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Abstract: Based on the present studies about the application of approximative fractional Brownian
motion in the European option pricing models, our goal in the article is that we adopt the creative
model by adding approximative fractional stochastic volatility to double Heston model with jumps
since approximative fractional Brownian motion is more proper for application than Brownian
motion in building option pricing models based on financial market data. We are the first to adopt the
creative model. We derive the pricing formula for the options and the formula for the characteristic
function. We also estimate the parameters with the loss function for the model and two nested
models and compare the performance among those models based on the market data. The outcome
illustrates that the model offers the best performance among the three models. It demonstrates that
approximative fractional Brownian motion is more proper for application than Brownian motion.

Keywords: option pricing; double heston model; Jump-diffusion model; approximative fractional
Brownian motion; calibration

1. Introduction

We aim to derive European option pricing formula under the framework of double
Heston model including approximative fractional stochastic volatility and jumps. Con-
sidering the present studies, we are first to adopt this creative model. Option pricing has
become a crucial issue in financial modeling since Black and Scholes [1] did the creative
work in this field. However, the assumption that the volatility is a random variable is
more appropriate than constant volatility assumption since the market data shows that the
volatility smile exists. Meanwhile, some studies have presented that stochastic volatility
models given the interpretation about volatility smile. Therefore, the models under this
framework have become an essential issue in the field of option pricing. The most favored
stochastic volatility model is the Heston [2] model. The Cox-Ingersoll-Ross (CIR) [3] process
is adopted in the model. The model has advantages of mean-reverting and non-negative
characteristics. Another advantage of the model is that it only needs to explore the charac-
teristic functions for obtaining the pricing formula for the options. Schöbel and Zhu [4]
also presented a stochastic volatility model. Compared with Heston [2], they explored
the characteristic functions with a new approach which is called expectation approach
that they obtained the solution for the characteristic functions directly by deriving the
expectation functions. In some cases, one-factor volatility process cannot explain the shape
of the volatility smile, and therefore is not always suitable to be adopted in building option
pricing models. Christoffersen et al. [5] claimed that since the correlation between the stock
returns and variance could be nonconstant, one-factor models cannot interpret the shape of
the volatility smile. One way to solve this issue is to build two-factor models. Based on re-
sults from the one-factor model, they presented a two-factor model to describe the variance
process. Their empirical results demonstrated that their model provides more flexibility in
modeling the shape of the smile and the term structure of the volatility. Moreover, the two

Mathematics 2021, 9, 126. https://doi.org/10.3390/math9020126 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3792-7016
https://orcid.org/0000-0003-2489-0696
https://orcid.org/0000-0002-0459-6126
https://doi.org/10.3390/math9020126
https://doi.org/10.3390/math9020126
https://doi.org/10.3390/math9020126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9020126
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/2/126?type=check_update&version=1


Mathematics 2021, 9, 126 2 of 10

factors represent the relationships between short-term returns, long-term returns and the
variance respectively. Therefore, the models under this framework have also become an
essential issue in the field of option pricing.

Jumps explain the discontinuous nature. Merton [6] presented that empirical data
shows the existence of the discontinuous behavior, and therefore developed a model with
lognormally distributed jumps. Kou [7] developed a model with double exponentially
distributed jumps. It has the characteristics of explaining the leptokurtic feature and smile.
Besides the European options, it can also provide explanations and solutions for other
types of derivatives. Some empirical studies have showed that jumps are needed to im-
prove the performance of the models. Bates [8] developed a stochastic volatility model
with lognormally distributed jumps. The empirical study demonstrated that jumps can
capture the volatility smile and the models under this framework can offer reasonable
prices. Bakshi et al. [9] presented several models including stochastic volatility model with
lognormally distributed jumps to explore the performance among those several models.
They found that the model with stochastic volatility has limit in pricing short-term op-
tions and the model with jumps has more flexibility than it. Their empirical study also
demonstrated that stochastic volatility model with jumps gives better performance on
short-term options.

With regard to the derivation of the characteristic functions, two methods are usually
adopted to fulfill it. The first one is based on the affine jump-diffusion (AJD) models.
Duffie et al. [10]. synthesized the option pricing models meeting some distinct require-
ments under the framework of the AJD models. The closed-form of the Fourier transform
of the securities can be obtained by adopting the Feynman-Kac theorem. The second one is
the modular method [11], it is based on expectation method [4]. To be specific, the modular
method is the extension of expectation method which means that the solution of the char-
acteristic function is a framework composed of different modules, one can use expectation
method to obtain the solutions of those modules. Moreover, several authors studied foreign
exchange (FX) options under option pricing models and adopted expectation method to de-
rive the characteristic functions [12–14]. Based on those studies, Ahlip et al. [15] developed
an option pricing model under the framework of the forward stock price. They adopted
expectation method to derive the characteristic functions.

Fractional Brownian motion has become an important engine in financial modeling
since it has characteristics of self-similarity and long-range dependence to coincide with
financial data. It has also been discussed in other fields [16]. The name of it was first given
by Mandelbrot and Van Ness [17]. They presented the expression of it with a stochastic
integral. It is a Gaussian process with a Hurst parameter [18]. Though it can replace
Brownian motion in modeling the dynamics of stock price, it was proved to have the possi-
bility of arbitrage [19]. Moreover, since one cannot apply Itô theory on it, Wick products
were adopted to study it [18]. However, Björk and Hult [20] proved that the model is
lack of the economic explanation. There are two methods to solve this issue. The first
method is to adopt the mixed fractional Brownian motion as a substitute. Cheridito [21]
has proved that if the Hurst parameter is in a specific interval, it is equivalent to Brownian
motion. Several authors developed option pricing models with the mixed fractional Brow-
nian motion [22,23]. It can also be applied in building FX option pricing models [24,25].
The second method is to use approximative fractional Brownian motion as a substitute
and it was developed by Thao [26]. Fractional Brownian motion can be presented with
two terms and the gamma function, since the first one has continuous trajectories, one
can only consider the second one with the characteristic of long-range dependence [26].
Thao [26] approximated the second term with approximative fractional Brownian motion.
Thao [26] has proved that approximative fractional Brownian motion is a semi-martingale.
Besides modeling the dynamics of stock price with the above three kinds of motions, one
can also model the dynamics of the volatility with them. Fractional Brownian motion has
been discussed in stochastic volatility models [27]. Approximative fractional Brownian
motion has also been used in building stochastic volatility models in recent years. Intarasit
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and Sattayatham [28] adopted an approximation of fractional stochastic volatility model
with jumps. The simulation showed that the performance of the model is better than
the stochastic volatility model with jumps. Sattayatham and Intarasit [29] developed a
model by adopting an approximation of fractional stochastic volatility model with jumps.
They derived pricing formula for the options. Several authors offered empirical results
that they used market prices for calibration [30,31]. Some authors also developed option
pricing model with approximative fractional Brownian motion under a creative framework.
Kang et al. [32] presented a FX option pricing model, and the dynamics of FX and the
variance are specified with an approximative fractional process.

In consideration of the present studies, we adopt a double Heston model with ap-
proximative fractional stochastic volatility and jumps. We are first to adopt the creative
model. We derive the pricing formula, estimate the parameters with the loss function for
the model and two nested models and compare the performance among those models. Our
innovation in the article is that we adopt this creative model by adding approximative frac-
tional stochastic volatility to double Heston model with jumps since no one has developed
this model before.

The article is under the following framework. We adopt the creative model and
present pricing formula in Section 2. The derivation of characteristic function formula is
presented in Section 3. In Section 4, we present the calibration and the numerical results.
The conclusion is in Section 5.

2. The Model

We present some specific knowledge about approximative fractional Brownian motion.
We present some review of fractional Brownian motion

(
BH

t
)

t≥0 with the Hurst index
H ∈ (0, 1) in the first place. It is a Gaussian process with zero mean and the following
covariance E

[
BH

t BH
s
]
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
. It coincides with standard Brownian

motion when H = 1
2 . When H ∈

(
1
2 , 1
)

, it exhibits long-range dependence, so one can

only consider the situation when H ∈
(

1
2 , 1
)

for financial studies. It is also known to have
the following expression [17]

BH
t =

1

Γ
(

H + 1
2

)[Zt +
∫ t

0
(t− s)H− 1

2 dWs

]
, (1)

where Zt =
∫ 0
−∞

(
(t− s)H− 1

2 − (−s)H− 1
2
)

dWs, Wt indicates standard Brownian motion,

and Γ indicates the gamma function. One can only deal with B̃t =
∫ t

0 (t− s)H− 1
2 dWs since

it exhibits the characteristic of long-range dependence [26,29–31]. The approximation of B̃t

is B̃ε,H
t which can be expressed as [26]

B̃ε,H
t =

∫ t

0
(t− s + ε)H− 1

2 dWs. (2)

where B̃ε,H
t is an approximative fractional Brownian motion. B̃ε,H

t
L2(Ω)→ B̃t as ε → 0+ and

B̃
ε,H
t is a semi-martingale, the proof can be found in Thao [26]. It can also be expressed as

dB̃ε,H
t =

(
H − 1

2

)
ψtdt + εH− 1

2 dWv
t , (3)

where H indicates the long-memory parameter, ε indicates the positive approximation
factor. ψt is a stochastic processes expressed as

ψt =
∫ t

0
(t− s + ε)H− 3

2 dWψ
s , (4)



Mathematics 2021, 9, 126 4 of 10

where (Wv
t )t∈[0,T] and

(
Wψ

t

)
t∈[0,T]

, are independent standard Brownian motions.

Let (Ω,F ,Q) be a probability space. F = (Ft)t∈[0,T] is the filtration and Q is the
risk-neutral probability measure. Stock price process S = (St)t∈[0,T] and variance processes
v = (vt)t∈[0,T], v̂ = (v̂t)t∈[0,T] are given by the following dynamics

dSt
St

= (r− λµS)dt +
√

vtdWS
t +
√

v̂tdŴS
t + (J − 1)dNt,

dvt = κ(θ − vt)dt + σv
√

vtdB̃
ε,H
t ,

dv̂t = κ̂
(

θ̂ − v̂t

)
dt + σv̂

√
v̂tdŴv

t .
(5)

where κand κ̂ are mean reversion rates, θ and θ̂ are mean reversion levels, σv and σv̂ are the
volatilities of the variances. WS =

(
WS

t
)

t∈[0,T], Wv = (Wv
t )t∈[0,T] are correlated Brownian

motions that d
[
WS, Wv]

t = ρdt. ŴS =
(

ŴS
t

)
t∈[0,T]

, Ŵv =
(

Ŵv
t

)
t∈[0,T]

are correlated

Brownian motions that d
[
ŴS, Ŵv

]
t
= ρ̂dt. Nt denotes Poisson process, λ denotes the

intensity, and J denotes jump size. y = ln J follows an asymmetric double exponential
distribution with the density pd fy(z)

pd fy(z) = pη1e−η1z1{z≥0} + qη2eη2z1{z≺0}, (6)

where η1 � 1, η2 � 0, p, q � 0, p + q = 1. p and q are the probabilities for upward
and downward abnormalities. One can get the following equation µS = EQ(J − 1) =

pη1
η1−1 + qη2

η2+1 − 1.
We give the call option pricing formula by using Radon-Nikodym derivative and the

expression of the characteristic function. The call option price under Q is the expectation of
the discounted value of the payoff

C(T, K) = EQ
(

e−r(T−t) max(ST − K, 0)
∣∣∣Ft

)
,

= e−rτ EQ
(

ST1{xT�k}

∣∣∣Ft

)
− e−rτKEQ

(
1{xT�k}

∣∣∣Ft

)
, (7)

where xt = ln St, τ = T − t, k = ln Kand K is the strike.
We convert Q to the measure QS by applying the Radon-Nikodym derivative [33]

dQS

dQ =
e−rτexT

ext
, (8)

where St = ext = EQ( e−rτexT |Ft).
Accordingly, we can have the following expression

C(T, K) = StEQS
(

1{xT�k}

∣∣∣Ft

)
− Ke−rτ EQ

(
1{xT�k}

∣∣∣Ft

)
. (9)

The density function f (y) and the characteristic function ϕ(u) satisfy the follow-
ing equations

ϕ(u) =
∫
R

eiuy f (y)dy, f (y) =
1

2π

∫
R

e−iuy ϕ(u)du, (10)

and we define

ϕS(u) := EQS
(

eiuxT
∣∣∣Ft

)
, (11)

ϕ(u) := EQ
(

eiuxT
∣∣∣Ft

)
, (12)
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where ϕS(u) denotes the characteristic function under QS and ϕ(u) denotes the character-
istic function under Q. We adopt the Radon-Nikodym derivative to have

ϕS(u) = EQS
(

eiuxT
∣∣∣Ft

)
= EQ

(
e−rτeiuxT exT

ext

∣∣∣∣∣Ft

)
=

ϕ(u− i)
ϕ(−i)

=
ϕ(u− i)

Sterτ
. (13)

Accordingly, we can have the following expression

C(T, K) = St

(
1
2
+

1
π

∫ ∞

0
R

(
e−iuk ϕ(u− i)

iuSterτ

)
du

)
− Ke−rτ

(
1
2
+

1
π

∫ ∞

0
R

(
e−iuk ϕ(u)

iu

)
du

)
. (14)

Accordingly, we only need to derive the formula for ϕ(u) to have the pricing formula.

3. The Characteristic Function

We give the derivation on the characteristic function formula in this part.

Theorem 1. If the asset price follows the process expressed in the dynamics of the model, the
formula for ϕ(u) is expressed as

ϕ(u; τ) = exp(C(u, τ) + D(u, τ)xt + E(u, τ)vt + F(u, τ)v̂t), (15)

where

C(u, τ) =
2κθ

σ2
v ε2H−1


(

κ − iuρσvεH− 1
2 − ςv

)
τ

2
+ ln

2ςv

2ςv +
(

κ − iuρσvεH− 1
2 − ςv

)
(1− exp(−ςvτ))


+

2κ̂θ̂

σ2
v̂

[
(κ̂ − iuρ̂σv̂ − ς̂v)τ

2
+ ln

2ς̂v

2ς̂v + (κ̂ − iuρ̂σv̂ − ς̂v)(1− exp(−ς̂vτ))

]
+ riuτ + λτ(M(u)− iuµS)

D(u, τ) = iu,

E(u, τ) =
(
(iu)2 − iu

) 1− exp(−ςvτ)

2ςv +
(

κ − iuρσvεH− 1
2 − ςv

)
(1− exp(−ςvτ))

,

F(u, τ) =
(
(iu)2 − iu

) 1− exp(−ς̂vτ)

2ς̂v + (κ̂ − iuρ̂σv̂ − ς̂v)(1− exp(−ς̂vτ))
,

ςv =

√(
κ − iuρσvεH− 1

2

)2
− σ2

v ε2H−1
(
(iu)2 − iu

)
, ς̂v =

√
(κ̂ − iuρ̂σv̂)

2 − σ2
v̂

(
(iu)2 − iu

)
,

M(u) =
pη1

η1 − iu
+

qη2
η2 + iu

− 1.

Proof of Theorem 1. ϕ(u) satisfies the following PIDE using Feynman-Kac theorem ac-
cording to Christoffersen et al. [5] and Pospíšil and Sobotka [31]

− ∂ϕ

∂τ
+

(
r− λµs −

1
2
(v + v̂)

)
∂ϕ

∂x
+

1
2
(v + v̂)

∂2 ϕ

∂x2 +
(

κ(θ − v) +
(

H − 1
2

)
σvψ
√

v
)

∂ϕ

∂v
+

1
2

σ2
v ε2H−1v

∂2 ϕ

∂v2

+ κ̂
(

θ̂ − v̂
) ∂ϕ

∂v̂
+

1
2

σ2
v̂ v̂

∂2 ϕ

∂v̂2 + ρσvvεH− 1
2

∂2 ϕ

∂x∂v
+ ρ̂σv̂ v̂

∂2 ϕ

∂x∂v̂
+ λ

∫ ∞

−∞
(ϕ(x + y)− ϕ(x)) f (y)dy = 0. (16)
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We speculate that ϕ(u) is under the following framework

ϕ(u; τ) = exp(C(u, τ) + D(u, τ)xt + E(u, τ)vt + F(u, τ)v̂t), (17)

with initial conditions C(u, 0) = 0, D(u, 0) = iu, E(u, 0) = 0 and F(u, 0) = 0. Reorganizing
the above PIDE, we can have the following expression

− Cτ − Dτ x− Eτ v− Fτ v̂ +

(
r− λµS −

1
2
(v + v̂)

)
D +

1
2
(v + v̂)D2 +

(
κ(θ − v) +

(
H − 1

2

)
σvψ
√

v
)

E

+
1
2

σ2
v ε2H−1vE2 + κ̂

(
θ̂ − v̂

)
F +

1
2

σ2
v̂ v̂F2 + ρσvvεH− 1

2 DE + ρ̂σv̂ v̂DF + λM(u) = 0, (18)

where M(u) =
∫ ∞
−∞

(
eiuy − 1

)
f (y)dy = pη1

η1−iu + qη2
η2+iu − 1.

Since ψ = ψt is martingale and ψ0 = E(ψt) = 0, we have four differential equations
by sorting out the similar items in the above equation

∂C
∂τ = (r− λµS)D + λM + κθE + κ̂θ̂F,
∂D
∂τ = 0,
∂E
∂τ = 1

2 D(D− 1) + 1
2 σ2

v ε2H−1E2 +
(

ρσvεH− 1
2 D− κ

)
E,

∂F
∂τ = 1

2 D(D− 1) + 1
2 σ2

v̂ F2 + (ρ̂σv̂D− κ̂)F.

(19)

We can have the formulae for C(u, τ), D(u, τ), E(u, τ)and F(u, τ) by dealing with the
solutions of the above equations. Accordingly, we can have the solution of ϕ(u). The proof
is complete.

4. Calibration
The loss function is usually adopted to estimate the parameters in option pricing

models and the goal is to minimize the value of it [33]. It relates to the error between the
market and model prices or implied volatilities. It means one can estimate the parameters
in option pricing models as long as one can obtain the market prices or implied volatilities.
When one can obtain the market implied volatilities, the loss functions usually used are to
minimize the absolute and relative value of the mean-squared error (MSE) between market
and model implied volatilities. When one can obtain the market prices, there are two loss
functions one usually uses to estimate the parameters. The first loss function is to minimize
the absolute value of MSE between market and model prices, the other one is to minimize
the relative value of MSE between market and model prices. Because there is a high weight
on the assignment for the options with high values in the first function, sometimes the
second loss function is the first choice [34]. Some authors also developed some new loss
functions. The absolute value of the error, the absolute value of the root squared error
and the squared error between the ask and bid market prices can be considered to be the
weights [31]. The Black-Scholes sensitivity can also be considered to be the weight [5].
Rouah [33] developed a loss function based on the first loss function that he considered
the market prices as the denominator. There is no consensus between the authors about
which loss function is the best one to estimate the parameters, but one should consider
the consistency when using the loss functions. In the first place, the loss function for
estimation and evaluation should be identical among different models. In the second place,
one should adopt the same loss function when comparing the effects of different option
pricing models [34].

In this section, we adopt the market data to calibrate the parameters for three models.
The loss function that is to minimize the absolute value of MSE between the market and
model prices is adopted in the calibration. We consider the market prices of S&P 500 index
call options quoted on 3 January 2019, we obtain the market data from the website of
CBOE. We choose 0.024 to be the risk-free interest rate and fix ε = 1×10−5. We follow some
principles to filter the market data. We eliminate the call options with zero trading volume
and the call options with prices lower than 3 to alleviate the impact of the discreteness
on valuation. We eliminate the call options violating the arbitrage restriction [9]. We also
impose some restrictions on the maturities that we choose the maturities bigger than
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30 days and smaller than 365 days, and therefore there are six maturities in the market data.
The parameters we need to calibrate are given by

Θ =
{

κ, θ, σv, v0, ρ, κ̂, θ̂, σv̂, v̂0, ρ̂, λ, η1, η2, p, H
}

.

Assuming that we have a set of N call options, the market prices are Ci (i = 1, ..., N),
we can obtain the model prices CΘ

i (i = 1, ..., N) with Θ needed for calibration. The ap-
proach to calibrate Θ is to adopt the loss function

MSE =
1
N

N

∑
i=1

(
Ci − CΘ

i

)2
. (20)

We also adopt a criterion for the performance on calibration, we adopt the root mean-
squared error (RMSE) which is given by the following equation

RMSE =

√
1
N ∑

i

(
Ci − CΘ

i
)2. (21)

The estimation outcome is illustrated in Table 1. It shows that the model gives the
smallest RMSE, and the double Heston model gives better approximation than the Heston
model. The estimation outcomes of the double Heston model and the model are also in ac-
cordance with the results in Christoffersen et al. [5] that the two factors of the variance have
different mean reversion levels and they show the correlations between the two returns and
the variance. We also plot the market implied volatilities and the model implied volatilities
to compare the effects of different models based on the market data [35]. We adopt the
bisection algorithm [33] to discover the market and model implied volatilities. Because the
Heston model gives the worst performance on RMSE among the three models, we only plot
the market implied volatilities, double Heston model and the model implied volatilities
to compare the effects of the two models for the maturities. Figure 1 demonstrates the
outcome, the horizontal axis represents the strikes and the vertical axis represents implied
volatilites. It illustrates that the model gives better approximation than double Heston
model in accordance with the market implied volatilities for almost all the maturities.

Table 1. Calibration results of the parameters.

Heston κ θ σv v0 ρ1 RMSE IVMSE
2.6062 0.0285 0.6595 0.0619 −0.6594 5.64494 3.335 ×10−4

Double Heston κ1 θ1 σ1 v10 ρ1
1.1052 0.0206 0.0665 0.0201 −0.9985 5.15576 2.215 ×10−4

κ2 θ2 σ2 v20 ρ2
0.7497 0.0059 0.9997 0.0444 −0.9988

The model κ θ σv v0 ρ
9.9772 0.0189 0.8379 0.0002 −0.9764 4.93625 1.940 ×10−4

κ̂ θ̂ σv̂ v̂0 ρ̂
2.3388 0.0010 0.9957 0.0633 −0.8178

λ η1 η2 p H
0.0085 1.0333 19.7482 0.0005 0.6036
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Figure 1. Market and model implied volatilities for different maturities. (a) Maturity 43 days. (b) Maturity 71 days.
(c) Maturity 105 days. (d) Maturity 169 days. (e) Maturity 260 days. (f) Maturity 351 days.

5. Conclusions

Fractional Brownian motion has become an important tool in financial modeling
since it has the characteristics of self-similarity and long-range dependence to coincide
with financial data. Though it can replace Brownian motion in modeling the dynamics of
stock price, it was proved to be lacking the economic explanation. One method to solve
this problem is to use approximative fractional Brownian motion as a substitute. Besides
modeling the dynamics of a stock price with the above motions, one can also model the
dynamics of the volatility with them. Fractional Brownian motion has been discussed in
stochastic volatility models. Approximative fractional Brownian motion has also been
used in building stochastic volatility models in recent years. Therefore, in consideration
of the present studies about the application of it in the European option pricing models,
we adopted a double Heston model with approximative fractional stochastic volatility
and jumps. We are first to adopt the creative model. We did some pioneering work to fill
the gap in developing European option pricing models. To be specific, our contribution
in the article is that we adopted this creative model by adding approximative fractional
stochastic volatility to double Heston model with jumps since no one has developed this
model before. We derived the pricing formula and the characteristic function formula.
We estimated the parameters with the loss function and compared the performance of
different models on the call option prices. The outcome illustrates that the model gives the
smallest RMSE, double Heston model gives better approximation than the Heston model.
The estimation outcomes of double Heston model and the model are also in accordance
with the results in Christoffersen et al. [5] that the two factors of the variance show the
correlations between the different returns and the variance. We also plotted the market
implied volatilities and the model implied volatilities to compare the effects of different
models based on the market data. Because the Heston model gives the worst performance
among the three models on RMSE, we only plotted the market implied volatilities, double
Heston model and the model implied volatilities to compare the effects of the two models
for the maturities. The outcome illustrates that the model offers better approximation than



Mathematics 2021, 9, 126 9 of 10

double Heston model in accordance with the market implied volatilities for almost all the
maturities. Based on the market data on one day, it shows that approximative fractional
Brownian motion maybe more proper for financial application than Brownian motion.
However, the model may have different performance based on other market data that it
may perform better or worse than the other models. Therefore, some other models also
based on approximative fractional Brownian motion can be developed in the future.
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