ(2α + 1)
.

...

Qm = A −1

[
1
να

(
A

[
R(Qm−1(x, y, t)) +

{
N

(
m−1

∑
i=0

Qi(x, y, t)

)
− N

(
m−2

∑
i=0

Qi(x, y, t)

)}])]

= A −1
[

1
να

(A [hQm−1(x, y, t)])
]

(54)

= exp

(
1
2

√
hr
2

(x + y)

)
(htα)m

Γ(mα + 1)
.

The m-th order approximate series is derived as

Qm(x, y, t) =
m

∑
k=0

Qk(x, y, t) = Q0(x, y, t) + Q1(x, y, t) + Q2(x, y, t) + · · ·+ Qm(x, y, t)

= exp

(
1
2

√
hr
2

(x + y)

)
+ exp

(
1
2

√
hr
2

(x + y)

)
htα

Γ(α + 1)
+

exp

(
1
2

√
hr
2

(x + y)

)
(htα)2

Γ(2α + 1)
+ . . . + exp

(
1
2

√
hr
2

(x + y)

)
(htα)m

Γ(mα + 1)

= exp

(
1
2

√
hr
2

(x + y)

)(
1 +

htα

Γ(α + 1)
+

(htα)2

Γ(2α + 1)
+ · · ·+ (htα)m

Γ(mα + 1)

)
(55)

= exp

(
1
2

√
hr
2
(x + y)

)
m

∑
k=0

(htα)k

Γ(kα + 1)
.

So, the m-th order approximate series solution approach the exact solution as m→ ∞,

Q(x, y, t) = lim
m→∞

Q(m)(x, y, t)

= exp

(
1
2

√
hr
2

(x + y)

)
lim

m→∞

m

∑
k=0

(htα)k

Γ(kα + 1)
(56)
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= exp

(
1
2

√
hr
2

(x + y)

)
Eα(htα)

taking α = 1, the exact solution to Equation (50) is

= exp

(
1
2

√
hr
2

(x + y)

)
E1(ht)

= exp

(
1
2

√
hr
2

(x + y) + ht

)
, (57)

which is the exact solution to the biological population model in [36] when h = 1. Table 6
shows the absolute error Eabs = ‖Q−Q10‖ when α = 0.25, 0.5, 0.75 and 1, Figure 7 shows
the comparison between the exact solution and approximate solution while Figure 8 shows
the surface plot of the population density when α = 0.25, 0.5, 0.75 and 1.

Table 6. Absolute error for Case (4) when t = 0.2.

x y α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 0.2 6.4× 10−11 1.1× 10−14 0 0
0.1 0.6 6.9× 10−11 1.2× 10−14 0 0
0.1 1 7.3× 10−11 1.3× 10−14 0 0
0.5 0.2 6.9× 10−11 1.2× 10−14 0 0
0.5 0.6 7.3× 10−11 1.3× 10−14 0 0
0.5 1 7.8× 10−11 1.4× 10−14 0 0
0.9 0.2 7.3× 10−11 1.2× 10−14 0 0
0.9 0.6 7.8× 10−11 1.4× 10−14 0 0
0.9 1 8.3× 10−11 1.4× 10−14 0 0

Figure 7. Comparison between exact and approximate solutions for Case (4).
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(a). α = 0.25 (b). α = 0.5

(c). α = 0.75 (d). α = 1
Figure 8. The surface plot for Case (4) with different values of α, t = 46, h = 0.02, r = 0.2.

4.5. Case 5

If h = 1, r = 0 and Q0(x, y) = (Sin (x) Sinh (y))1/2, the time-fractional biological
population model Equation (1) becomes

Dα
t Q = (Q2)xx + (Q2)yy + Q, t > 0, 0 < α ≤ 1 , (58)

from case 4, we set

R(Q(x, y, t)) = Q ,

N(Q(x, y, t)) = (Q2)xx + (Q2)yy ,

Q(x, y, 0) = (Sin (x) Sinh (y))1/2 .

Using the iterative procedure described in Section 3,

Q0 = A −1

[
1
να

(
n−1

∑
s=0

Q(s)(x, y, 0)
ν2−α+s

)]

= A −1
[

Q(x, y, 0)
ν2

]
(59)

= (Sin (x) Sinh (y))1/2 .

Q1 = A −1
[

1
να

(A [R(Q0(x, y, 0)) + N(Q0(x, y, 0))])
]



Mathematics 2021, 9, 155 17 of 21

= A −1
[

1
να

(
A
[

Q0 + (Q2
0)xx + (Q2

0)yy

])]
(60)

= (Sin (x) Sinh (y))1/2 tα

Γ(α + 1)
.

Q2 = A −1
[

1
να

(A [R(Q0(x, y, t)) + {N(Q0(x, y, t) + Q1(x, y, t))− N(Q0(x, y, t))}])
]

= A −1
[

1
να

(
A
[

Q1 +
{
((Q0 + Q1)

2)xx + ((Q0 + Q1)
2)yy − ((Q2

0)xx + (Q2
0)yy)

}])]
(61)

= (Sin (x) Sinh (y))1/2 t2α

Γ(2α + 1)
.

...

Qm = A −1

[
1
να

(
A

[
R(Qm−1(x, y, t)) +

{
N

(
m−1

∑
i=0

Qi(x, y, t)

)
− N

(
m−2

∑
i=0

Qi(x, y, t)

)}])]

= A −1
[

1
να

(A [Qm−1(x, y, t)])
]

(62)

= (Sin (x) Sinh (y))1/2 tmα

Γ(mα + 1)
.

The m-th order approximate series is derived as

Qm(x, y, t) =
m

∑
k=0

Qk(x, y, t) = Q0(x, y, t) + Q1(x, y, t) + Q2(x, y, t) + · · ·+ Qm(x, y, t)

= (Sin (x) Sinh (y))1/2
(

1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+ . . . +

tmα

Γ(mα + 1)

)
(63)

= (Sin (x) Sinh (y))1/2
m

∑
k=0

ttα

Γ(kα + 1)
.

So, the m-th order approximate series solution approach the exact solution as m→ ∞,

Q(x, y, t) = lim
m→∞

Q(m)(x, y, t)

= (Sin (x) Sinh (y))1/2 lim
m→∞

m

∑
k=0

tkα

Γ(kα + 1)
(64)

= (Sin (x) Sinh (y))1/2 Eα(tα),

taking α = 1, the exact solution to Equation (58) is

Q(x, y, t) = (Sin (x) Sinh (y))1/2 E1(t)

= (Sin (x) Sinh (y))1/2 exp(t) , (65)

which is the exact solution to the biological population model in [45]. Table 7 shows
the absolute error Eabs = ‖Q− Q10‖ when α = 0.25, 0.5, 0.75 and 1, Figure 9 shows the
comparison between the exact and approximate solutions while Figure 10 shows the surface
plot of the population density when α = 0.25, 0.5, 0.75 and 1.
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Table 7. Absolute error for Case (5) when t = 0.2.

x y α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 0.2 7.4× 10−4 8.6× 10−8 3.7× 10−12 5.6× 10−17

0.1 0.6 1.3× 10−3 1.5× 10−7 6.6× 10−12 1.1× 10−16

0.1 1 1.8× 10−3 2.1× 10−7 9.0× 10−12 1.1× 10−16

0.5 0.2 1.6× 10−3 1.9× 10−7 8.2× 10−12 1.7× 10−16

0.5 0.6 2.9× 10−3 3.3× 10−7 1.4× 10−11 2.2× 10−16

0.5 1 3.9× 10−3 4.5× 10−7 2.0× 10−11 3.3× 10−16

0.9 0.2 2.1× 10−3 2.4× 10−7 1.0× 10−11 1.7× 10−16

0.9 0.6 3.7× 10−3 4.3× 10−7 1.9× 10−11 3.3× 10−16

0.9 1 5.1× 10−3 5.8× 10−7 2.5× 10−11 4.4× 10−16

Figure 9. Comparison between exact and approximate solutions for Case (5).

In Table 8, we compared the absolute error of the present method with the method
in [44] when t = 0.2.

Table 8. Comparison of the absolute error for Case (5) when t = 0.2.

x y Present Method
Eabs, α = 0.5

Present Method
Eabs, α = 1

Method in [44]
Eabs, α = 0.5

Method in [44]
Eabs, α = 1

0.1 0.2 8.6× 10−8 5.6× 10−17 8.6× 10−8 5.6× 10−17

0.1 0.6 1.5× 10−7 1.1× 10−16 1.5× 10−7 1.1× 10−16

0.1 1 2.1× 10−7 1.1× 10−16 2.1× 10−7 1.1× 10−16

0.5 0.2 1.9× 10−7 1.7× 10−16 1.9× 10−7 1.7× 10−16

0.5 0.6 3.3× 10−7 2.2× 10−16 3.3× 10−7 2.2× 10−16

0.5 1 4.5× 10−7 3.3× 10−16 4.5× 10−7 3.3× 10−16

0.9 0.2 2.4× 10−7 1.7× 10−16 2.4× 10−7 1.7× 10−16

0.9 0.6 4.3× 10−7 3.3× 10−16 4.3× 10−7 3.3× 10−16

0.9 1 5.8× 10−7 4.4× 10−16 5.8× 10−7 4.4× 10−16



Mathematics 2021, 9, 155 19 of 21

(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 1
Figure 10. The surface plot for Case (5) with different values of α and t = 3/2.

5. Conclusions

In this paper, we used the Aboodh transform iterative method to obtain the approx-
imate analytical solutions of one and two dimensions fractional biological population
models. To the best of our knowledge, no attempt has been made regarding the approx-
imate analytical solution of fractional biological population models using the Aboodh
transform iterative method which is the novelty of this study. We observed that the series
form solutions converged to the exact solutions which agree strongly with the results
in [37,44,45]. The graphical solution of Figures 1–10 and Tables 2–8 revealed that the
solutions depends not only on the time t but also on the fractional-order α. The population
density increases with the spatial variables and time, an indication that the fractional
model complements the anomalous biological diffusion behavior observed in the field.
Figures 1, 3, 5, 7 and 9 showed that the exact and approximate series solutions were nearly
identical for different values of α. However, the approximate series solution can be im-
proved by increasing the values of m. Finally, the easy implementation of the proposed
method suggests that it can be modified for the solutions of other fractional partial differ-
ential equations arising in applied science. In the future, the authors intend to study the
stability and error analysis of the proposed method.
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