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Abstract: The paper investigates the problem of performing a correlation analysis when the number
of observations is large. In such a case, it is often necessary to combine random observations to
achieve dimensionality reduction of the problem. A novel class of statistical measures is obtained
by approximating the Taylor expansion of a general multivariate scalar symmetric function by
a univariate polynomial in the variable given as a simple sum of the original random variables.
The mean value of the polynomial is then a weighted sum of statistical central sum-moments with the
weights being application dependent. Computing the sum-moments is computationally efficient and
amenable to mathematical analysis, provided that the distribution of the sum of random variables
can be obtained. Among several auxiliary results also obtained, the first order sum-moments
corresponding to sample means are used to reduce the numerical complexity of linear regression by
partitioning the data into disjoint subsets. Illustrative examples provided assume the first and the
second order Markov processes.

Keywords: least squares; linear regression; Markov process; moment method; multivariate function;
Taylor expansion

1. Introduction

The interest in developing and improving statistical methods and models is driven
by the ever increasing volumes and variety of data. Making sense of data often requires
one to uncover the existing patterns and relationships in data. One of the most commonly
used universal tools for data exploration is evaluation of cross-correlation among different
data sets and of autocorrelation of data sequence with itself. The correlation values can be
utilized to carry out sensitivity analysis, to forecast future values, to visualize complex rela-
tionships among subsystems, and to evaluate other important spatio-temporal statistical
properties. However, it has been well established that correlations do not imply causaliza-
tion.

The correlations measure linear dependencies between pairs of random variables
which is implicitly exploited in linear regression. The correlation values rely on estimated
or empirical statistical moments such as sample mean and sample variance. If the mean
values are removed from data, the correlations are referred to as covariances. The pairwise
correlations can be represented as a fully connected graph with edges parameterized
by time shifts and possibly by amplitude adjustments between the corresponding data
sequences. However, the graph may become excessively complex when the number of
random variables considered is large, for example, when analyzing multiple long sequences
of random observations.

The problem of extending the notion of correlations and covariances to more than
two random variables has been considered previously in literature. In particular, the mul-
tirelation has been defined as a measure of linearity for multiple random variables in [1].
This measure is based on a geometric analysis of linear regression. Under the assumption
of multivariate Student-t distribution, the statistical significance of the multirelation coef-
ficient is defined in terms of eigenvalues of the correlation matrix in [2]. An univariate
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correlation measure for multiple random variables is defined in [3] to be a sum of elements
on the main diagonal of the covariance matrix. Linear regression is again utilized in [4] to
define the multiple correlation coefficient. It is derived from the coefficient of determination
of linear regression as a proportion of the variance in the dependent variable which is
predictable from the independent variables.

The distance correlation measure between two random vectors based on the hypothe-
sis testing of independence of random variables is proposed in [5]. Different operations
on random variables including ordering, weighting, and a nonlinear transformation are
assumed in [6] to define a family of Minkowski distance measures for random vectors.
A maximal correlation measure for random vectors is introduced in [7]. It generalizes the
concept of maximal information coefficient while nonlinear transformations are also used
to allow assessment of nonlinear correlations. Similarly to [3], the sample cross-correlation
between multiple realizations of two random vectors is shown in [8] to be proportional
to the sum of diagonal elements of the product of the corresponding correlation matrices.
The reference [9] investigates two-dimensional general and central moments for random
matrices which are invariant to similarity transformations. Two new distance measures
for random vectors are defined in [10] assuming the joint characteristic function. These
measures can be also used to test for statistical independence of random vectors. The most
recent paper [11] derives a linear correlation measure for multiple random variables using
determinants of the correlation submatrices.

This brief literature survey indicates that there are still no commonly accepted correla-
tion measures for multiple random variables. The measures considered in the literature
are either rigorously derived but mathematically rather complicated, or there are many
modifications of the existing, simpler, but well understood measures. In this paper, it is
shown that by constraining the complexity of multivariate Taylor series to reduce the
number of its parameters or degrees-of-freedom, the Taylor series can be rewritten as a
finite degree univariate polynomial. The independent variable of this polynomial is a sim-
ple sum of the random variables considered. The polynomial coefficients are real-valued
constants, and they are application dependent. The polynomial defines a many-to-one
transformation of multiple random variables to another scalar random variable. The mean
value of the polynomial represents a broad class of polynomial measures which can be
used for any number of random variables. The mean value of each polynomial element
corresponds to a general or central moment of the sum of random variables. Therefore,
these moments are referred to here as sum-moments. In case of multiple random vectors,
similarly to computing the correlation or covariance matrix by first concatenating the
vectors into one long vector, the sum-moments can be readily defined and computed for
such a concatenated random vector. The main advantages of assuming sum-moments to
study statistical properties of multiple random variables or multiple random vectors are
the clarity in understanding their statistical significance, and mathematical simplicity of
their definition. Moreover, as long as the distribution of the sum of random variables can
be found, the closed-form expression for the sum-moments can be obtained.

Before introducing the polynomial representations of random vectors in Section 4
together with central and general sum-moments, a number of auxiliary results are presented
in Sections 2 and 3. In particular, Section 2 summarizes the key results and concepts from
the literature concerning stationary random processes, their parameter estimation via linear
regression and method of moments, and how to generate the 1st and the 2nd order Markov
processes is also given. Section 3 extends the results from Section 2 by deriving additional
results which are used in Sections 4 and 5 such as a low complexity approximation of
linear regression and a procedure to generate multiple Gaussian processes with defined
autocorrelation and cross-correlation. The main results of the paper are obtained in Section
4 including defining a class of polynomial statistical measures and sum-moments for
multiple random variables and random processes. Other related concepts involving sums
of random variables are also reviewed. Section 5 provides several examples to illustrate
and evaluate the results obtained in the paper. The paper is concluded in Section 6.
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2. Background

This section reviews key concepts and results from the literature which are used to
develop new results in the subsequent sections. Specifically, the following concepts are
briefly summarized: stationarity of random processes, estimation of general and central
moments and of correlation and covariance using the method of moments, definition
of cosine similarity and Minkowski distance, parameter estimation via linear regression,
generation of the 1st and the 2nd order Markov processes, and selected properties of
polynomials and multivariate functions are also given. Note that more straightforward
proofs for some lemmas are only indicated and not fully and rigorously elaborated.

2.1. Random Processes

Consider a real-valued one-dimensional random process x(t) ∈ R over a continuous
time t ∈ R. The process is observed at N discrete time instances t1 < t2 < . . . < tN
corresponding to N random variables Xi = x(ti), i = 1, . . . , N. The random variables
X = {X1, . . . , XN} ∈ RN are completely statistically described by their joint density
function fx(X), so that fx(X) ≥ 0 and

∫
RN fx(X)dX = 1. The process x(t) is further

assumed to be K-th order stationary [12].

Definition 1. A random process x(t) is K-th order stationary, if,

fx(X1, . . . , XK; t1, . . . , tK) = fx(X1, . . . , XK; t1 + t0, . . . , tK + t0) ∀t0 ∈ R.

Lemma 1. The K-th order stationary process is also (K− k)-th order stationary, k = 1, 2, . . . , K−
1, for any subset {Xi1 , . . . , XiK−k} ⊆ {X1, . . . , XN}.

Proof. The unwanted random variables can be integrated out from the joint density.

Unless otherwise stated, in the sequel, all observations of random processes are
assumed to be stationary.

The expectation, E[X] =
∫
R x fx(x)dx, of a random variable X is a measure of its

mean value. A linear correlation between two random variables x(t1) and x(t2) is defined
as [12],

Rx(t1, t2) = corr[x(t1)x(t2)] = Rx(t2 − t1) = Rx(τ).

The (auto-) covariance measures a linear dependency between two zero-mean random
variables, i.e.,

Cx(t1, t2) = cov[x(t1), x(t2)] = E[(x(t1)− E[x(t1)])(x(t2)− E[x(t2)])] = Cx(t2 − t1).

It can be shown that the maximum of Cx(τ), τ = t2 − t1, occurs for τ = 0, correspond-
ing to the variance of a stationary process x(t), i.e.,

Cx(0) = var[x(t)] = E
[
(x(t)− E[x(t)])2

]
∀t ∈ R.

The covariance Cx(τ) can be normalized, so that, −1 ≤ Cx(τ)/Cx(0) ≤ 1. Further-
more, for real-valued regular processes, the covariance has an even symmetry, i.e., Cx(τ) =
Cx(−τ), [12].

For N > 2, it is convenient to define a random vector, X = [X1, . . . , XN ]
T , where (·)T

denotes the transpose, and the corresponding mean vector, X̄ = E[X] . Then, the covariance
matrix,

Cx = E
[
(X − X̄)(X − X̄)T

]
⊆ RN×N

has as its elements the pairwise covariances, [Cx]ij = Cx(tj − ti), i, j = 1, 2, . . . , N.



Mathematics 2021, 9, 123 4 of 24

Assume now the case of two K-th order stationary random processes x1(t) and x2(t),
and the discrete time observations,

X1i = x(t1i), i = 1, 2, . . . , N1

X2i = x(t2i), i = 1, 2, . . . , N2.

Using the set notation, {Xi}1:K = {X1, X2, . . . , XK}, the jointly or mutually stationary
processes imply time-shift invariance of their joint density function.

Definition 2. Random processes x1(t) and x2(t) are K-th order jointly stationary, if,

fx({X1i}1:K , {X2i}1:K ; {t1i}1:K , {t2i}1:K) = fx({X1i}1:K , {X2i}1:K ; {t1i + t0}1:K , {t2i + t0}1:K) ∀t0 ∈ R

is satisfied for all subsets, {X1i}1:K ⊆ {X1i}1:N1 , K ≤ N1, and {X2i}1:K ⊆ {X2i}1:N2 , K ≤ N2.

Lemma 2. The K-th order joint stationarity implies the joint stationarity of all orders smaller
than K.

Proof. The claim follows from marginalization of the joint density function to remove
unwanted variables.

The cross-covariance of random variables X1 = x1(t1) and X2 = x2(t2) being discrete
time observations of jointly stationary random processes x1(t) and x2(t), respectively, is
defined as,

Cx1x2(t1, t2) = cov[X1, X2] = cov[(x(t1)− E[x(t1)])(x(t2)− E[x(t2)])] = Cx1x2(t2 − t1).

The cross-covariance can be again normalized, so it is bounded as,

−1 ≤ Cx1x2(τ)/
√

var[x1(t)]var[x2(t)] ≤ 1.

Note that, unlike for autocovariance, the maximum of Cx1x2(τ) can occur for any value
of the argument τ.

The covariance matrix for the random vectors X1 = [X1i, . . . , X1N1 ]
T and X2 =

[X2i, . . . , X2N2 ]
T having the means, X̄1 = E[X1] and X̄2 = E[X2], respectively, is com-

puted as,
Cx1x2 = E

[
(X1 − X̄1)(X2 − X̄2)

T
]
⊆ RN1×N2 .

Its elements are the covariances, [Cx1x2 ]ij = Cx1x2(t1i − t2j), i = 1, . . . , N1, j = 1, . . . , N2.
In addition to the first order (mean value) and the second order (covariance) statistical

moments, higher order statistics of a random variable X are given by the general and the
central moments defined, respectively, as [13],

gm(X) = E[|X|m] and µm(X) = E[|X− E[X]|m], m = 1, 2, . . . (1)

where |X| denotes the absolute value of scalar variable X. The positive integer-valued
moments (1) facilitate mathematically tractable integration, and prevent producing complex
numbers, if the argument is negative. Note also that the absolute value in (1) is necessary if
X is complex valued, or if m is odd, in order to make the moments to be real-valued and
convex. The central moment can be normalized by the variance as,

µm(X) = E[|X− E[X]|m]/E
[
(X− E[X])2

]m/2
.
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The cosine similarity between two equal-length vectors, X1 = [X11, . . . , X1N ]
T and

X2 = [X21, . . . , X2N ]
T , is defined as [14],

Scos(X1, X2) =
∑N

i=1 X1iX2i√
∑N

i=1 X2
1i

√
∑N

i=1 X2
2i

.

The Minkowski distance between two equal-length vectors X1 and X2 is defined as
the lm-norm [6], i.e.,

Smnk(X1, X2) = ‖X1 − X2‖m =
( N

∑
i=1

∣∣∣∣X1i − X2i

∣∣∣
m
)1/m

, m = 1, 2, . . .

2.2. Estimation Methods

Statistical moments can be empirically estimated from measured data using sample
moments. Such inference strategy is referred to as the method of moments [15]. In particu-
lar, under the ergodicity assumption, a natural estimator of the mean value of a random
variable X from its measurements Xi is the sample moment,

X̄ = E[X] ≈ 1
N

N

∑
i=1

Xi.

The sample mean estimator is unbiased and consistent [15]. More generally, the sample
mean estimator of the first moment of a transformed random variable h(X) is,

E[h(X)] ≈ 1
N − d

N

∑
i=1

h(Xi)

where d is the number of degrees of freedom used in the transformation h, i.e., the number of
other parameters which must be estimated. For example, the variance of X is estimated as,

var[X] = E
[
|X− X̄|2

]
≈ 1

N − 1

N

∑
i=1

(Xi − ˆ̄X)2

where ˆ̄X is the estimate of the mean value X̄ of X.
Assuming random sequences {X1i}1:N1 and {X2i}1:N2 , their autocovariance and cross-

covariance, respectively, are estimated as [15],

Cx(k) = E[XiXi+k] ≈
1

N − k

N−k

∑
i=1

XiXi+k, k� N.

Cx1x2(k) = E
[

X1iX2(i+k)

]
≈ 1

N − k

N−k

∑
i=1

X1iX2(i+k), k� N = min(N1, N2).

Since these estimators are consistent, the condition k � N is necessary to combine a
sufficient number of samples and achieve an acceptable estimation accuracy.

The parameters of a random process can be estimated by fitting a suitable data model
to the measurements Xi. Denote such data model as, E[Xi] = Mi(P), i = 1, 2, . . . , N.
Assuming the least-squares (LS) criterion, the vector of parameters, P = [P1, . . . , PD]

T ⊆
RD, is estimated as,

P̂ = argmin
P

N

∑
i=1

(Xi −Mi(P))2.
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For continuous parameters, the minimum is obtained using the derivatives, i.e., let
d

dP Mi(P) = Ṁi(P), and,

d
dP

N

∑
i=1

(Xi −Mi(P))2 !
= 0 ⇔

N

∑
i=1

Ṁi(P̂) Mi(P̂) =
N

∑
i=1

Ṁi(P̂) Xi.

For a linear data model, Mi(P) = wT
i P where wi = [w1i, . . . , wDi]

T are known coeffi-
cients, the LS estimate can be obtained in the closed-form, i.e.,

P̂ =

(
N

∑
i=1

wiwT
i

)−1 N

∑
i=1

wiXi (2)

where (·)−1 denotes the matrix inverse.

2.3. Generating Random Processes

The task is to generate a discrete time stationary random process with a given proba-
bility density and a given autocovariance. The usual strategy is to generate a correlated
Gaussian process followed by a nonlinear memoryless transformation. For instance, the au-
toregressive (AR) process described by the second order difference equation with constant
coefficients a1, a2, and b > 0 [12], i.e.,

x(n) + a1 x(n− 1) + a2x(n− 2) = b u(n)

generates the 2nd order Markov process from a zero-mean white (i.e., uncorrelated) process

u(n). For a1 = −2
√

1−a
1+a and a2 = 1−a

1+a , 0 < a < 1, this process has the autocovariance,

C2MP(k) = b2 (1 + a)2

4a3︸ ︷︷ ︸
σ2

(
1− a
1 + a

)|k|/2

︸ ︷︷ ︸
.
=(1−a)|k|

(1 + a|k|)

.
=σ2(1− a)|k|(1 + a |k|) = σ2 e−|k|(− ln(1−a))(1 + a |k|).

(3)

On the other hand, for a1 = a > 0, and a2 = 0, the AR process,

x(n) + ax(n− 1) = b u(n)

generates the 1st order Markov process with the autocovariance,

C1MP(k) =
b2

1− a2
︸ ︷︷ ︸

σ2

a|k| = σ2 e−α|k|, a = e−α. (4)

Lemma 3. [16] The stationary random process x(k) with autocovariance Cx(k) is transformed
by a linear time-invariant system with real-valued impulse response h(k) into another stationary
random process y(k) = ∑∞

i=−∞ h(i)x(k − i) ≡ h(k) ~ x(k) with autocovariance, Cy(k) =
h(k)~ h(−k)~ Cx(k). The symbol, ~, denotes (discrete time) convolution.

Proof. By definition, the output covariance, Cy(k, l) = E[(y(k)− E[y(k)])(y(l)− E[y(l)])].
Substituting y(k) = ∑∞

i=−∞ h(i)x(k − i), and rearranging, the covariance, Cy(k − l) =

∑i ∑m h(m)Cx(i−m)h(k− i) = h(k)~ h(−k)~ Cx(k).

Lemma 4. A stationary random process at the output of a linear or nonlinear time-invariant
system remains stationary.
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Proof. For any multivariate function h(x) ∈ R and any t0 ∈ R, the expectation,

E[h(x)] =
∫

RN
h(x) fX(x; t1, . . . , tN)dx =

∫

RN
h(x) fX(x; t1 − t0, . . . , tN − t0)dx

assuming Definition 1 and provided that dimension N of observations is at most equal to
the order of stationarity K.

For shorter sequences, the linear transformation, X = TU, can be used to generate a
normally distributed vector X ∈ RN having the covariance matrix, Cx = TTT , from uncor-
related Gaussian vector U ∈ RN . The mean, E[X] = T E[U]. For longer sequences, a linear
time-invariant filter can be equivalently used as indicated by Lemma 3.

2.4. Polynomials and Multivariate Functions

Lemma 5. A univariate twice differentiable function p(x) is convex, if and only if, d2

dx2 p(x) =
p̈(x) > 0 for ∀x ∈ R. More generally, a twice differentiable multivariate function f : RN 7→ R
is convex, if and only if, the domain of f is convex, and its Hessian is positive semidefinite,
i.e., ∇2 f ≥ 0 for ∀x ∈ dom f .

Proof. See [17] (Sec. 3.1).

Consequently, convex polynomials can be generated as follows.

Lemma 6. Let Q ∈ Rm×m be a positive semidefinite matrix, and assume a polynomial, p̈(x) =
∑2m−2

i=0 pixi for ∀x ∈ R where pi = ∑k+l=i Qkl . Then, for any q0, q1 ∈ R, the polynomial p(x)
of degree 2m,

p(x) = q0 + q1x +
2m−2

∑
i=0

pi
(i + 1)(i + 2)

x2+i

is convex.

Proof. Let x = [x0, x1, . . . , xm−1]T . Then, xTQx = ∑2m−2
i=0 pixi = p̈(x) ≥ 0 for ∀x, since Q

is positive semidefinite. Using Lemma 5 concludes the proof.

For a non-negative integer m ∈ {0} ∪ N+ = {0, 1, 2, . . .}, assume the following
notations to simplify the subsequent mathematical expressions [18]:

n = {n1, n2, . . . , nN} ∈ {N+ ∪ 0}N

x = {x1, x2, . . . , xN} ∈ RN

‖x‖p =
(

xp
1 + xp

2 + · · ·+ xp
N

)1/p

‖x‖1 = |x1|+ |x2|+ · · ·+ |xN |
|x|1 = x1 + x2 + · · ·+ xN

h = {h1, h2, . . . , hN} ∈ RN

hn = hn1
1 hn2

2 · · · h
nN
N

∂n f (x) = ∂n1
1 ∂n2

2 · · · ∂
nN
N f (x) = ∂|n|1

∂x
n1
1 xn2

2 ···x
nN
N

f (x)

m! = ∏m
i=1 i

n! = n1! n2! · · · nN !

Note that |x|1 denotes the sum of elements of x whereas ‖x‖1 is the sum of absolute
values of its elements.

Lemma 7. The m-th power of a finite sum can be expanded as [19],

|x|m1 = ∑
|n|1=m

m!
n!

xn.
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Proof. See [18].

Theorem 1. The multivariate Taylor’s expansion of a (m + 1)-order differentiable function f :
RN 7→ R about the point x ∈ RN is written as [19],

f (x + h) = f (x) + ∑
|n|1≤m

∂n f (x)
n!

hn + ∑
|n|1=m+1

∂n f (x + t h)
n!

hn

for some t ∈ (0, 1).

Proof. See [18,19].

Definition 3. A multivariate function f (x) = f (x1, . . . , xN) is said to be symmetric, if, for any
permutation of its arguments x denoted as x′, f (x) = f (x′).

3. Background Extensions

In this section, additional results are obtained which are used in the next section to
introduce statistical sum-moments for random vectors. In particular, the mean cosine
similarity, the mean Minkowski distance as well as the higher central moments for random
vectors are defined. A polynomial approximation of univariate functions is shown to be a
linear regression problem. A numerically efficient solution of the LS problem is derived.
Finally, a procedure to generate multiple Gaussian processes with defined autocovariance
and cross-covariance is devised.

Recall the second moment of a random variable X, i.e.,

µ2 = E
[
(X− c)2

]
, c ∈ R.

It is straightforward to show that µ2 is minimized for c = E[X], giving the variance of
X. On the other hand, µ2 = 0, if and only if c = E[X]±

√
−var[X].

For random vectors, both cosine similarity and Minkowski distance are random
variables. Assuming that the vectors are jointly stationary, and their elements are identically
distributed, the mean cosine similarity can be defined as,

S̄cos(X1, X2) =
∑N

i=1 E[X1iX2i]√
∑N

i=1 E
[
X2

1i
]
− X̄2

1i

√
∑N

i=1 E
[
X2

2i
]
− X̄2

2i

=
1
N

N

∑
i=1

E[X1iX2i]

σ1σ2
=

1
N

N

∑
i=1

ρ1i,2i

where σ2
1 = var[X1i], σ2

2 = var[X2i], and, ρ1i,2i denotes the Pearson correlation coefficient
of the i-th elements of the vectors X1 and X2. It should be noted that this definition of the
mean cosine similarity does not account for other correlations, E

[
X1iX2j

]
, i 6= j.

The mean Minkowski distance for random vectors can be defined as,

S̄mnk(X1, X2) =
( N

∑
i=1

E
[
|X1i − X2i|m

])1/m
, m = 1, 2, . . . (5)

Recognizing the m-th general moment in (5), the m-th power of the mean Minkowski
distance can be normalized as,

S̃m
mnk(X1, X2) =

N

∑
i=1

E
[
|X1i − X2i|m

]

N
(

E
[
|X1i − X2i|2

])m/2 = µ̄m(X1 − X2), m = 1, 2, . . .

where the average Minkowski distance between two random vectors is,

µ̄m(X1 − X2) =
1
N

N

∑
i=1

µm(X1i − X2i), m = 1, 2, . . .
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Furthermore, note that for m = 2,

1
2

(
E
[
‖X1 − X2‖2

2

]
+ E

[
‖X1 + X2‖2

2

])
= E

[
‖X1‖2

2

]
+ E

[
‖X2‖2

2

]
.

Assuming positive integers m = {m1, m2, . . . , mN}, the higher order joint central
moments of random vector X = {Xi}1:N can be defined as,

µm1,...,mN (X1, . . . , XN) = E

[
N

∏
i=1

(Xi − X̄i)
mi

]
(6)

or, using more compact index notation as,

µm(X) = E[(X − X̄)m].

3.1. Linear LS Estimation

The linear LS estimation can be used to fit a degree (D− 1) polynomial to N samples
of a random process x(t) at discrete time instances t1, t2, . . . , tN . Hence, consider the
polynomial data model,

E[x(t)] ≈ M(t; P) =
D

∑
k=1

Pktk−1.

Denoting wi = [t0
i , t1

i , . . . , tD−1
i ]T , the linear LS solution (2) gives the estimates,

P̂ =




N

∑
i=1




t0
i t1

i · · · tD−1
i

t1
i t2

i · · · tD
i

...
...

. . .
...

tD−1
i tD

i · · · t2D−2
i







−1

N

∑
i=1

x(ti)




t0
i

t1
i
...

tD−1
i


.

Assuming D = 2 parameters, i.e., the linear LS regression for a straight line, the
parameters P1 and P2 to be estimated must satisfy the following equality:

d
dP1

N

∑
i=1

(Xi − w1iP1 − w2iP2)
2 = −2

N

∑
i=1

w1iXi + 2
N

∑
i=1

w2
1iP1 + 2

N

∑
i=1

w1iw2iP2
!
= 0.

Denoting the weighted averages, X̄ = ∑N
i=1 w1iXi, ‖w1‖2

2 = ∑N
i=1 w2

1i, and w̄12 = ∑N
i=1 w1iw2i,

a necessary but not sufficient condition for the linear LS estimation of parameters P1 and
P2 is,

X̄ = ‖w1‖2
2 P1 + w̄12P2. (7)

In the LS terminology, the values ‖w1‖2
2 and w̄12 represent independent variables whereas

X̄ is a dependent variable.
Note that all N measurements are used in (7). However, if N is sufficiently large,

the data points could be split into two disjoint sets of N1 and N2 elements, respectively,
N1 + N2 = N. For convenience, denote the sums,

X̄1 = 1
a1

∑
i∈I1

w1iXi, W̄11 = 1
a1

∑
i∈I1

w2
1i, W̄12 = 1

a1
∑

i∈I1

w1iw2i,

X̄2 = 1
a2

∑
i∈I2

w1iXi, W̄21 = 1
a2

∑
i∈I2

w2
1i, W̄22 = 1

a2
∑

i∈I2

w1iw2i,
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where a1, a2 > 1 are some constants (to be determined later), and I1 and I2 are two disjoint
index sets, such that I1 ∪ I2 = {1, 2, . . . , N}, and the cardinality, |I1| = N1 and |I2| = N2.
Note also that,

‖w1‖2
2 = a1W̄11 + a2W̄21

w̄12 = a1W̄12 + a2W̄22
X̄ = a1X̄1 + a2X̄2.

(8)

Consequently, the approximate LS estimates of parameters P1 and P2 are readily computed
as, [

P̂1
P̂2

]
=

[
W̄11 W̄12
W̄21 W̄22

]−1[ X̄1
X̄2

]
. (9)

There are 2N possibilities how to split N data points into two disjoint subsets indexed
by I1 and I2. More importantly, the estimates (9) do not guarantee the minimum LS fit,
i.e., achieving the minimum squared error (MSE). However, the complexity of performing
the LS fit is greatly reduced by splitting the data, since independently of the value of
N � 1, only a 2× 2 matrix needs to be inverted. The optimum LS fit and the approximate
LS fit (9) are depicted in Figure 1. The points A1 and A2 in Figure 1 correspond to the data
subsets indexed by I1 and I2, respectively. The mid-point, B = a1 A1 + a2 A2, follows from
(8). Note that B is always located at the intersection of the optimum and the approximate
lines LSopt and LSapr, respectively. The vertical arrows at points A1 and A2 in Figure 1
indicate that the dependent values X̄1 and X̄2 are random variables.

A1

A2

B

LSopt

(W̄11,W̄12) (W̄21,W̄22)(‖www1‖2
2 ,w̄12)

LSapr

X̄1

X̄2

X̄ a1
a2

Figure 1. The exact (LSopt) and the reduced complexity (LSapr) linear LS regression.

The larger the variation of the gradient of the line LSapr in Figure 1, the larger the
uncertainty and the probability that the line LSapr deviates from the optimum regression
line LSopt. Since the line LSapr is defined by points X̄1 and X̄2, and always, B ∈ LSapr,
the spread of random variables X̄1 and X̄2 about their mean values affect the likelihood
that LSapr deviates from LSopt. In particular, given 0 < p < 1, there exists ξ > 0, such that
the probability of the gradient Gapr of LSapr to be within the given bounds is at least,

Pr
(
bl(ξ) < Gapr < bu(ξ)

)
≥ p (10)

where

bl(ξ) =

(
E[X̄2]− ξ

√
var[X̄2]

)
−
(

E[X̄1] + ξ
√

var[X̄1]
)

W̄22 − W̄12

bu(ξ) =

(
E[X̄2] + ξ

√
var[X̄2]

)
−
(

E[X̄1]− ξ
√

var[X̄1]
)

W̄22 − W̄12
.
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For stationary measurements (cf. (9)), the means and the variances in (10) are equal to,

E[X̄1] = E[X̄]N1/(a1N) var[X̄1] = var[X̄]N1/(a2
1N)

E[X̄2] = E[X̄]N2/(a2N) var[X̄2] = var[X̄]N2/(a2
2N).

The uncertainty in computing Gapr from data, and thus, also the probability of line
LSapr deviating from line LSopt is inversely proportional to the width of the interval in
(10), i.e.,

bu(ξ)− bl(ξ) =
2ξ(
√

var[X̄1] +
√

var[X̄2])

W̄22 − W̄12
∝

√
N1

a1
+
√

N2
a2

W̄22 − W̄12
. (11)

Consequently, the numerator of (11) must be minimized, and the denominator
maximized.

In order to minimize the numerator in (11), it is convenient to choose, a1 = Nν
1 and

a2 = Nν
2 , where ν ∈ R+ is a constant to be optimized. It is straightforward to show that the

expression, (N1/2−ν
1 + N1/2−ν

2 ) is convex, i.e., it has a unique global minimum for ∀ν > 1/2.
Hence, a necessary condition to reduce the approximation error is that a1 >

√
N1 and

a2 >
√

N2. For numerical convenience, let a1 = N1 and a2 = N2. Then, the dependent and
independent variables assumed in (9) become arithmetic averages, and the optimum index
subsets have the cardinality,

{ |I1| = |I2| = N/2 N − even
|I1| = |I2| ± 1 = (N ± 1)/2 N − odd.

(12)

In order to maximize the denominator in (11), assume that the independent variables
(‖w1‖2

2, w̄12) in (9) are sorted by wli, i.e., let w11 < w12 < . . . < w1N . This ordering and the
condition (12) suggests that the disjoint index sets I1 and I2 maximizing the difference,
W̄22 − W̄12, are,





I1 = {1, 2, . . . , N/2}, I2 = {N/2 + 1, . . . , N} N − even
I1 = {1, 2, . . . , (N − 1)/2}, I2 = {(N + 1)/2, . . . , N} N − odd

or, I1 = {1, 2, . . . , (N + 1)/2}, I2 = {(N + 3)/2, . . . , N}.

Such a partitioning corresponds to splitting the data into two equal (N-even) or approxi-
mately equal (N-odd) sized subsets by the median (2-quantile) index point.

In summary, the approximate linear LS regression can be efficiently computed with a
good accuracy by splitting the data into multiple disjoint subsets, calculating the average
data points in each of these subsets, and then solving the set of linear equations with
the same (or smaller) number of unknown parameters. The data splitting should exploit
ordering of data points by one of the independent variables. It can be expected that the
accuracy of approximate LS regression is going to improve with the number of data points
N. Numerical evaluation of the approximate LS regression is considered in Section 5.

3.2. Generating Pairwise-Correlated Gaussian Processes

How to generate a single correlated Gaussian process is well established in the lit-
erature, and it has been described in Section 2.3. Moreover, the linear transformation to
generate correlated Gaussian variables from uncorrelated Gaussian variables does not have
to be square. A sufficient condition on the rank of linear transformation to obtain a positive
definite covariance matrix is given by the following lemma.

Lemma 8. The matrix, TTT, is positive definite, provided that the matrix, T ∈ RN1×N2 , has
rank N2.

Proof. The rank N2 of T implies that T consists of N2 linearly independent columns
and that N1 ≥ N2. The matrix TTT is positive definite, provided that UTTTTU = ‖TU‖2

2 >
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0 for ∀U ∈ RN2 where ‖·‖2 denotes the Euclidean norm of a vector. Since the columns of
T are linearly independent, ‖TU‖2 = 0, if and only if U = 0.

Corollary 1. The matrix, TTT , is positive definite, provided that the matrix, T ∈ RN1×N2 , has
rank N1.

Corollary 2. A rank N1 linear transformation T of uncorrelated Gaussian vector U ∈ RN2 gener-
ates N1 ≤ N2 correlated Gaussian variables having the (positive definite) covariance matrix, TTT .

Furthermore, it is often necessary to generate multiple mutually correlated Gaussian
processes with given autocorrelation as well as cross-correlation.

Lemma 9. The linear transformation,
[

x1
x2

]
=

[
T1 K
0 T2

][
u1
u2

]
(13)

generates a pair of correlated Gaussian vectors x1 ∈ RN1 and x2 ∈ RN2 from uncorrelated zero-
mean Gaussian vectors u1, u2 ∈ RN where 0 denotes a zero matrix, and according to Corollary 2, it
is necessary that, max(N1, N2) ≤ N. The corresponding (auto-) correlation and cross-correlation
matrices are,

E
[
u1uT

1

]
= σ2

1 I, E
[
u2uT

2

]
= σ2

2 I, E
[
u1uT

2

]
= 0

Cx1 = E
[

x1xT
1

]
= T1TT

1 +KKT , Cx2 = E
[

x2xT
2

]
= T2TT

2 , Cx1x2 = E
[

x1xT
2

]
= KTT

2 = CT
x2x1

where I denotes an identity matrix.

Proof. The proof is straightforward by substituting (13) to definitions of Cx1 , Cx2 and
Cx1x2 .

The following corollary details the procedure described in Lemma 9.

Corollary 3. Given T2, calculate the (auto-) correlation matrix, Cx2 = KTT
2 , or vice versa. Then,

given the cross-correlation matrix, Cx1x2 , compute K = Cx1x2 T2C−T
x2

. Finally, given T1, calculate
the (auto-) correlation matrix, Cx1 = T1TT

1 + KKT , or, obtain T1 by solving the matrix equation,
T1TT

1 = Cx1 − KKT . Note that the matrix equation, TTT = C, can be solved for T using the
singular value decomposition, C = U Λ UT where U is a unitary matrix and Λ is a diagonal
matrix of eigenvalues. Then, T = U

√
Λ.

4. Polynomial Statistics and Sum-Moments for Vectors of Random Variables

The main objective of this section is to define a universal function to effectively
measure the statistics of random vectors and random processes observed at multiple
discrete time instances. The measure function should: (1) be universally applicable for an
arbitrary number of random variables and random vectors, (2) be symmetric, so that all
random variables are considered equally, (3) lead to mathematically tractable expressions,
and (4) be convex to allow defining convex optimization problems.

Let f : RN 7→ R denote such a mapping or transformation of N random variables Xi
to a scalar random variable Y, i.e.,

Y = f (X1, X2, . . . , XN) = f (x). (14)

In order to satisfy the symmetry requirement, the random variables Xi can be first com-
bined as,

Y = f (X1 ◦ X2 ◦ · · · ◦ XN)
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using a binary commutative operator, ◦, such as addition or multiplication. In case of
addition, it is important that the function f is nonlinear. The nonlinearity can be also used
to limit the extreme values of the combined variables.

For a random process x(t), the random variables are defined as, Xi = x(ti). Define a
vector of discrete time instances, t = (t1, . . . , tN), and assume the index notation, x(t) =
{X1 = x(t1), . . . , XN = x(tN)}. Then the mapping (14) can be rewritten as,

Y = f (x(t)) = F (t) = F (t1, t2, . . . , tN).

The mean value is the most important statistical property of the random variable Y.
In addition, if the process x(t) is K-th order stationary, the dimension of the mean mapping
for N observations is reduced by one.

Lemma 10. The mean of Y = f (x(t)) for N discrete time observations of a K-th order stationary
random process has dimension (N − 1), i.e., if N ≤ K,

Ȳ = E[ f (x(t)] = C(t2 − t1, t3 − t1, . . . , tN − t1) = C(τ1, τ2, . . . , τN−1) = C(τ)

where τi = ti+1 − t1, i = 1, 2, . . . , N − 1.

Proof. Assuming Lemma 1 and the first sample X1 = x(t1) to be a reference, the joint prob-
ability density of N process observations becomes, fX(x; 0, t2− t1, . . . , tN − t1) ≡ f̃X(x; t2−
t1, . . . , tN − t1), so the corresponding statistical moments have dimension (N − 1).

In optimization problems, it is useful to consider the gradient of Ȳ, i.e.,

∇Ȳ =

(
∂Ȳ
∂τ1

,
∂Ȳ
∂τ2

, . . . ,
∂Ȳ

∂τN−1

)
=

∂Ȳ
∂T

(
∂T
∂τ1

,
∂T
∂τ2

, . . . ,
∂T

∂τN−1

)

where T is a application dependent measure of the vector τ such as the norms, T =
‖τ‖1 = |τ1|+ · · ·+ |τN−1|, or T = ‖τ‖∞ = max(τ1, . . . , τN−1).

In general, assuming the Taylor’s series defined in Theorem 1 on p. 8, a multivariate
function of a random vector x can be expanded about the mean x̄ = E[x] as,

f (x̄ + h) ≈ f (x̄) +
m

∑
l=1

∑
|n|1=l

∂n f (x)
n!

hn. (15)

Thus, the value of f (x̄ + h) is a weighted sum of hn plus an offset f (x̄). More importantly,
if the partial derivatives ∂n f (x) are replaced with the coefficients (l! pl) which are inde-
pendent of n, the number of parameters in (15) is greatly reduced. Moreover, instead of
precisely determining the values of pl ∈ R to obtain the best possible approximation of the
original function f , it is useful as well as sufficient to constrain the Taylor expansion (15) to
the class of functions that are exactly constructed as,

f (x̄ + h) = f (x̄) +
m

∑
l=1

pl ∑
|n|1=l

l!
n!

hn =
m

∑
l=0

pl(h1 + · · ·+ hN)
l (16)

where p0 = f (x̄). The function expansion (16) represents a m-th degree polynomial in
variable |h|1. The coefficients pl of this polynomial can be set using Lemma 6, so the
polynomial is convex.

The key realization is that the polynomial functions (16) have all the desired properties
specified at the beginning of this section.
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Claim 1. A multivariate function f : RN 7→ R having the desirable properties to measure the
statistics of a random vector x is the m-th degree polynomial,

Y = f (x) =
m

∑
l=0

pl

∣∣∣∣∣
N

∑
i=1

(Xi − E[Xi])

∣∣∣∣∣

l

(17)

where p0 = E[x], and the values of m and of the coefficients pl ∈ R are determined by the
application requirements.

The polynomial Function (17) can be used for any number of observations N. It is
symmetric, so all observations are treated equally. Moreover, it is prone to integration and
employing the expectation operator. The convexity can be achieved by Lemma 6.

4.1. Related Concepts

Assume the scalar function f defined in (17) for a K-th order stationarity random
process x(t). Define the auxiliary random variable,

Z(a) =
1
a

N

∑
i=1

(Xi − X̄i)

where a is a normalization constant, a 6= 0. The expression (17) can be then rewritten as,
Y(a) = ∑m

l=0 pl Zl(a). For a = 1, Z(1) has a zero mean, and the variance, var[Z(1)] =
∑i,j E

[
(Xi − X̄i)(Xj − X̄j)

]
. For a = N, Z(N) represents a sample mean, and its variance is

equal to, var[Z(N)] = var[Z(1)]/N2. For a =
√

N, the variance of Z(
√

N) is normalized
by the number of dimensions, i.e., var

[
Z(
√

N)
]
= var[Z(1)]/N.

For pl = sl/l!, in the limit of large m, Equation (17) gives,

Y = lim
m→∞

m

∑
l=0

sl

l!
(Z(a))l = es Z(a).

The mean, E[Y] = E
[

es Z(a)
]
, is the moment generating function of the random variable

Z(a).
In data processing, the sample mean is intended to be an estimate of the true popula-

tion mean, i.e., N � 1 is required. Here, Z(a) is calculated over a finite number of vector or
process dimensions, so it is a random variable for ∀a ∈ R \ {0}. The variable Z(N) should
be then referred to as an arithmetic average or a center of gravity of the random vector X
in the Euclidean spaceRN , i.e.,

Z(N) , X̄ =
1
N

N

∑
i=1

Xi ∈ R. (18)

Note that (18) is not an l1-norm, since the variables Xi are not summed with absolute values.
If the random variables Xi are independent, the distribution of Z(a) is given by

convolution of their marginal distributions. For correlated observations, if the characteristic
function, f̃ (s/a) = E

[
ej·|X|1s/a

]
, of the sum |X|1 can be obtained, the distribution of

Z(a) = |X|1/a is computed as the inverse transform,

fZ(Z(a)) =
1

2π

∫ ∞

−∞
e−j sZ(a) f̃

( s
a

)
ds.
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Many other properties involving the sums of random variables can be obtained. For
instance, if the random variables Xi are independent and have zero mean, then,

E[Zm(1)]− E[(Z(1)− XN)
m] =





E
[
Xm

N
]

m = 2, 3
E
[
X4

N
]
+ 6 ∑N−1

i=1 E
[
X2

N
]
E
[
X2

i
]

m = 4
E
[
X5

N
]
+ 10 ∑N−1

i=1 E
[
X2

N
]
E
[
X3

i
]
+ E

[
X3

N
]
E
[
X2

i
]

m = 5.

Considering Claim 1, an important statistic for a random vector can be defined as the
m-th central sum-moment.

Definition 4. The m-th central sum-moment of random vector X ∈ RN is computed as,

∑ µm(X) = µm(|X|1) = E

[ ∣∣∣∣∣
N

∑
i=1

(Xi − X̄i)

∣∣∣∣∣

m ]
, m = 1, 2, . . .

Lemma 11. The second central sum-moment of random vector is equal to the sum of all elements
of its covariance matrix, i.e.,

∑ µ2(X) = µ2(|X − X̄|1) = E



(

N

∑
i=1

(Xi − X̄i)

)2

 =

N

∑
i,j=1

cov
[
Xi, Xj

]
= |Cx|1.

Furthermore, the second central sum-moment is also equal to the variance of |X|, i.e.,

∑ µ2(X) = var[ |X|1 ] = var

[
N

∑
i=1

(Xi − X̄i)

]
.

Proof. The first equality is shown by expanding the expectation, and substituting for
elements of the covariance matrix, [Cx]i,j = cov

[
Xi, Xj

]
. The second expression follows by

noting that ∑N
i=1(Xi − X̄i) has zero mean.

In the literature, there are other measures involving sums of random variables. For
instance, in Mean-Field Theory, the model dimensionality is reduced by representing N-
dimensional vectors by their center of gravity [20]. The central point of a vector is also
used in the first order approximation of multivariate functions in [21] and in the model
overall variance in [22].

In Measure Theory [23], the total variation (TV) of a real-valued univariate function,
x : (t0, tN) 7→ R, is defined as the supremum over all possible partitions P : t0 < t1 <
· · · < tN of the interval (t0, tN), i.e.,

TV(x) = sup
P

N−1

∑
i=0
|x(ti+1 − x(ti)|.

The TV concept can be adopted for observations Xi = x(ti) of a stationary random
process x(t) at discrete time instances, {ti}0:N . A mathematically tractable mean TV
measure can be defined as,

TV2
(x) = sup

P
E

[
N−1

∑
i=0
|Xi+1 − Xi|2

]
= sup

P
2N(E

[
X2

i

]
− cov[Xi+1, Xi]).

Jensen’s inequality for a random vector assuming equal weights can be stated as [17],

E

[∣∣∣∣∣
1
N

N

∑
i=1

(Xi − X̄i)

∣∣∣∣∣

m]
≤ 1

N

N

∑
i=1

E[|Xi − X̄i|m].
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Alternatively, exchanging the expectation and summation, Jensen’s inequality becomes,

N

∑
i=1

∣∣E[Xi − X̄i]
∣∣m ≤ E

[
N

∑
i=1
|Xi − X̄i|m

]
. (19)

Furthermore, if the right-hand side of (19) is to be minimized and m = 2, the inequality
in (19) changes to equality. In particular, consider the minimum mean square error (MMSE)
estimation of a vector of random parameters P = {Pi}1:N from measurements X. Denoting
P̄i(X) = E[Pi|X], conditioned on X, the MMSE estimator P̂(X) minimizes [15],

min
P̂|X

E

[
N

∑
i=1

(P̂i(X)− Pi)
2

]
= min

P̂|X
E

[
N

∑
i=1

(
(P̂i(X)− P̄i(X))− (Pi − P̄i(X))

)2
]

= min
P̂|X

{
N

∑
i=1

(P̂i(X)− P̄i(X))2 + E

[
n

∑
i=1

(Pi − P̄i(X))2

]}
(20)

= min
P̂|X

N

∑
i=1

(E
[
P̂i(X)− Pi|X

]
)2 = min

P̂|X

N

∑
i=1

(P̂i(X)− E[Pi|X])2

where the expectations are over the conditional distribution fP|X .
In signal processing, a length N moving average (MA) filter transforms the input

sequence Xi into an output sequence Yi by discrete-time convolution ~, i.e.,

Yi =
N−1

∑
j=0

Xi−j = [1 1 . . . 1︸ ︷︷ ︸
1N

]~ Xi.

The (auto-) correlations of the input and output sequences are related by Lemma 3 on
p. 6, i.e.,

CY(i) = 1N ~ 1N ~ Cx(i) =
N−1

∑
j=−N+1

(N − |j|)Cx(i− j). (21)

Note that if the input process is stationary, then the input and output processes are
jointly stationary.

4.2. Multiple Random Processes

The major complication with observing, evaluating, and processing multiple random
processes is how to achieve their time alignment and amplitude normalization (scaling).
Focusing here on the time alignment problem only, denote the discrete time observation
instances of L random processes as,

tl = {tl1 < tl2 < . . . < tlNl
}, l = 1, 2, . . . , L.

Assume that the first time instance tl1 of every process serves as a reference. Then,
there are (L− 1) uncertainties in time alignment of L processes, i.e.,

∆l = (tl1 − t11) ∈ R, l = 2, 3, . . . , L.

The (L− 1) values ∆l are unknown parameters which must be estimated. Note also that
the difference,

∆l − ∆k = tl1 − tk1

represents an unknown time shift between the process xl(t) and xk(t).
For any multivariate stationary distribution of observations of two random processes,

the corresponding cross-correlation normally attains a maximum for some time shift
between these processes [12]. Hence, a usual strategy for aligning the observed sequences
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is to locate the maximum value of their cross-correlation. The time shifts ∆l , l = 1, 2, . . . , L,
are then estimated as,

∆̂l = argmax
∆

Cx1xl (∆), ∆ ∈ {(tli − t11)}i=1,...,Nl .

Assuming the center values X̄1 and X̄2 in (18) as scalar representations of the vectors
X1 and X2, their cross-covariance can be computed as,

cov[|X1|1, |X2|1] = N2cov[X̄1, X̄2] = N2 E[(X̄1 − E[X1])(X̄2 − E[X2])]. (22)

The task now is how to generalize the pairwise cross-covariance (22) to the case of
multiple random vectors having possibly different lengths. If all random vectors of interest
are concatenated into one single vector, the m-th joint central sum-moment can be defined
by utilizing Claim 1.

Definition 5. The m-th central sum-moment for L random processes with Nl observations, l =
1, 2, . . . , L, is computed as,

∑ µm(X1, . . . , XL) = µm(|X1|1 + . . . + |XL|1) = E

[ ∣∣∣∣∣
L

∑
l=1

Nl

∑
i=1

(Xli − X̄li)

∣∣∣∣∣

m ]
.

Lemma 12. The second central sum-moment for L random processes with Nl observations, l =
1, 2, . . . , L, is equal to the sum of all pairwise covariances, i.e.,

∑ µ2(X1, . . . , XL) =
L

∑
l,k=1

Nl

∑
i,j=1

cov
[

Xli, Xkj

]
=

L

∑
l,k=1
|cov[Xl , Xk]|1 = var[|X1|1 + . . . + |XL|1].

Proof. The expression can be obtained by expanding the sum and then applying the
expectation.

Many other properties of central and noncentral sum-moments can be obtained. For
example, assuming two equal-length vectors X1 and X2, it is straightforward to show that,

E
[
(|X1|1 + |X2|1)2

]
− E

[
|X1|21 + |X2|21

]
= 2

N

∑
i,j=1

E
[
X1iX2j

]

E
[
(|X1|1 + |X2|1)2

]
− E

[
‖X1 − X2‖2

2

]
=

N

∑
i,j=1
i 6=j

E
[
X1iX1j + X2iX2j

]
+ 2

N

∑
i,j=1

E
[
X1iX2j

]
+ 2

N

∑
i=1

E[X1iX2i ].

5. Illustrative Examples

This section provides examples to quantitatively evaluate the results developed in
the previous sections. In particular, the accuracy of approximate linear LS regression
proposed in Section 3.1 is assessed to justify its lower computational complexity. The cen-
tral sum-moments introduced in Section 4 are compared assuming correlated Gaussian
processes. Finally, several signal processing problems involving the 1st order Markov
process are investigated.

5.1. Linear Regression

Consider a classical one-dimensional linear LS regression problem with independent
and identically normally distributed errors. The errors are also assumed to be independent
from all other data model parameters. The data points are generated as,

Xi = ∆i : Yi = P2Xi + P1 + Ei, i = 1, 2, . . . , N
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where Ei are zero-mean, uncorrelated Gaussian samples having the equal variance σ2
e ,

and P1 and P2 are unknown parameters to be estimated. This LS problem can be solved
exactly using the expression (2), and substituting w1i = 1 and w2i = ∆i, ∀i = 1, 2, . . . , N.
Alternatively, to avoid inverting the N×N data matrix, the procedure devised in Section 3.1
suggests to split the data into two equal-size subsets, compute the average data point for
each subset, and then solve the corresponding set of two equations with two unknowns.
Specifically, the set of two equations with the unknown parameters P̂1 and P̂2 is,

2
N ∑N/2

i=1 Yi = P̂1 + P̂2
∆
8 N(2 + N)

2
N ∑N

i=N/2+1 Yi = P̂1 + P̂2
∆
8 N(2 + 3N)

(23)

assuming N is even, and using, ∑N/2
i=1 ∆i = ∆

8 N(2 + N), and ∑N
i=N/2+1 ∆i = ∆

8 N(2 + 3N).
Denoting Ȳ1 = 2

N ∑N/2
i=1 Yi and Ȳ2 = 2

N ∑N
i=N/2+1 Yi, the closed-form solution of (23) is,

P̂1 = 1
2N ((2 + 3N)Ȳ1 − (2 + N)Ȳ2)

P̂2 = 4
∆N2 (Ȳ2 − Ȳ1).

As a numerical example, assume the true values P1 = 1.5, P2 = 0.3, E[Ei] = 0,
var[Ei] = 1, and N = 40 data points. Figure 2 shows the intervals (T̄ −

√
var[T], T̄ +√

var[T]) versus the subset size 1 ≤ N1 ≤ N/2 for the random variable T defined as,

T = 100
Sapr(N)− Sopt(N)

Sopt(N)

where Sapr(N) = ∑N
i=1(Yi − P̂1− P̂2Xi)

2 and Sopt(N) = ∑N
i=1(Yi − P1− P2Xi)

2 are the total
MSEs. In the limit, limN→∞(Sapr(N)− Sopt(N)) = 0, since a sufficiently large subset of
data is as good as the complete set of data. For finite N, it is likely that Sapr(N) > Sopt(N),
so the lower bounds in Figure 2 converge much faster to zero than the upper bounds.

0 5 10 15 20

0

20

40

60

80

N1

T̄
±
√
va
r
[T

]

Figure 2. The relative total mean-square error of the approximate linear LS regression.

5.2. Comparison of Central Moments

Assuming Lemma 11 and Equation (3), the second central sum-moment of the 2nd
order Markov process of length N is,

∑ µ2(X) =
N

∑
i,j=1

C2MP(i− j) = σ2

(
N + 2

N−1

∑
i=1

i(1 + (N − i)α) e−α(N−i)

)
.
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These moments are compared in Figure 3 for different values of the sequence length N,
three values of the parameter α, and assuming σ2 = 1. It can be observed that the values of
the second central sum-moment are increasing with N and the level of correlation, e−α.

0 2 4 6 8 10

0

20

40

60

80

100

=0.1

=0.5

=0.9

N

∑
µ
2
(X

)

Figure 3. The second central sum-moments of the 2nd order Markov process with parameter α and
length N.

Consider now the following three central moments of order m = 1, 2, . . ., i.e.,

S̄mnk(N) =
N

∑
i=1

E
[
|
√

N Xi|m
]

∑ µ2(N) = E

[∣∣∣∣∣
N

∑
i=1

Xi

∣∣∣∣∣

m]

∑ µ̃2(N) = E

[(
N

∑
i=1
|Xi|

)m]
.

The moment, S̄mnk, is the mean Minkowski distance; the scaling by
√

N is introduced
to facilitate the comparison with the other two moments, i.e., the mean sum-moment
∑ µ2, and the mean sum-moment ∑ µ̃2 having the samples summed as the l1 norm. More
importantly, assuming a correlated Gaussian process Xi = x(ti), the central sum-moment
can be readily obtained in a closed form whereas obtaining the closed form expressions
for the other two metrics may be mathematically intractable. In particular, by factoring
the covariance matrix as, Cx = TxTT

x , the correlated Gaussian vector can be expressed as,
X = TU. Then the sum of elements, |X|1 = 1TTU, and the m-th central sum-moment can
be computed as,

∑ µ2(N) = E
[∣∣∣1TTU

∣∣∣
m]

=
∥∥∥1TT

∥∥∥
m

2
E[|U|m] =

∥∥∥1TT
∥∥∥

m

2

2m/2
√

π
Γ
(

m + 1
2

)

where U is a zero-mean, unit-variance Gaussian random variable, and Γ denotes the
gamma function.

Figure 4 shows all three moments as a function of sequence length N for three values
of parameter α assuming the 1st order Markov process. The vertical axis in Figure 4 is
scaled by 1/N for convenience. Note that, for uncorrelated, i.e., independent Gaussian
samples, the moments ∑ µ2 and ∑ µ̃2 are identical. More importantly, all three moments are
strictly increasing with the number of samples N and with the moment order m.
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Figure 4. The Minkowski (blue), sum-moment (black), and sum-moment of absolute values (red) mean statistics for the 1st
order Markov sequence of length N. Columns: different values α. Rows: different values m.

Finally, the second central sum-moment can be visualized in two dimensions. Consider
N = 3 observations of a zero-mean real-valued stationary random process, Xi = x(ti),
i = 1, 2, 3. Let ∑ µ2 = E

[
(X1 + X2 + X3)

2] = ∑3
i,j=1 E

[
XiXj

]
. Assuming the 1st order

Markov correlation model, E
[
XiXj

]
∝ e−0.5|τ|, Figure 5 shows the values of the central

sum-moment ∑ µ2 versus the sample distances τ1 = (t2 − t1) and τ2 = (t3 − t1). Several
symmetries can be observed in Figure 5. In particular, the central sum-moment ∑ µ2 is
symmetric about the axis τ1 = τ2 as well as about the axis τ1 = −τ2. These symmetries are
consequences of the following equalities:

∑ µ2(τ1, τ2) = ∑ µ2(τ2, τ1)

∑ µ2(τ1, τ2) = ∑ µ2(−τ1,−τ2)

}
∀τ1, τ2.

τ2

τ1

∑
µ
2

Figure 5. The second central sum-moment as a function of time differences between N = 3 observa-
tions of a stationary random process.
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5.3. Signal Processing Problems for the 1st Order Markov Process

Consider the 1st order Markov process observed at the output of a length N MA filter.
According to (21), the (auto-) covariance of the output process is,

C1MP+MA(k; α) =
N−1

∑
j=−N+1

(N − |j|)σ2 e−α|k−j|. (24)

Conjecture 1. The MA filtering of the 1st order Markov process generates nearly a 2nd order
Markov process.

The parameter of the 2nd order Markov process approximating the combined (auto-)
covariance (24) can be obtained using the LS regression fit, i.e.,

α̂ = argmin
α̃

∑
k
(C1MP+MA(k; α)− C2MP(k; α̃))2. (25)

Substituting (3) and (24) into (25), and letting the first derivative to be equal to zero, the LS
estimate α̂ must satisfy the linear equation,

∑
k

α̂|k|+ 1 + W−1

(
−C1MP+MA(k; α)

e

)
= 0

which can be readily solved for α̂, and W−1 denotes the Lambert function [24].
A discrete time sequence of N elements has the (auto-) covariance constrained to

(2N− 1) time indexes as indicated in (24). Assuming the length N MA filter, and that there
are (nxN) samples, nx = 1, 2, . . ., of the 1st order Markov process available, the (auto-)
covariance (24) has the overall length 2N(nx + 1)− 3 samples. Figure 6 compares the MSE,

MSE(nx) = 100× ∑k(C1MP+MA(k; α)− C2MP(k; α̂))2

∑k C2
1MP+MA(k; α)

of the LS fit of the (auto-) covariance of the 2nd order Markov process to the combined
(auto-) covariance of the 1st order Markov process and the impulse response of the MA
filter assuming three values of α and two values of nx. Given α and nx, Figure 6 shows that
the best LS fit occurs for a certain value of the MA filter length N. It can be concluded that,
in general, the 1st order Markov process changes to the 2nd order Markov process at the
output of the MA filter.
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Figure 6. The MSE of approximating the (auto-) covariance of the 1st order Markov process at the output of length N MA
filter by the (auto-) covariance of the 2nd order Markov process.

The second problem to investigate is a linear MMSE (LMMSE) prediction of the 1st
order Markov process observed at the output of a MA filter. In particular, given N samples
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Xi = x(ti), i = 1, 2, . . . , N, of random process having the (auto-) covariance (24), the task is
to predict its future value, XN+1 = x(tN+1), tN+1 > tN .

In general, the impulse response h of the LMMSE filter to estimate an unknown scalar
parameter P from the measurements X is computed as [15],

h = E
[
(x− x̄)(X − X̄)T

]
E[P X]. (26)

Here, the unknown parameter P = XN+1, and E[XN+1Xi] = C1MP+MA(N + 1− i) and
E
[
XiXj

]
= C1MP+MA(i− j) in (26) which gives the length N LMMSE filter,

h = [0 0 . . . 0︸ ︷︷ ︸
N−1

C1MP+MA(1)].

Consequently, the predicted value, XN+1 = XN C1MP+MA(1)/σ2
X . Note that the same pro-

cedure, but excluding the MA filter, gives the LMMSE estimate, XN+1 = XN C1MP(1)/σ2
X .

The last problem to consider is a time alignment of two zero-mean, jointly stationary
processes. It is assumed that the normalized cross-covariance of these two processes is,

E
[
X1iX2j

]
√

E
[
X2

1i
]
E
[
X2

2i
] = e−α|i−j|(1 + α|i− j|). (27)

Denote the uncertainty in determining the difference, (i− j), as ∆. In order to estimate
the unknown parameters α and ∆, the left-hand side of (27) can be estimated by the
method of moments, i.e., let E

[
X2

i
]
≈ 1

N ∑N
i=1 X2

i , and, E
[
X1iX2j

]
≈ 1

N ∑N
i=1 X1iX2|i−∆|.

The cross-covariance (27) can be then rewritten as,

vk =
∑N

i=1 X1iX2|i−∆−k|√
∑N

i=1 X2
1i

√
∑N

i=1 X2
2i

= e−α|∆+k|(1 + α|∆ + k|), k = 0, 1, 2, . . .

Utilizing the Lambert function W−1, the cross-covariance can be rewritten further as,

α|∆ + k| = −1−W−1

(
−vk

e

)
, ṽk, k = 0, 1, 2, . . . (28)

Assuming, without loss of generality, that ∆ ≥ 0, the absolute value in (28) can be ignored.
Consequently, the unknown parameters α and ∆ can be obtained as a linear LS fit to N
measured and calculated values ṽk in the linear model (28).

6. Conclusions

The development of a novel statistical measure to enable correlation analysis for
multiple random vectors resumed by summarizing background knowledge on statistical
description of discrete time random processes. This was then extended with the derivation
of several supporting results which were used in the following sections. Specifically, it
was shown that linear regression can be effectively approximated by splitting the data into
disjoint subsets and assuming only one average data point within each subset. In addition,
a procedure for generating multiple Gaussian processes with the prescribed autocovariance
and cross-covariance was devised. The main result of the paper was obtained by assuming
the Taylor’s expansion of multivariate symmetric scalar functions, and then approximating
the Taylor’s expansion by a univariate polynomial. The single polynomial variable is a sim-
ple sum of variables in the original multivariate function. The polynomial approximation
represents a mapping from multiple discrete time observations of a random process to a
multidimensional scalar field. The mean field value is a weighted sum of canonical central
moments with increasing orders. These moments were named central sum-moments to
reflect how they are defined. The sum-moments were then discussed in light of other
similar concepts such as total variance, Mean Field Theory, and moving average sequence
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filtering. Illustrative examples were studied in the last section of the paper. In particular,
the accuracy of approximate linear regression was evaluated quantitatively assuming two
disjoint data subsets. Assuming the 1st and the 2nd order Markov processes, the central
sum-moments were compared with the mean Minkowski distance. For Gaussian processes,
the central sum-moments can be obtained in closed form. The remaining problems investi-
gated moving average filtering of the 1st order Markov processes and its prediction using
a linear MMSE filter.
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Abbreviations
The following abbreviations are used in the paper:

1MP 1st order Markov process
2MP 2nd order Markov process
AR autoregressive
LMMSE linear minimum mean square error
LS least squares
MMSE minimum mean square error
MSE mean square error
MA moving average
TV total variance
| · | absolute value, set cardinality, sum of vector elements
E[·] expectation
corr[·] correlation
cov[·] covariance
var[·] variance
(·)−1 matrix inverse
(·)T matrix/vector transpose
fx distribution of a random variable X
f , ḟ , f̈ function f , and its first and second derivatives
N+ positive non-zero integers
R,R+ real numbers, positive real numbers
X̄ mean value of random variable X
Xij j-th sample of process i
W−1 Lambert function
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