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Abstract: We obtained results on the existence and uniqueness of a mild solution for a fractional-order
semi-linear differential inclusion in a Hilbert space whose right-hand side contains an unbounded
linear monotone operator and a Carathéodory-type multivalued nonlinearity satisfying some mono-
tonicity condition in the phase variables. We used the Yosida approximations of the linear part of
the inclusion, the method of a priori estimates of solutions, and the topological degree method for
condensing vector fields. As an example, we considered the existence and uniqueness of a solution
to the Cauchy problem for a system governed by a perturbed subdifferential inclusion of a fractional
diffusion type.
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1. Introduction

Recent years have seen a wide spread of fractional analysis as well as the theory of
fractional-order differential equations and inclusions in contemporary mathematics. The
increasing interest in this subject is explained by its numerous applications in various
branches of applied mathematics, physics, engineering, biology, economics, and other
sciences (see, e.g., the monographs of [1–3]). A number of various approaches to the
solving of boundary value problems for differential equations and inclusions in the case
of fractional order q ∈ (0, 1) have been widely described in the literature (see [4–19] and
references therein).

It is well known that, beginning with the classical Cauchy–Picard theorem, as the
usual assumption providing the existence and uniqueness of the solution to the initial
value problem

x′(t) = f (t, x(t)), (1)

x(0) = x0, (2)

the Lipschitz condition of the function f in the space variable x is considered. However,
for a large class of such problems, especially in the case of an infinite-dimensional phase
space, this condition looks rather onerous. That is why, in a large number of works (see,
for example, Refs. [20–24]), the Lipschitz condition is replaced with a certain type of
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monotonicity condition of f in x. For example, in the case of a Hilbert space H with the
inner product 〈·, ·〉, this condition can take the form

〈 f (t, x1)− f (t, x2), x1 − x2〉 ≤ a‖x1 − x2‖2, ∀x1, x2 ∈ H (3)

for some a > 0. Notice that the existence and uniqueness results also remain true in the
case of differential inclusion, i.e., when the right-hand side f is a multivalued map.

To the best of our knowledge, for fractional-order differential equations and inclusions
(see, e.g., [1–3] and references therein), the results of such a type have not been obtained up
to the present time. In our opinion, the property of the Caputo fractional derivative

CDq
0‖x(t)‖ ≤ 〈x(t),

C Dq
0x(t)〉 (4)

of a function x(·) with the values in a Hilbert space, which was recently proved in the
works [25–27], opens up some opportunities in this direction.

In the present paper, we obtain results on the existence and uniqueness of a mild
solution to the Cauchy problem for a fractional-order semi-linear differential inclusion in
a Hilbert space whose right-hand side contains an unbounded linear monotone operator
and a multivalued nonlinearity satisfying a condition of type (3). The paper is organized
in the following way. In the next section, we recall necessary information from fractional
calculus, the theory of measures of noncompactness, and the topological degree theory for
condensing multivalued maps. In the third section, we formulate the problem and develop
some approximation results based on the Yosida approximations of the linear part of the
inclusion. This allows us to obtain the result (Theorem 1) about the a priori estimate for
a mild solution of the problem. This theorem is used to get the result (Theorem 2) on the
existence of a mild solution to the problem on an arbitrary bounded interval. Further, the
main result of the fourth section is Theorem 3 on the uniqueness of a mild solution to the
problem. Finally, in the fifth section, we present the existence and uniqueness of a solution
to the Cauchy problem for a system governed by a perturbed subdifferential inclusion of a
fractional diffusion type as an example.

2. Preliminaries
2.1. Fractional Derivative

In this section, we will recall some notions and definitions that we will need in the
following sections (details can be found, e.g., in [1–3,28]).

Let E be a real Banach space.

Definition 1. The Riemann–Liouville fractional derivative of the order q ∈ (0, 1) of a continuous
function g : [0, a]→ E is the function Dq

0g of the following form:

Dq
0g(t) =

1
Γ(1− q)

d
dt

∫ t

0
(t− s)−qg(s) ds,

provided that the right-hand side of this equality is well defined.

Here, Γ is the Euler gamma-function

Γ(r) =
∫ ∞

0
sr−1e−sds.

Definition 2. The Caputo fractional derivative of the order q ∈ (0, 1) of a continuous function
g : [0, a]→ E is the function CDq

0g defined in the following way:

CDq
0g(t) =

(
Dq(g(·)− g(0))

)
(t),

provided that the right-hand side of this equality is well defined.



Mathematics 2021, 9, 136 3 of 19

Definition 3. A function of the form

Eq,β(z) =
∞

∑
n=0

zn

Γ(qn + β)
, q, β > 0, z ∈ C,

is called the Mittag–Leffler function.

The Mittag–Leffler function has the following asymptotic representation as z → ∞
(see, e.g., [28,29]):

Eq,β(z) =

 1
q z

1−β
q ez

1
q −∑N−1

n=1
z−n

Γ(β−qn) + O(|z|−N), |argz| ≤ 1
2 πq,

−∑N−1
n=1

z−n

Γ(β−qn) + O(|z|−N), |arg(−z)| ≤ (1− 1
2 q)π.

(5)

Denote Eq,1 by Eq. Notice that the second of the above formula implies that in the case
where z = τ < 0 and 0 < q < 1, we have

Eq(τ)→ 0 as τ → −∞. (6)

Notice that from the relations (see, e.g., [30]):

Eq(−z) =
∫ ∞

0
ξq(θ)e−zθdθ

and
Eq,q(−z) =

∫ ∞

0
qθξq(θ)e−zθdθ,

where
ξq(θ) =

1
q

θ
−1− 1

q Ψq(θ
−1/q), (7)

Ψq(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ R+, (8)

it follows that
Eq(τ) > 0, Eq,q(τ) > 0 for τ < 0. (9)

Remark 1 (See, e.g., [31]). ξq(θ) ≥ 0,
∫ ∞

0 ξq(θ)dθ = 1,
∫ ∞

0 θξq(θ)dθ = 1
Γ(q+1) .

Consider a scalar equation of the form

CDqx(t) = λx(t) + f (t), t ∈ [0, T], (10)

with the initial condition
x(0) = x0, (11)

where λ ∈ R, f : [0, T] → R is a continuous function. By a solution of this problem, we
mean a continuous function x : [0, T]→ R satisfying condition (11) whose fractional deriva-
tive CDqx is also continuous and satisfies Equation (10). It is known (see [1], Example 4.9)
that the unique solution of this equation has the form

x(t) = Eq(λtq)x0 +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q) f (s) ds. (12)

We will need the following auxiliary assertion, which is an analogue of the known
Gronwall lemma on integral inequalities.
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Lemma 1. Let a bounded measurable function z : [0, T] → R such that CDq
0z is a continuous

function and
CDq

0z(t) ≤ λz(t) + l(t), t ∈ [0, T], (13)

where l : [0, T]→ R is a bounded measurable function. Then,

z(t) ≤ Eq(λtq)z(0) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)l(s) ds.

Proof. Consider a scalar equation

CDq
0y(t) = λy(t) + l(t), t ∈ [0, T], (14)

with the initial condition y(0) = z(0). From inequality (13) and Equation (14), we have

CDq
0(z(t)− y(t)) ≤ λ(z(t)− y(t)).

There exists a non-negative function ν : [0, T]→ R such that

CDq
0(z(t)− y(t)) = λ(z(t)− y(t))− ν(t).

The solution to the last equation is the following non-negative function

y(t)− z(t) =
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)ν(s) ds.

Thus, z(t) ≤ y(t) because

y(t) = Eq(λtq)y(0) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)l(s) ds,

and y(0) = z(0); we finally get the inequality

z(t) ≤ Eq(λtq)z(0) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)l(s) ds.

2.2. Measures of Noncompactness and Condensing Multivalued Maps

Let us recall some notions and facts (details can be found, for example, in [32–36]).
Let E be a Banach space. We introduce the following notation:

• Pb(E) = {A ⊆ E : A 6= ∅ is bounded };
• Pv(E) = {A ∈ Pb(E) : A is convex};
• K(E) = {A ∈ Pb(E) : A is compact};
• Kv(E) = Pv(E) ∩ K(E).

Definition 4. Let (A,≥) be a partially ordered set. A function β : Pb(E) → A is called the
measure of noncompactness (MNC) in E if, for each Ω ∈ Pb(E), we have:

β(co Ω) = β(Ω),

where co Ω denotes the closure of the convex hull of Ω.

A measure of noncompactness β is called:

(1) monotone if for, each Ω0, Ω1 ∈ Pb(E), Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1);
(2) nonsingular if, for each a ∈ E and each Ω ∈ Pb(E), we have β({a} ∪Ω) = β(Ω).

If A is a cone in a Banach space, the MNC β is called:

(1) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E);
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(2) real if A is the set of all real numbers R with the natural ordering;
(3) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0, Ω1 ∈ Pb(E).

It should be mentioned that the Hausdorff MNC obeys all of the above properties.
Another example can be presented by the following measures of noncompactness defined
on Pb(C([0, a]; E)), where C([0, a]; E) is the space of continuous functions with the values
in a separable Banach space E:

(i) the modulus of fiber noncompactness

ϕ(Ω) = sup
t∈[0,a]

e−ptχE(Ω(t)),

where p > 0, χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈ Ω};

(ii) the modulus of equicontinuity, defined as

modC(Ω) = lim
δ→0

sup
y∈Ω

max
|t1−t2|≤δ

‖y(t1)− y(t2)‖ .

Notice that these MNCs satisfy all above-mentioned properties except regularity. To
obtain a regular MNC in the space C([0, a]; E), we can consider the MNC

ν(Ω) =
(

ϕ(Ω), modC(Ω)
)

with the values in the cone R2 with the natural partial order.

Definition 5. Let X ⊆ E be a closed subset; a multivalued map (multimap) F : X → K(E) is
called upper semicontinuous (u.s.c.) if the pre-image

F−1(V) = {x ∈ X : F (x) ⊂ V}

of each open set V ⊂ E is open in X.

Definition 6. A u.s.c. multimap F : X → K(E) is called condensing with respect to an MNC β
(or β-condensing) if, for every bounded set Ω ⊆ X that is not relatively compact, we have

β(F (Ω)) 6≥ β(Ω).

More generally, given a metric space Λ of parameters, we will say that a u.s.c. mul-
timap Γ : Λ×X → K(E) is a condensing family with respect to an MNC β (or β-condensing
family) if, for every bounded set Ω ⊆ X that is not relatively compact, we have

β(Γ(Λ×Ω)) 6≥ β(Ω).

Let V ⊂ E be a bounded open set, β a monotone nonsingular MNC in E , and F :
V → Kv(E) a β-condensing multimap such that x /∈ F (x) for all x ∈ ∂V, where V and ∂V
denote the closure and the boundary of the set V.

In such a setting, the topological degree

deg
(
i−F , V

)
of the corresponding vector multifield i−F satisfying the standard properties is defined,
where i is the identity map on E . In particular, the condition

deg
(
i−F , V

)
6= 0

implies that the fixed-point set FixF = {x : x ∈ F (x)} is a nonempty subset of V.
To describe the next property, let us introduce the following notion.
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Definition 7. Suppose that β-condensing multimaps F0, F1 : V → Kv(E) have no fixed points
on the boundary ∂V and there exists a β-condensing familyH : [0, 1]×V → K(E) such that:

(i) x /∈ H(λ, x) for all (λ, x) ∈ [0, 1]× ∂V;
(ii) H(0, ·) = F0; H(1, ·) = F1.

Then, the multifields Φ0 = i−F0 and Φ1 = i−F1 are called homotopic:

Φ0 ∼ Φ1.

The homotopy invariance property of the topological degree asserts that if Φ0 ∼ Φ1,
then deg

(
i−F0, V

)
= deg

(
i−F1, V

)
.

Let us also mention the following property of the topological degree, which we will
need in later.

The normalization property: If F (x) ≡ A ∈ K(E), then

deg
(
i−F , V

)
=

{
1 if A ⊂ V,

0 if A ∩V = ∅.

3. Existence of a Solution

Let H be a separable Hilbert space. We will consider the Cauchy problem for a
semi-linear fractional-order differential inclusion in H:

CDq
0x(t) ∈ Ax(t) + F(t, x(t)), t ∈ [0, T], (15)

x(0) = x0, (16)

where 0 < q < 1, and the linear operator A satisfies the following condition:

(A) A : D(A) ⊆ H → H is a linear closed (not necessarily bounded) operator generating
a bounded C0-semigroup {UA(t)}t≥0 of linear operators in H such that

〈Ax, x〉 ≤ −d ‖x‖2, ∀x ∈ D(A),

for some d > 0.

It will be assumed that the multimap F : [0, T]× H → Kv(H) obeys the following con-
ditions:

(F1) The multifunction F(·, x) : [0, T] → Kv(H) admits a measurable selection for each
T > 0 and x ∈ H, i.e., there exists a measurable function f : [0, T] → H such that
f (t) ∈ F(t, x) for a.e. t ∈ [0, T];

(F2) The multimap F(t, ·) : H → Kv(H) is u.s.c. for each T > 0 and for a.e. t ∈ [0, T];
(F3) For each R > 0 and T > 0, there exists a function ωR ∈ L∞[0, T] such that x ∈ H,

‖x‖ ≤ R implies
‖F(t, x)‖ ≤ ωR(t) for a.e. t ∈ [0, T];

(F4) For each T > 0, there exists κ ∈ L∞[0, T] such that, for every bounded set Ω ⊂ H,
it holds that:

χ(t, Ω)) ≤ κ(t)χ(Ω),

where χ denotes the Hausdorff MNC in the space H.
(F5) for each x, x̃ ∈ H and y ∈ F(t, x), ỹ ∈ F(t, x̃), t ∈ [0, T] it holds:

〈y− ỹ, x− x̃〉 ≤ a ‖x− x̃‖2.

From conditions (F1)–(F3), it follows that for each T > 0, the superposition multiop-
erator PF : C([0, T]; H)→ P(L∞((0, T); H)) is defined by the formula

PF(x) = { f ∈ L∞((0, T); H) : f (s) ∈ F(s, x(s)) for a.e. s ∈ [0, T]} (17)
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(see, for example, [32,33]).
Let us recall (see, for example, [4–19]) that a mild solution to problems (15) and (16) is

a function x ∈ C([0, T], H) of the form

x(t) = GA(t)x0 +
∫ t

0
(t− s)q−1TA(t− s) f (s)ds, (18)

where
GA(t) =

∫ ∞

0
ξq(θ)UA(tqθ)dθ, TA(t) = q

∫ ∞

0
θξq(θ)UA(tqθ)dθ,

f ∈ PF(x), and the function ξq is defined by Formula (7).

Lemma 2. (See [31], Lemma 3.4.) The operator functions GA and TA possess the following
properties:

(1) For each t ∈ [0, T], the operator functions GA(t) and TA(t) are linear bounded operators;
more precisely, for each x ∈ H, we have

‖GA(t)x‖H ≤ M‖x‖H , (19)

‖TA(t)x‖H ≤
qM

Γ(1 + q)
‖x‖H , (20)

where
M = sup

t∈[0,+∞)

‖UA(t)‖. (21)

(2) The operator functions GA(·) and TA(·) are strongly continuous, i.e., functions t ∈ [0, T]→
GA(t)x and t ∈ [0, T]→ TA(t)x are continuous for each x ∈ H.

Remark 2. Notice that if A is a bounded operator, then the solution defined by Formula (18)
satisfies the following differential equation (see [3]):

CDq
0x(t) = Ax(t) + f (t).

Now, suppose that x ∈ C([0, T]; H) is any mild solution to problems (15) and (16).
Take a selection f ∈ PF(x) satisfying (18). Then, condition (F3) implies that

‖ f (t)‖ ≤ ωR(t) for a.e. t ∈ [0, T], (22)

where R = ‖x‖C([0,T];H) and ωR ∈ L∞(0, T).
Now, taking a piecewise linear function gε satisfying the conditions of Lemma 3,

consider the function

xε(t) = GA(t)x0,ε +
∫ t

0
(t− s)q−1TA(t− s)gε(s)ds, (23)

where x0,ε ∈ D(A) and x0,ε → x0 as ε→ 0.
Now, consider Yosida approximations for the operator A:

An = nA(nI − A)−1, n ≥ 1.

It is known (see, e.g., [37,38]) that An are bounded, mutually commuting operators,
An converges to A pointwise on D(A), and each An generates the uniformly continuous
contraction semigroup UAn .

We introduce the approximations xn,ε with the formula

xn,ε(t) = GAn(t)x0,ε +
∫ t

0
(t− s)q−1TAn(t− s)gε(s)ds. (24)
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Lemma 3. For each ε > 0, there exists a set mε ⊂ [0, T] of a Lebesgue measure µ(mε) < ε
and a piecewise linear function gε : [0, T]→ H with a finite number of nodes belonging to D(A)
such that

‖ f (t)− gε(t)‖ < ε, t ∈ [0, T] \mε. (25)

Proof. Notice that we can assume, without loss of generality, that the selection f is a
continuous function. In fact, consider the functions fγ : [0, T]→ H defined by the formula

fγ(t) =
1

2γ

∫ t+γ

t−γ
f (s)ds,

where

f (s) =

{
f (s), for s ∈ [0, T],
0, for s /∈ [0, T].

Recall that a point t ∈ [0, T] is called a Lebesgue point of the function f if

lim
γ→0

1
γ

∫ t+γ

t
| f (s)− f (t)|ds = 0.

If we rewrite

fγ(t) =
1

2γ

∫ t+γ

t−γ
f (s)ds =

1
2γ

∫ t

t−γ
f (s)ds +

1
2γ

∫ t+γ

t
f (s)ds,

then fγ(t) → f (t) for a.e. t ∈ [0, T] as γ → 0, since, for a measurable function, the
Lebesgue points form a complete measure space (see [39]). Notice that functions fγ are
continuous and

‖ fγ(t)‖ ≤ ‖ f ‖L∞([0,T],H) for t ∈ [0, T]. (26)

Hence, each function fγ may be approximated with an arbitrary degree of accuracy
in the space C([0, T]; H) by piecewise linear functions gδ with a finite number of nodes
belonging to D(A).

Take a sequence γk → 0. Applying the Egorov theorem to functions fγk (see [37]),
for a given ε > 0, we may find mε ⊂ [0, T] such that µ(mε) < ε, and the sequence { fγk}
uniformly converges to f on [0, T]\mε. So, we will have, for a sufficiently large k,

‖ f (t)− fγk (t)‖ <
ε

2
for t ∈ [0, T]\mε.

Taking now a piecewise linear function gε satisfying

‖ fγk − gε‖C([0,T],H) <
ε

2
, (27)

we will get the desired function.

Lemma 4. The expression

I(ε)(t) :=
∫ t

0
(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds

tends to zero as ε→ 0 uniformly on [0, T].

Proof. Denoting

N =
qM

Γ(1 + q)
,

we get from (20) that
‖TA(t)‖ ≤ N, t ∈ [0, T].
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For a given γ > 0, we choose σ > 0 such that

σq

q
N
(

2‖ωR‖L∞ + 1
)
<

γ

2
.

From the construction of the function gε (see relations (26) and (27)), it follows that for
a sufficiently small ε > 0, we get

‖gε(t)‖ ≤ ‖ωR‖L∞ + 1, t ∈ [0, T].

Then, for the case t ≤ σ ≤ T, we have∫ t

0
(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds ≤

∫ σ

0
(t− s)q−1N

(
‖gε(s)‖+ ‖ f (s)‖

)
ds

≤ N
(

2‖ωR‖L∞ + 1
) ∫ σ

0
(t− s)q−1ds =

σq

q
N
(

2‖ωR‖L∞ + 1
)
<

γ

2
.

If σ < t, we get

I(ε)(t) =
∫ t

t−σ
(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds

+
∫ t−σ

0
(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds = I1(ε)(t) + I2(ε)(t).

For I1(ε), the following estimate holds:

I1(ε)(t) ≤
σq

q
N
(

2‖ωR‖L∞ + 1
)
<

γ

2
.

For I2(ε), we have

I2(ε)(t) =
∫
[0,t−σ]\mε

(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds

+
∫
[0,t−σ]∩mε

(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds = I21(ε)(t) + I22(ε)(t).

Set
N1 = max

s∈[0,t−σ]
(t− s)q−1‖TA(t− s)‖.

Since ‖gε(s)− f (s)‖ < ε for s ∈ [0, t− σ] \mε, we obtain the estimate

I21(ε)(t) ≤ N1ε(t− σ) < N1εT.

For I22(ε), we have

I22(ε)(t) ≤ N1

(
2‖ωR‖L∞ + 1

)
µ([0, t− σ] ∩mε) ≤ N1

(
2‖ωR‖L∞ + 1

)
ε.

Now, choosing ε so that

N1(T + 2‖ωR‖L∞ + 1)ε <
γ

2
,

we get the desired statement.

Corollary 1. The expression ‖xε − x‖C([0,T];H) tends to zero as ε→ 0.
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Proof. We have the estimate

‖x(t)− xε(t)‖ ≤ ‖GA(t)(x0 − x0,ε)‖+
∫ t

0
(t− s)q−1‖TA(t− s)‖ · ‖gε(s)− f (s)‖ds.

Since the operator function GA(t) is strongly continuous and x0,ε → x0 as ε→ 0, the
first term in this sum tends to zero uniformly on [0, T]. The second term uniformly tends to
zero due to Lemma 4.

Remark 3. If in Lemma 4, we replace ‖TA(t− s)‖ with the Mittag–Leffler function Eq,q((−d +
a)tq), then, repeating the above reasonings, we get∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q) · ‖gε(s)− f (s)‖ds→ 0

as ε→ 0 uniformly on [0, T].

Lemma 5. For a fixed ε > 0, the sequence xn,ε converges to xε as n→ ∞ uniformly on [0, T].

Proof. Since for each fixed x ∈ H, we have

UAn(t)x → UA(t)x

uniformly with respect to t ∈ [0, T] (see [38]), we also have the uniform convergence

GAn(t)x → GA(t)x,

TAn(t)x → TA(t)x,

which implies the desired convergence for a fixed ε > 0.

Notice that due to the closedness of the operator A, we have for x ∈ D(A):

AUA(t)x = UA(t)Ax,

AAnx = An Ax,

AUAn(t)x = UAn(t)Ax.

By the definition of the operator functions GA(t) and TA(t), we have for x ∈ D(A):

AGA(t)x = GA(t)Ax;

ATA(t)x = TA(t)Ax;

AGAn(t)x = GAn(t)Ax;

ATAn(t)x = TAn(t)Ax.

Since for a given piecewise linear function gε, the set {Agε(s) : s ∈ [0, T]} is compact in
H, it follows that the range of the function gε lies in D(A), and therefore, {Axn,ε(t) : t ∈ [0, T]}
is a compact set.

Lemma 6. For a fixed ε > 0, we have

(n(nI − A)−1 − I)Axn,ε(t)→ 0

as n→ ∞ uniformly with respect to t ∈ [0, T].
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Proof. Since (n(nI − A)−1 − I)y→ 0 for each fixed y ∈ H (see [38]), we have

(n(nI − A)−1 − I)Ax → 0

uniformly with respect to x ∈ {gε(t) : t ∈ [0, T]}. Since xn,ε can be expressed through gε by
the Formula (24), we get thedesired convergence.

Now, we can get the following assertion about the a priori estimate of a solution to
problems (15) and (16).

Theorem 1. Under the above conditions, there exists a continuous function C : [0,+∞) →
[0,+∞) such that

‖x‖C([0,T],H) ≤ C(T).

for every mild solution x of problems (15) and (16) defined on an interval [0, T].

Proof. Take a sequence of positive numbers θk → 0 and choose a sequence of approxima-
tions {xεk} so that

‖xεk − x‖C([0,T],H) < θk. (28)

Further, according to Lemma 4, we find n1(εk) such that for n ≥ n1(εk), the follow-
ing holds:

‖xn,εk − xεk‖C([0,T],H) < θk.

Since xn,ε lie in D(A) and Axn,ε, for each fixed ε that is uniformly bounded in n (see
Lemma 6), we may indicate n2(εk) such that for n ≥ n2(εk), we have

sup
t∈[0,T]

〈(n(nI − A)−1 − I)Axn,ε(t), xn,ε(t)〉 < θk.

Take nk = max(n1(εk), n2(εk)).
Then, we get

‖xnk ,εk − xεk‖C([0,T],H) < θk, (29)

sup
t∈[0,T]

〈(nk(nk I + A)−1 − I)Axnk ,εk (t), xnk ,εk (t)〉 < θk. (30)

Notice that, simultaneously, we construct the corresponding sequences of functions
{gεk} and sets mεk .

By virtue of Remark 2, we have

CDq
0xnk ,εk (t) = Ank xnk ,εk (t) + gεk (t).

From [25,26], it follows that

CDq
0‖xnk ,εk (t)‖

2 ≤ 〈Ank xnk ,εk (t), xnk ,εk (t)〉+ 〈gεk (t), xnk ,εk (t)〉. (31)

Now, let us estimate the right-hand side of inequality (31). To do this, let us mention
that condition F5) implies that

F5′) for each x ∈ H and y ∈ F(t, x), t ∈ [0, T] it holds

〈y, x〉 ≤ a‖x‖2 + G(t),

where G(t) = ‖F(t, 0)‖.
Then, we get

〈Ank xnk ,εk (t), xnk ,εk (t)〉+ 〈gεk (t), xnk ,εk (t)〉 = 〈Axnk ,εk (t), xnk ,εk (t)〉
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+〈(nk(nk I − A)−1 − I)Axnk ,εk (t), xnk ,εk (t)〉

+〈gεk (t)− f (t), xnk ,εk (t)〉+ 〈 f (t), x(t)〉+ 〈 f (t), xnk ,εk (t)− x(t)〉

≤ −d‖xnk ,εk (t)‖
2 + a‖x(t)‖2 + 〈gεk (t)− f (t), xnk ,εk (t)〉+ 〈 f (t), xnk ,εk (t)− x(t)〉

+〈(nk(nk I − A)−1 − I)Axnk ,εk (t), xnk ,εk (t)〉+ G(t)

≤ (−d + a)‖xnk ,εk (t)‖
2 + a‖x(t)− xnk ,εk (t)‖(‖x(t)‖+ ‖xnk ,εk (t)‖) + ‖gεk (t)− f (t)‖‖xnk ,εk (t)‖

+‖ f (t)‖‖xnk ,εk (t)− x(t)‖+ 〈(nk(nk I − A)−1 − I)Axnk ,εk (t), xnk ,εk (t)〉+ G(t).

For sufficiently large k, we get the inequality

CDq
0‖xnk ,εk (t)‖

2 ≤ (−d + a)‖xnk ,εk (t)‖
2 + 3aRθk + θk‖ f (t)‖+ θk

+2R‖gεk (t)− f (t)‖+ G(t).

By virtue of Lemma 1, assuming that

z(t) = ‖xnk ,εk (t)‖
2, λ = −d + a,

l(t) = 3aRθk + θk‖ f (t)‖+ θk + 2R‖gεk (t)− f (t)‖+ G(t),

the following inequality holds true:

‖xnk ,εk (t)‖
2 ≤ Eq((−d + a)tq)‖x0,εk‖

2 +
∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)G(s)ds+

+ θk

∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)(3aR + ωR(s) + 1)ds+ (32)

+2R
∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)‖gεk (s)− f (s)‖ds.

Notice that the third and fourth terms tend to zero as k→ ∞. In fact, in the third term,
the integral is uniformly bounded on [0, T] and we can apply Remark 3 to the fourth term.

Passing in (39) to the limit as k→ ∞, we get

‖x(t)‖2 ≤ Eq((−d + a)tq)‖x0‖+
∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)G(s)ds. (33)

Therefore, the right-hand side determines the function of the a priori estimate C on
the interval [0, T].

From Theorem 1, we can obtain the following result on the existence of a solution to
problems (15) and (16) on an arbitrary interval [0, T].

Theorem 2. Under the above conditions, there exists a mild solution to problems (15) and (16) on
[0, T] for each T > 0.

Proof. Consider the family of multivalued integral operators
F : C([0, T]; H)× [0, 1]→ P(C([0, T]; H)) defined in the following way:

F (x, λ) = {z = GA(t)x0 + λ
∫ t

0
(t− s)q−1TA(t− s) f (s)ds : f ∈ PF(x)}, (34)

where PF is the superposition multioperator defined by (17).
It is clear that each fixed point xλ ∈ C([0, T]; H) of the multimap F (·, λ), λ ∈ [0, 1] is

a mild solution to the problem

CDq
0x(t) ∈ Ax(t) + λF(t, x(t)), t ∈ [0, T] (35)
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x(0) = x0. (36)

Moreover, it is known (see [5,8,10–14]) that the family (34) has compact convex values
and is condensing with respect to the MNC ν in C([0, T]; H) (see Section 2). Since the mul-
tioperators λF satisfy conditions (F1)–(F5) independently on λ, by applying Theorem 1,
we conclude that there exists a constant C(T) such that all solutions to problems (35) and
(36) satisfy the a priori estimate

‖xλ‖ ≤ C(T).

So, the multioperators F (·, λ) from family (34) are fixed-point free on the boundary
of the ball B of the space C([0, T]; H) centered at zero of the radius C(T) + 1. Notice that
the range of the multioperator F (·, 0) consists of the single function y(t) = GA(t)x0 as its
fixed point.

Now, applying the homotopy and normalization properties of the topological degree,
we obtain

deg(i−F (·, 1),B) = deg(i−F (·, 0),B) = 1,

which yields, by the existence property of the topological degree, the desired result.

4. Uniqueness of a Solution

Now, we are in position to present our main result.

Theorem 3. Under the above conditions, problems (15) and (16) have a unique mild solution on
[0, T] for each T > 0.

Proof. Suppose the contrary, that there are two different mild solutions x1, x2 on [0, T]
for problems (15) and (16). Take a sequence of positive numbers θk → 0 and choose a
sequences of approximations {x1

εk
} and {x2

εk
} so that

‖x1
εk
− x1‖C([0,T],H) < θk, ‖x2

εk
− x2‖C([0,T],H) < θk. (37)

Further, according to Lemma 4, we find n1(εk) such that for n ≥ n1(εk), the follow-
ing holds:

‖x1
n,εk
− x1

εk
‖C([0,T],H) < θk, ‖x2

n,εk
− x2

εk
‖C([0,T],H) < θk.

Since x1
n,ε, x1

n,ε ∈ D(A) and Ax1
n,ε, Ax2

n,ε for each fixed ε that is uniformly bounded in
n (see Lemma 6), we may indicate n2(εk) such that for n ≥ n2(εk), we have

sup
t∈[0,T]

〈(n(nI − A)−1 − I)Ax1
n,ε(t), x1

n,ε(t)〉 < θk,

sup
t∈[0,T]

〈(n(nI − A)−1 − I)Ax2
n,ε(t), x2

n,ε(t)〉 < θk.

Take nk = max(n1(εk), n2(εk)).
Then, we get

‖x1
nk ,εk
− x1

εk
‖C([0,T],H) < θk, ‖x2

nk ,εk
− x2

εk
‖C([0,T],H) < θk,

sup
t∈[0,T]

〈(nk(nk I + A)−1 − I)Ax1
nk ,εk

(t), x1
nk ,εk

(t)〉 < θk,

sup
t∈[0,T]

〈(nk(nk I + A)−1 − I)Ax2
nk ,εk

(t), x2
nk ,εk

(t)〉 < θk.

Notice that, simultaneously, we construct the corresponding sequences of functions
{g1

εk
}, {g2

εk
} and sets mεk .
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By virtue of Remark 2, we have

CDq
0x1

nk ,εk
(t) = Ank x1

nk ,εk
(t) + g1

εk
(t),

CDq
0x2

nk ,εk
(t) = Ank x2

nk ,εk
(t) + g2

εk
(t).

From [25,26], it follows that

CDq
0‖x

1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 ≤ 〈Ank (x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+ 〈g1
εk
(t)− g2

εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉. (38)

Now, let us estimate the right-hand side of inequality (38). Using the properties of
Yosida approximation for the first term and adding and subtracting f 1(t)− f 2(t) in the
second term, we have

〈Ank (x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉+ 〈g1
εk
(t)− g2

εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

= 〈A(x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈(nk(nk I − A)−1 − I)A(x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈g1
εk
(t)− g2

εk
(t)− ( f 1(t)− f 2(t)) + ( f 1(t)− f 2(t)), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

= 〈A(x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈(nk(nk I − A)−1 − I)Ax1
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

−〈(nk(nk I − A)−1 − I)Ax2
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈g1
εk
(t)− f 1(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

+〈 f 2(t)− g2
εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

+〈 f 1(t)− f 2(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉.

Adding and subtracting x1(t)− x2(t) in the last term, we get

〈Ank (x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉+ 〈g1
εk
(t)− g2

εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

= 〈A(x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈(nk(nk I − A)−1 − I)Ax1
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

−〈(nk(nk I − A)−1 − I)Ax2
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈g1
εk
(t)− f 1(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

+〈 f 2(t)− g2
εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

+〈 f 1(t)− f 2(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)− (x1(t)− x2(t))〉+ 〈 f 1(t)− f 2(t), x1(t)− x2(t)〉.

Using the properties (A) and (F5), we have

〈Ank (x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉+ 〈g1
εk
(t)− g2

εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

≤ −d‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 + a‖x1(t)− x2(t)‖2

+〈g1
εk
(t)− f 1(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

+〈 f 2(t)− g2
εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉
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+〈 f 1(t)− f 2(t), x1
nk ,εk

(t)− x1(t)〉+ 〈 f 1(t)− f 2(t), x2(t)− x2
nk ,εk

(t)〉

+〈(nk(nk I − A)−1 − I)Ax1
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

−〈(nk(nk I − A)−1 − I)Ax2
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉.

Now, using the properties of the norm and the scalar product, we finally obtain

〈Ank (x1
nk ,εk

(t)− x2
nk ,εk

(t)), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉+ 〈g1
εk
(t)− g2

εk
(t), x1

nk ,εk
(t)− x2

nk ,εk
(t)〉

≤ (−d + a)‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖2

+a(‖x1(t)− x1
nk ,εk

(t)‖+ ‖x2(t)− x2
nk ,εk

(t)‖)(‖x1(t)− x2(t)‖+ ‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖)

+‖g1
εk
(t)− f 1(t)‖‖x1

nk ,εk
(t)− x2

nk ,εk
(t)‖+ ‖ f 2(t)− g2

εk
(t)‖‖x1

nk ,εk
(t)− x2

nk ,εk
(t)‖

+‖ f 1(t)− f 2(t)‖‖x1
nk ,εk

(t)− x1(t)‖+ ‖ f 1(t)− f 2(t)‖‖x2(t)− x2
nk ,εk

(t)‖

+〈(nk(nk I − A)−1 − I)Ax1
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉

+〈(nk(nk I − A)−1 − I)Ax2
nk ,εk

(t), x1
nk ,εk

(t)− x2
nk ,εk

(t)〉.

For sufficiently large k, we get the inequality

CDq
0‖x

1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 ≤ (−d + a)‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 + 6aRθk + 6aRθk

+4R‖g1
εk
(t)− f 1(t)‖+ 4R‖ f 2(t)− g2

εk
(t)‖+ θk‖ f 1(t)− f 2(t)‖+ θk‖ f 1(t)− f 2(t)‖+ 2θk

= (−d + a)‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 + 12aRθk + 4R‖g1
εk
(t)− f 1(t)‖+ 4R‖ f 2(t)− g2

εk
(t)‖

+2θk‖ f 1(t)− f 2(t)‖+ 2θk.

By virtue of the analog of Lemma 1, the following inequality holds true:

‖x1
nk ,εk

(t)− x2
nk ,εk

(t)‖2 ≤ Eq((−d + a)tq)‖x0,εk − x0,εk‖
2

+4R
∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)‖g1

εk
(t)− f 1(t)‖ds+

+ θk

∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)(12aR + 4ωR(s) + 2)ds+ (39)

+4R
∫ t

0
(t− s)q−1Eq,q((−d + a)(t− s)q)‖ f 2(t)− g2

εk
(t)‖ds.

Notice that the second, third, and fourth terms tend to zero as k→ ∞. In fact, in the
third term, the integral is uniformly bounded on [0, T], and we can apply Remark 3 to the
second and fourth terms.

Passing in (39) to the limit as k→ ∞, we get

‖x1(t)− x2(t)‖2 ≤ 0. (40)

Therefore, for each t ∈ [0, T], it holds that x1(t) = x2(t).

5. An Example

Consider the following Cauchy problem for a system governed by a partial differential
inclusion of a fractional diffusion type:

∂
q
t u(t, s) ∈ ∂2u

∂s2 (t, s)− µu(t, s) + f (t, s, u(t, s)) + ψ(t, s) + D(u(t, ·))(s), (41)

u(0, s) = γ(s), (42)
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where t ∈ [0, T], s ∈ (−∞,+∞), µ > 0, ∂
q
t is the Caputo partial derivative in t of order 0 <

q < 1, f : [0, T]× (−∞,+∞)×R → R, ψ ∈ L2([0, T]× (−∞,+∞)), D : L2(−∞,+∞) →
Kv(L2(−∞,+∞)) is the feedback multimap which will be defined below, and D(x)(s) =
{ω(s) : ω ∈ D(x)}.

Considering u(t, s) as x(t)(s), where x : [0, T] → L2(−∞,+∞), we will reduce the
above problem to abstract problems (15) and (16) in the space H := L2(−∞,+∞). In so
doing, the operator A is defined by the formula

Ax =
∂2x
∂s2 .

We will assume that the function f generates the superposition operator
φ : [0, T]× H → H defined as

φ(t, x)(s) = f (t, s, x(s)).

In order to conclude that this operator is well defined, it is sufficient to assume that
the function f is continuous, f (t, ·, v) ∈ H for all (t, v) ∈ [0, T]×R, and f has a sublinear
growth in the third variable:

| f (t, s, v)| ≤ a + b|v|, ∀(t, s) ∈ [0, T]× (−∞,+∞),

where a and b are some nonnegative constants.
We now describe the ”feedback” multimap D. For a given concave locally Lipschitz-

functional
g : Rn → R,

we denote by ∂g its subdifferential. It is known (see [40], Propositions 2.1.2, 2.1.5, and 2.1.9)
that ∂g is a u.s.c. multimap in Rn with compact convex values, which is monotone in the
following sense:

〈X̃− Ỹ, X−Y〉Rn ≤ 0 (43)

for all X, Y ∈ Rn; X̃ ∈ ∂g(X), Ỹ ∈ ∂g(Y).
Now, let {ϕi}n

i=1 be any fixed orthonormal system of functions from H. For a given
x ∈ H, we define a vector X(x) ∈ Rn assuming X(x) = {κ1, ..., κn}, where

κi = 〈x, ϕi〉H , i = 1, ..., n. (44)

We now define the multioperator D : H → P(H) as

D(x) =
{ n

∑
i=1

ζi ϕi : (ζ1, ..., ζn) ∈ ∂g(X(x))
}

. (45)

From the properties of multivalued maps (see, e.g., [33]), it follows that D is u.s.c. and
has compact convex values; moreover, from (43)–(45), it follows that D is monotone, i.e.,

〈x̃− ỹ, x− y〉H ≤ 0

for all x, y ∈ H, x̃ ∈ D(x), ỹ ∈ D(y).
Now, we can substitute problems (41) and (42) with the following problem in the

space H:
Dq

0x(t) ∈ Ax(t)− µx(t) + φ(t, x(t)) + ψ̃(t) + D(x(t)), (46)

x(0) = γ ∈ H, (47)

where ψ̃(t)(s) = ψ(t, s).
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If we suppose that f (t, s, v) is continuously differentiable in v, | ∂ f
∂v (t, s, v)| is bounded

for all t ∈ [0, T], s ∈ (−∞,+∞), and

∂ f
∂v

(t, s, v) < −α for some α > 0,

then
〈φ(t, x)− φ(t, y), x− y〉H ≤ −α‖x− y‖2

H , ∀x, y ∈ H.

From the properties of u.s.c. compact-valued maps (see [33], Theorem 1.2.35), it follows
that D transforms bounded subsets of H into relatively compact ones. However, then,

χH(φ(t, Ω) + D(Ω)) ≤ KχH(Ω),

where K = sup{| ∂ f
∂v (t, s, v)| : t ∈ [0, T], s ∈ (−∞,+∞), v ∈ R}.

So, all conditions of Theorems 2 and 3 are fulfilled, and we conclude that problems
(41) and (42) have a unique mild solution.

6. Conclusions

We studied the Cauchy problem for a semi-linear differential inclusion of a fractional
order in a Hilbert space. The existence and uniqueness of a mild solution to this problem
are obtained under assumptions that the linear part of the inclusion is a linear monotone
operator generating a C0-semigroup, whereas the multivalued part satisfies a certain
monotonicity-type condition. An example concerning the existence and uniqueness of a
mild solution for a system governed by a partial fractional-order differential inclusion is
presented. As was shown in the paper [13], the uniqueness of a solution entails a difference
from zero of its topological index. In the forthcoming research, by using the results
from [13], this will allow the substantiation of a semi-discretization scheme for obtaining
approximate solutions to the Cauchy problem for differential inclusions of fractional order.
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