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Abstract: In this article, modified techniques, namely the variational iteration transform and Shehu
decomposition method, are implemented to achieve an approximate analytical solution for the
time-fractional Fornberg–Whitham equation. A comparison is made between the results of the
variational iteration transform method and the Shehu decomposition method. The solution procedure
reveals that the variational iteration transform method and Shehu decomposition method is effective,
reliable and straightforward. The variational iteration transform methods solve non-linear problems
without using Adomian’s polynomials and He’s polynomials, which is a clear advantage over the
decomposition technique. The solutions achieved are compared with the corresponding exact result
to show the efficiency and accuracy of the existing methods in solving a wide variety of linear and
non-linear problems arising in various science areas.

Keywords: Fractional Fornberg–Whitham equation; variational iteration transform method; Shehu
decomposition method; partial differential equation; approximate solution; Caputo’s operator

1. Introduction

In recent decades, the fractional calculus (FC) implemented in several phenomena in
physics, engineering, fluid mechanics, biology and other applied sciences can be defined
very effectively using fractional calculus mathematical tools. Fractional derivatives (FDs)
provide an excellent tool for describing the hereditary and memory properties of different
processes and materials. The FD has occurred in several engineering and sciences problems
such as diffusion and reaction processes, frequency-dependent signal processing and
system identification, damping behaviour materials, relaxation and creeping for viscoelastic
materials [1–4].

The analysis of nonlinear wave equations and their solutions is of vital significance in
several fields of science. Travelling wave ideas are among the most attractive solutions for
nonlinear fractional partial differential equations (FPDEs). Nonlinear FPDEs are commonly
known as complex physical and mechanical processes. Therefore, it is of great significance to
get exact solutions for nonlinear FPDEs, and in general, travelling wave solutions are among
the exciting types of solutions for nonlinear FPDEs. On the other hand, other nonlinear FPDEs,
such as the Kortewegde-Vries or the Camassa-Holm equations, have been identified to have
several moving wave results. These are design equations for nonlinear multi-directional
dispersive waves in shallow water [5,6].
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The study of the Fornberg–Whitham equation (FWE) is of great importance in many
fields of mathematical physics. The Fornberg–Whitham equation [7,8] is given as

Dηµ− Dξξηµ + Dξµ =µDξξξµ− µDξ µ + 3Dξ µDξξµ. (1)

The qualitative behavior of wave breakage, a nonlinear dispersive wave equation,
appears in the study. The FWE is shown to allow peakon solutions as a numerical sim-
ulation for limiting wave heights and the occurrence of wave breaks. In 1978, Fornberg

and Whitham achieve a peaked solution of the form µ(ξ, η) = Ce
(
−ξ
2 −

4η
3

)
, where C is

constant. Tian and Zhou [2] have identified the implicit type of wave propagation so-
lutions called antikink-like wave solutions and kink-like wave solutions. The analysis
of FWEs by different numerical and analytical methods, such as Laplace decomposition
technique [9], Lie Symmetry [10], variational iteration technique [11], differential transfor-
mation technique [12], new iterative technique [13], homotopy-perturbation technique [14]
and homotopy analysis transform technique [15].

The variational iteration method was first developed by J.H.He and was successfully
applied to autonomous ODEs in [16,17]. This technique has been demonstrated to be an
effective method for solving different types of problems. Similarly, this method is modified
with the Shehu transform method’s help, so the modified technique is called the variational
iteration transform method (VITM). Different types of DEs and PDEs have solved VITM.
For instance, this technique is used for solving linear fractional differential equations
in [18]. This technique is applied in [19] for solving nonlinear oscillator equations. As a
benefit of VITM over Adomian’s decomposition process, the former approach provides
the problem’s solution without computing Adomian’s polynomials. This system gives a
fast solution to the problem while the [20] mesh point methods provide approximation at
mesh points. This method is also useful for obtaining an accurate approximation of the
exact solution. G. Adomian is the American mathematician who introduced the Adomian
decomposition method. It is focused on searching for solutions in the form of a series
and on the decomposition of the nonlinear operator into a sequence where the terms are
recurrently computed to use Adomian polynomials [21]. This technique is modified with
Shehu transformation, so the modified approach is the Shehu decomposition method. This
method is applied to the nonhomogeneous fractional differential equations [22–24].

The present manuscript is concerned with the analytical solution of time-fractional
Fornberg–Whitham equation. The solution of time-fractional Fornberg–Whitham equation
is a topic for the researchers since long. Recently the analytical solution of time-fractional
Fornberg–Whitham equation is the main focus of the researchers and mathematicians. This
was the challenging work to extend or develop the existing techniques for the solution
of fractional-order Fornberg–Whitham equation. Many of them have got success and
developed innovative techniques to solve fractional-order Fornberg–Whitham equation.
In this regard, the current research work is a novel contribution towards the analytical
solution of fractional-order Fornberg–Whitham equations. The present research work is
conducted in a very simple and straightforward manner to achieve the analytical solutions
of the targeted problems with a small amount of numerical calculations. The convergence
of the proposed method is trivial. In conclusion the proposed technique are considered to
be the sophisticated contribution towards the analytical solution of fractional-order partial
differential equations which are frequently arising in science and engineering.

This article has used the Shehu decomposition method and the variational iteration
transform method to solve the fractional-order Fornberg–Whitham equation, including Ca-
puto sense in the fractional derivative. The SDM and VITM obtain semi-analytic solutions
in the form of series solutions. It simply improves the original problem lucidly, and so one
can test the result with high accuracy and convergence.
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The outline of this article is as follows. In Section 2, the basic definition of Shehu trans-
form and fractional calculus are discussed. In Section 3, the variational iteration transform
method and Shehu decomposition method are discussed. In Section 4, two test examples of
fractional-order Fornberg–Whitham equation are given to elucidate the suggested schemes.
In Section 5, conclusions of the work.

2. Preliminaries Concepts

In this section of the article, we represent Caputo’s fractional operator to inspect our
proposed problem. In addition to this, we will give the basic concept of Shehu transform,
inverse Shehu transform and the Shehu transform of nth derivative for further analysis
and investigation.

Definition 1. The Riemann-Liouville fractional integral is given by [25,26]

Iγ
0 f (τ) =

1
Γ(γ)

∫ η

0
(η − s)γ−1 f (s)ds. (2)

Definition 2. The fractional-order derivative Caputo‘s operator of h(η) is defined as [25,26]

Dγ
η f (η) = Im−γ f m, m− 1 < γ < m, m ∈ N

dm

dηm
f (η), γ = m, m ∈ N.

(3)

Definition 3. Shehu transform is modern and similar to other integral transform described for
exponential order functions. In set A, we take a function is represented by [23,24,27]

A = { f (η) : ∃, ρ1, ρ2 > 0,| f (η)| < Me
|η|
ρi , i f η ∈ [0, ∞). (4)

The Shehu transform which is given by S(.) for a function f (η) is defined as

S{ f (η)} = F(s, u) =
∫ ∞

0
f (η)e

−sη
u f (η)dη, η > 0, s > 0. (5)

The Shehu transform of a function f (η) is V(s, u): then f (η) is called the inverse of V(s, u)
which is given as

S−1{F(s, u)} = f (η), f or η ≥ 0, S−1 is inverse Shehu transformation. (6)

Definition 4. Consider f (m)(η) be the m-th order classical derivative of the function f (η) ∈ A,
then its Shehu integral transform is given by the following formula [23,24,27]:

S
{

f (m)(η)
}
=

(
s
u

)m

F(s, u)−
m−1

∑
k=0

( s
u

)m−k−1
f (k)(0), m ∈ N. (7)

Definition 5. The fractional order derivatives of Shehu transformation for [23,24,27]

S
{

f (γ)(η)
}
=

(
s
u

)γ

F(s, u)−
m−1

∑
k=0

( s
u

)γ−k−1
f (k)(0), m− 1 < γ ≤ m. (8)
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3. The Conceptualization of VITM

In this section discuses the VITM solution for FPDEs.

Dγ
η ν(ξ, ζ, η) + Ḡ(ξ, ζ, η) +N (ξ, ζ, η)−P(ξ, ζ, η) = 0, m− 1 < γ ≤ m, (9)

with the initial condition
ν(ξ, ζ, 0) = g(ξ, ζ), (10)

where is Dγ
η = ∂γ

∂ηγ the Caputo fractional derivative of order γ, Ḡ, and N , are linear and
non-linear functions, respectively, and P are source operators.

The Shehu transform is implemented to Equation (9),

S[Dγ
η ν(ξ, ζ, η)]+S[Ḡ(ξ, ζ, η) +N (ξ, ζ, η)−P(ξ, ζ, η)] = 0. (11)

Shehu transform the differentiation property is applying, we get

sγ

uγ
S[ν(ξ, ζ, η)]− sγ−1

uγ
ν(ξ, ζ, 0) = −S

[
Ḡ(ξ, ζ, η) +N (ξ, ζ, η)−P(ξ, ζ, η)

]
. (12)

The iterative scheme required the Lagrange multiplier as

S[νj+1(ξ, ζ, η)] =S[νj(ξ, ζ, η)] + λ(s)[
sγ

uγ
S[νj(ξ, ζ, η)]− sγ−1

uγ
νj(ξ, ζ, 0)

−S{Ḡ(ξ, ζ, η) +N (ξ, ζ, η)} − S[P(ξ, ζ, η)]
]
.

(13)

A Lagrange multiplier as

λ(s) = −uγ

sγ
, (14)

using inverse Shehu transformation S−1, Equation (13) can be written as

νj+1(ξ, ζ, η) =νj(ξ, ζ, η)− S−1
[

uγ

sγ

[
−S{Ḡ(ξ, ζ, η) +N (ξ, ζ, η)}

]
− S[P(ξ, ζ, η)]

]
, (15)

the initial value can be find as

ν0(ξ, ζ, η) = S−1
[

uγ

sγ

{
sγ−1

uγ
ν(ξ, ζ, 0)

}]
. (16)

4. The Conceptualization of SDM

In this section, we discus the SDM solution of FPDEs.

Dγ
η ν(ξ, ζ, η) + Ḡ(ξ, ζ, η) +N (ξ, ζ, η)−P(ξ, ζ, η) = 0, m− 1 < γ ≤ m, (17)

with the initial condition
ν(ξ, ζ, 0) = g(ξ, ζ), (18)

where is Dγ
η = ∂γ

∂ηγ the Caputo fractional derivative of order γ, Ḡ and N are linear and
non-linear functions, respectively, and P is source functions.

Apply Shehu transform to Equation (17),

S[Dγ
η ν(ξ, ζ, η)]+S[Ḡ(ξ, ζ, η) +N (ξ, ζ, η)−P(ξ, ζ, η)] = 0. (19)

Applying the differentiation property of Shehu transform, we have
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S[ν(ξ, ζ, η)] =
1
s

ν(ξ, ζ, 0) +
uγ

sγ
S[P(ξ, ζ, η)]− uγ

sγ
S{Ḡ(ξ, ζ, η) +N (ξ, ζ, η)}]. (20)

SDM solution of infinite series ν(ξ, ζ, η),

ν(ξ, ζ, η) =
∞

∑
j=0

νm(ξ, ζ, η). (21)

The non-linear terms N is given as

N (ξ, ζ, η) =
∞

∑
j=0
Am. (22)

The non-linear term can be find with the help of Adomian polynomials. So the Adomian
polynomial formula is define as

Am =
1
j!

[
∂m

∂λm

{
N
(

∞

∑
k=0

λkνk

)}]
λ=0

. (23)

Putting Equations (21) and (22) into (20), gives

S

[
∞

∑
j=0

νm(ξ, ζ, η)

]
=

1
s

ν(ξ, ζ, 0) +
uγ

sγ
S{P(ξ, ζ, η)} − uγ

sγ
S

{
Ḡ(

∞

∑
j=0

νm) +
∞

∑
j=0
Am

}
. (24)

Using the inverse Shehu transform to Equation (24),

∞

∑
j=0

νm(ξ, ζ, η) = S−1

[
1
s

ν(ξ, ζ, 0) +
uγ

sγ
S{P(ξ, ζ, η)} − uγ

sγ
S

{
Ḡ
(

∞

∑
j=0

νm

)
+

∞

∑
j=0
Am

}]
. (25)

Identify the following terms,

ν0(ξ, ζ, η) =S−1
[

1
s

ν(ξ, ζ, 0) +
uγ

sγ
S{P(ξ, ζ, η)}

]
, (26)

ν1(ξ, ζ, η) = −S−1
[

uγ

sγ
S{Ḡ1(ν0) +A0}

]
.

In general for m ≥ 1, is define as

νj+1(ξ, ζ, η) = −S−1
[

uγ

sγ
S{Ḡ(νm) +Am}

]
.

5. Implementation of Techniques

Example 1. Consider the following fractional-order nonlinear Fornberg–Whitham:

Dγ
η ν− Dξξην + Dξ ν =νDξξξν− νDξν + 3Dξ νDξξν, 0 < γ ≤ 1, (27)

with the initial condition

ν(ξ, 0) = e
(

ξ
2

)
. (28)

Taking Shehu transform of (27),

sγ

uγ
S[ν(ξ, η)]− sγ−1

uγ
ν(ξ, 0) = S

[
Dξξην− Dξν + νDξξξν− νDξ ν + 3Dξ νDξξ ν

]
.
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Applying inverse Shehu transform

ν(ξ, η) =S−1
[

ν(ξ, 0)
s
− uγ

sγ
S
[
Dξξην− Dξ ν + νDξξξν− νDξν + 3DξνDξξν

]]
.

Using ADM procedure, we get

ν0(ξ, η) = S−1
[

ν(ξ, 0)
s

]
= S−1

 e
(

ξ
2

)
s

,

ν0(ξ, t) = e
(

ξ
2

)
, (29)

∞

∑
j=0

νj+1(ξ, η) = S−1

uγ

sγ
S

 ∞

∑
j=0

(Dξξην)j −
∞

∑
j=0

(Dξ ν)j +
∞

∑
j=0

Aj −
∞

∑
j=0

Bj + 3
∞

∑
j=0

Cj

, j = 0, 1, 2, · · ·

A0(νDξξξν) = ν0Dξξξν0,

A1(νDξξξν) = ν0Dξξξν1 + ν1Dξξξν0,

A2(νDξξξν) = ν1Dξξξν2 + ν1Dξξξν1 + ν2Dξξξν0,

B0(νDξ ν) = ν0Dξν0,

B1(νDξ ν) = ν0Dξν1 + ν1Dξ ν0,

B2(νDξ ν) = ν1Dξν2 + ν1Dξ ν1 + ν2Dξ ν0,

C0(Dξ νDξξν) = Dξν0Dξξ ν0,

C1(Dξ νDξξν) = Dξν0Dξξ ν1 + Dξν1Dξξ ν0,

C2(Dξ νDξξν) = Dξν1Dξξ ν2 + Dξν1Dξξ ν1 + Dξν2Dξξ ν0,

for j = 1

ν1(ξ, η) = S−1
[

uγ

sγ
S
[
Dξξην0 − Dξν0 + A0 − B0 + 3C0

]]
,

ν1(ξ, t) = −1
2

S−1

uγe
(

ξ
2

)
sγ+1

 = −1
2

e
(

ξ
2

)
ηγ

Γ(γ + 1)
.

(30)

for j = 2

ν2(ξ, η) = S−1
[

uγ

sγ
S
[
Dξξην1 − Dξν1 + A1 − B1 + 3C1

]]
,

ν2(ξ, η) = −1
8

e
(

ξ
2

)
η2γ−1

Γ(2γ)
+

1
4

e
(

ξ
2

)
η2γ

Γ(2γ + 1)
,

(31)

for j = 3

ν3(ξ, η) =S−1
[

uγ

sγ
S
[
Dξξην2 − Dξν2 + A2 − B2 + 3C2

]]
,

ν3(ξ, η) =− 1
32

e
(

ξ
2

)
η3γ−2

Γ(3γ− 1)
+

1
8

e
(

ξ
2

)
η3γ−1

Γ(3γ)
− 1

8
e
(

ξ
2

)
η3γ

Γ(3γ + 1)
,

(32)

The SDM solution for example (1) is

ν(ξ, η) = ν0(ξ, η) + ν1(ξ, η) + ν2(ξ, η) + ν3(ξ, η) + ν4(ξ, η) + · · · ,
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ν(ξ, η) = e(
ξ
2 ) − 1

2
e(

ξ
2 ) ηγ

Γ(γ + 1)
− 1

8
e(

ξ
2 ) η2γ−1

Γ(2γ)
+

1
4

e(
ξ
2 ) η2γ

Γ(2γ + 1)
− 1

32
e(

ξ
2 ) η3γ−2

Γ(3γ− 1)

+
1
8

e(
ξ
2 ) γ3γ−1

Γ(3γ)
− 1

8
e(

ξ
2 ) η3γ

Γ(3γ + 1)
− · · · .

(33)

The simplification of Equation (33)

ν(ξ, η) =e
(

ξ
2

)[
1− ηγ

2Γ(γ + 1)
− 1

8
η2γ−1

Γ(2γ)
+

1
4

η2γ

Γ(2γ + 1)
− 1

32
η3γ−2

Γ(3γ− 1)
+

1
8

η3γ−1

Γ(3γ)
− 1

8
η3γ

Γ(3γ + 1)
+ · · ·

]
. (34)

The approximate solution by VITM.
The iteration formulas for Equation (27), we have

νj+1(ξ, η) = νj(ξ, η)−S−1
[

uγ

sγ
S
{

sγ

uγ
Dηνj − Dξξηνj + Dξνj − νjDξξξνj + νjDξνj

−3DξνjDξξνj
}]

,
(35)

where

ν0(ξ, t) = e
(

ξ
2

)
. (36)

For j = 0, 1, 2, · · ·

ν1(ξ, η) = ν0(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dην0 − Dξξην0 + Dξν0 − ν0Dξξξν0

+ν0Dξ ν0 − 3Dξ ν0Dξξν0
}]

,

ν1(ξ, η) = −1
2

e
(

ξ
2

)
ηγ

Γ(γ + 1)
,

(37)

ν2(ξ, η) = ν1(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dην1 − Dξξην1 + Dξν1 − ν1Dξξξν1

+ν1Dξ ν1 − 3Dξ ν1Dξξν1
}]

,

ν2(ξ, η) = −1
8

e
(

ξ
2

)
η2γ−1

Γ(2γ)
+

1
4

e
(

ξ
2

)
η2γ

Γ(2γ + 1)
,

(38)

ν3(ξ, η) = ν2(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dην2 − Dξξην2 + Dξν2 − ν2Dξξξν2

+ν2Dξ ν2 − 3Dξ ν2Dξξν2
}]

,

ν3(ξ, η) = − 1
32

e
(

ξ
2

)
η3γ−2

Γ(3γ− 1)
+

1
8

e
(

ξ
2

)
η3γ−1

Γ(3γ)
− 1

8
e
(

ξ
2

)
η3γ

Γ(3γ + 1)
,

(39)

ν(ξ, η) =
∞

∑
m=0

νm(ξ, ζ) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)
ηγ

Γ(γ + 1)
− 1

8
e
(

ξ
2

)
η2γ−1

Γ(2γ)
+

1
4

e
(

ξ
2

)
η2γ

Γ(2γ + 1)

− 1
32

e
(

ξ
2

)
η3γ−2

Γ(3γ− 1)
+

1
8

e
(

ξ
2

)
γ3γ−1

Γ(3γ)
− 1

8
e
(

ξ
2

)
η3γ

Γ(3γ + 1)
− · · · .

(40)

The exact solution of Equation (27) at γ = 1,

ν(ξ, η) = e
(

ξ
2−

2η
3

)
. (41)
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Example 2. Consider the following fractional-order nonlinear Fornberg–Whitham:

Dγ
η ν− Dξξην + Dξν =νDξξξν− νDξ ν + 3Dξ νDξξ ν, η > 0, 0 < γ ≤ 1, (42)

with the initial condition

ν(ξ, 0) = cosh2
(

ξ

4

)
. (43)

Taking Shehu transform of (42),

sγ

uγ
S[ν(ξ, η)]− sγ−1

uγ
ν(ξ, 0) = S

[
Dξξην− Dξν + νDξξξν− νDξ ν + 3Dξ νDξξ ν

]
.

Applying inverse Shehu transform

ν(ξ, η) =S−1
[

ν(ξ, 0)
s
− uγ

sγ
S
{

Dξξην− Dξ ν + νDξξξν− νDξν + 3DξνDξξν
}]

.

Using ADM procedure, we get

ν0(ξ, η) = S−1
[

ν(ξ, 0)
s

]
= S−1

exp
(

cosh2
(

ξ
4

))
s

,

ν0(ξ, t) = cosh2
(

ξ

4

)
, (44)

∞

∑
j=0

νj+1(ξ, η) = S−1

[
uγ

sγ
S

[
∞

∑
j=0

(Dξξην)j −
∞

∑
j=0

(Dξ ν)j +
∞

∑
j=0

Aj −
∞

∑
j=0

Bj + 3
∞

∑
j=0

Cj

]]
, j = 0, 1, 2, · · ·

for j = 0

ν1(ξ, η) = S−1
[

uγ

sγ
S
[
Dξξην0 − Dξν0 + A0 − B0 + 3C0

]]
,

ν1(ξ, η) = −11
32

S−1

[
uγ sinh

( x
2
)

sγ+1

]
= −11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
.

(45)

for j = 1

ν2(ξ, η) =S−1
[

uγ

sγ
S
[
Dξξην1 − Dξν1 + A1 − B1 + 3C1

]]
,

ν2(ξ, η) =− 11
28

sinh
(

ξ

4

)
ηγ

Γ(γ + 1)
+

121
1024

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
,

(46)

for j = 2

ν3(ξ, η) =S−1
[

uγ

sγ
S
[
Dξξην2 − Dξ ν2 + A2 − B2 + 3C2

]]
,

ν3(ξ, η) =− 11
512

sinh
(

ξ

4

)
ηγ

Γ(γ + 1)
+

121
2048

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
− 1331

49152
sinh

(
ξ

4

)
η3γ

Γ(3γ + 1)
,

(47)

The SDM solution for example (2) is

ν(ξ, η) = ν0(ξ, η) + ν1(ξ, η) + ν2(ξ, η) + ν3(ξ, η) + ν4(ξ, η) + · · · ,
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ν(ξ, η) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
− 11

28
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
+

121
1024

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)

− 11
512

sinh
(

ξ

4

)
ηγ

Γ(γ + 1)
+

121
2048

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
− 1331

49152
sinh

(
ξ

4

)
η3γ

Γ(3γ + 1)
· · · .

(48)

The approximate solution by VITM. The iteration formulas for Equation (42), we have

νj+1(ξ, η) = νj(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dηνj − Dξξηνj + Dξνj − νjDξξξνj + νjDξνj − 3Dξ νjDξξνj

}]
, (49)

where

ν0(ξ, t) = cosh2
(

ξ

4

)
. (50)

For j = 0, 1, 2, · · ·

ν1(ξ, η) = ν0(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dην0 − Dξξην0 + Dξν0 − ν0Dξξξν0 + ν0Dξ ν0 − 3Dξ ν0Dξξν0

}]
,

ν1(ξ, η) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
,

(51)

ν2(ξ, η) = ν1(ξ, η)− S−1
[

uγ

sγ
S
{

sγ

uγ
Dην1 − Dξξην1 + Dξν1 − ν1Dξξξν1 + ν1Dξ ν1 − 3Dξ ν1Dξξν1

}]
,

ν2(ξ, η) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
− 11

28
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
+

121
1024

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
,

(52)

ν3(ξ, η) = ν2(ξ, η)−S−1
[

uγ

sγ
S
{

sγ

uγ
Dην2 − Dξξην2 + Dξ ν2 − ν2Dξξξν2 + ν2Dξν2 − 3Dξν2Dξξ ν2

}]
,

ν3(ξ, η) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
− 11

28
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
+

121
1024

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
,

− 11
512

sinh
(

ξ

4

)
ηγ

Γ(γ + 1)
+

121
2048

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
− 1331

49152
sinh

(
ξ

4

)
η3γ

Γ(3γ + 1)
,

(53)

ν(ξ, η) =
∞

∑
m=0

νm(ξ, ζ) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
− 11

28
sinh

(
ξ

4

)
ηγ

Γ(γ + 1)
+

121
1024

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
,

− 11
512

sinh
(

ξ

4

)
ηγ

Γ(γ + 1)
+

121
2048

cosh
(

ξ

4

)
η2γ

Γ(2γ + 1)
− 1331

49152
sinh

(
ξ

4

)
η3γ

Γ(3γ + 1)
− · · · .

(54)

The exact solution of Equation (42) at γ = 1,

ν(ξ, η) = cosh2
(

ξ

4
− 11η

24

)
. (55)

6. Results and Discussion

The present research work aims to find an analytical solution of time-fractional
Fornberg–Whitham equations, implemented the efficient analytical methods. The varia-
tional iteration transform technique and Shehu decomposition technique are used to solve
the targeted problems. To check the validity of the proposed methods, the solution of some
illustrative problems are suggested. The solutions graphs are plotted for both fractional and
integer-order problems. In Figure 1, (a) the exact and the approximate solution of example
1 at γ = 1 and (b) the analytical solution of different fractional-order of γ = 1, 0.8, 0.6 and
0.4. In Figure 2, (a) 3d graph of the exact and (b) the SDM and VITM solutions are plotted
at γ = 1. It is observed that the exact, SDM and VITM solutions are in close contact with
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the exact result of the given problems. Also in Figure 3, (a) the exact and VITM and SDM
solutions plot of example 1, (b) are calculated at different fractional-order γ = 0.8, 0.6 and
Figure 4 show fractional-order γ = 0.4. It is confirmed that VITM and SDM results are in
strong agreement with each other. The similar graphical analysis and discussion can be
made for the solutions of example 2 in Figure 5, the 3d graph (a) the exact solution and
(b) the SDM and VITM solution are discussed at γ = 1. Also in Figure 6, (a) the exact and
VITM and SDM results plot of example 2 and (b) are calculated at different fractional-order
γ = 0.8, 0.6, 0.4. In these graphs, it is investigated that both methods have a sufficient
degree of accuracy. In Table 1 the SDM and VITM results are compared in terms of absolute
errors for different fractional-order respectively. It has been shown that the proposed tech-
niques have identical accuracy. It is investigated that results of fractional-order problems
are convergent to an integer-order result as fractional-order analysis to integer-order. The
same phenomenon of convergence of fractional-order solutions towards integral-order
solutions is observed.

Table 1. The comparison between SDM and VITM for the approximate solution of example 1.

η ξ |Exact− SDM| |Exact− SDM| |Exact− V IT M| |Exact− V IT M|
γ = 0.5 γ = 1 γ = 0.7 γ = 1

0.5 2.0515098570 × 10−4 4.0570000000 × 10−8 3.4157500000 × 10−6 4.0570000000 × 10−8

1 8.4542014000 × 10−4 5.3500000000 × 10−9 1.4746800000 × 10−7 5.3500000000 × 10−9

1.5 6.8110913000 × 10−5 7.5600000000 × 10−10 2.3936000000 × 10−7 7.5600000000 × 10−10

2 7.4324428000 × 10−4 5.7400000000 × 10−9 1.3258200000 × 10−6 5.7400000000 × 10−9

2.5 5.3344053000 × 10−4 8.5560000000 × 10−9 1.3236200000 × 10−6 8.5560000000 × 10−9

0.1 3 7.4491757000 × 10−3 6.3450000000 × 10−8 3.6455200000 × 10−6 6.3450000000 × 10−8

3.5 2.0565077000 × 10−4 6.4160000000 × 10−8 5.2393400000 × 10−6 6.4160000000 × 10−8

4 4.4514678000 × 10−4 5.6400000000 × 10−9 4.5667200000 × 10−6 5.6400000000 × 10−9

4.5 6.0056729000 × 10−4 4.4300000000 × 10−9 3.5344000000 × 10−7 4.4300000000 × 10−9

5 7.4339041000 × 10−4 3.3700000000 × 10−9 2.3356500000 × 10−7 3.3700000000 × 10−9

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Exact

Approximate solution

(a)

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

=1

=0.8

=0.6

=0.4

(b)
Figure 1. (a) Exact and approximate solution plot at γ = 1 of example 1. (b) Approximate solution plot of different fractional
of example 1.
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Figure 2. (a) Exact plot of example 1. (b) Comparison between approximate solution by SDM and VITM plot of example 1
at γ = 1.
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Figure 3. (a) Comparison between approximate solution by SDM and VITM plot of example 1 at γ = 0.8. (b) Comparison
between approximate solution by SDM and VITM plot of example 1 at γ = 0.6.
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Figure 4. Comparison between approximate solution by SDM and VITM plot of example 1 at γ = 0.4.
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(a) (b)
Figure 5. (a) Exact solution plot of example 2. (b) Comparison between approximate solution by SDM and VITM plot of
Example 2 at γ = 1.
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=0.6

=0.4

(b)
Figure 6. (a) Exact and approximate solution plot of example 2. (b) Approximate solution plot of different fractional of
γ = 1 of example 2.

7. Conclusions

In this paper, we implemented Shehu decomposition method and variational iteration
transform method for solving time-fractional Fornberg–Whitham equation. Some examples
of the analytical solution are measured to confirm the accuracy and efficiency of the
available method. Graphs and table of the solutions are plotted to show the closed contact
between the obtained and exact solutions. The proposed techniques are easier and faster in
their concepts and more effective in solving linear and non-linear fractional-order partial
differential equation and useful technique for solving a broader class of non-linear fractional
models in high precision applied mathematics.
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