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Abstract: In this paper, we will introduce a new geometric constant LYJ(λ, µ, X) based on an equiv-
alent characterization of inner product space, which was proposed by Moslehian and Rassias. We
first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly
non-square is given. Moreover, some sufficient conditions which imply weak normal structure are
presented. Finally, we obtain some relationship between the other well-known geometric constants
and LYJ(λ, µ, X). Also, this new coefficient is computed for X being concrete space.
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1. Introduction

In the current decade, numerous geometric constants have been investigated for a
Banach space X. Particular attention was given to the two constants; the von Neumann-
Jordan constant CNJ(X) and J(X) (the James constant), where the results are rigorously
investigated and analyzed. For a Banach space X, several studies on the James constant J(X)
and also on the von Neumann-Jordan constant CNJ(X) have been conducted by Gao [1,2],
Yang and Wang [3], and Kato, Maligranda and Takahashi [4,5]. Interested readers in this
field are advised to see the work presented in [6–11] and the references mentioned therein.

In the literature, there are many characterizations of inner product spaces. If we
consider the usual Euclidean space (Rn, ‖ · ‖), the well-known identity ‖x + y‖2 + ‖x−
y‖2 = 2‖x‖2 + 2‖y‖2 is called the parallelogram law. This identity can be extended to
more general situations in several ways. Many authors have studied the necessary and
sufficient conditions for a normed space to be an inner product space (for more details see,
e.g., [12–14]).

Moslehian and Rassias [15] have recently proved the new equivalent characterization
of inner product space using an Euler-Lagrange type identity which provide generaliza-
tions of parallelogram law. The result is presented in Section 3. The follow-up study of
corresponding results of Moslehian and Rassias can be found in [16,17].

Motivated by the new characterization of inner product spaces by Moslehian and
Rassias, we introduce a new geometric constant LYJ(λ, µ, X) in a Banach space X. Some
properties of this geometric constant are discussed.

The article is organized in the following way: we recall some fundamental concepts
i.e., basic definitions with related axioms in the next section. In Section 3 some equivalent
forms of LYJ(λ, µ, X) and its relation to uniformly non-square are considered. Furthermore,
we establish a new necessary condition for weak normal Banach spaces in the form of
LYJ(λ, µ, X). Section 4 is devoted to relationships between the constants LYJ(λ, µ, X) and
CNJ(X), emphasized in terms of nontrivial inequalities involving these constants. Four
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illustrative examples are given as well. Finally, in the last section, we summarize the whole
paper and put forward some questions.

2. Preliminaries

We pass now to introduce some notations. Let X = (X, ‖ · ‖) be a real Banach space
with dim X > 2, BX = {x ∈ X : ‖x‖ 6 1} its unit ball and SX = {x ∈ X : ‖x‖ = 1} its
unit sphere.

Recall that the Banach space X is called uniformly non-square [18] if there exists a
δ ∈ (0, 1) such that for any x, y ∈ SX either ‖x+y‖

2 ≤ 1− δ or ‖x−y‖
2 ≤ 1− δ. The constant

J(X) = sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ SX}

is called the non-square or James constant of X.
The von Neumann–Jordan constant CNJ(X) was defined in 1937 by Clarkson [19] as

CNJ(X) = sup
{
‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}
.

We collect some properties about von Neumann–Jordan constant (see [5,20]):
(1) 1 6 CNJ(X) 6 2; X is a Hilbert space if and only if CNJ(X) = 1;
(2) X is uniformly non-square if and only if CNJ(X) < 2;
(3) CNJ(X) = CNJ(X∗) .

3. The Constant LYJ(λ, µ, X)

From now on, we will consider only Banach spaces of dimension at least 2. Now,
let us introduce the following key constant based on the Euler-Lagrange type identity: for
λ, µ > 0

LYJ(λ, µ, X) = sup
{
‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}
.

Proposition 1. Suppose that X is a normed space. Then

1 6 LYJ(λ, µ, X) 6 2.

Proof. Let x 6= 0, y = 0, then clearly

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
=
‖λx‖2 + ‖µx‖2

(λ2 + µ2)‖x‖2 = 1,

which implies the left inequality.
To prove the right inequality:

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
6

2‖λx‖2 + 2‖µy‖2 + 2‖µx‖2 + 2‖λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

=
(2λ2 + 2µ2)(‖x‖2 + ‖y‖2)

(λ2 + µ2)(‖x‖2 + ‖y‖2)
= 2.

This completes the proof.

Clearly, the LYJ(λ, µ, X) constant also can be rewritten as the following form:

LYJ(λ, µ, X) = sup
{
‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
: x, y ∈ X, ‖x‖ = 1, ‖y‖ 6 1

}
.
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or equivalently

LYJ(λ, µ, X) = sup
{
‖λx + µty‖2 + ‖µx− λty‖2

(λ2 + µ2)(1 + t2)
: x, y ∈ SX , 0 6 t 6 1

}
.

Proposition 2.

LYJ(λ, µ, X) = sup
{
‖λx + µy‖2 + ‖µx− λy‖2

2(λ2 + µ2)
: ‖x‖2 + ‖y‖2 = 2

}
Proof. Let us assume that K = sup{‖λx + µy‖2 + ‖µx− λy‖2 : ‖x‖2 + ‖y‖2 = 2}. Clearly,
then LYJ(λ, µ, X) > K

2(λ2+µ2)
. We shall show LYJ(λ, µ, X) 6 K

2(λ2+µ2)
. Assume that x, y ∈ SX

and let 0 6 t 6 1. Put

u =

√
2x√

1 + t2
, v =

√
2ty√

1 + t2
.

Then ‖u‖2 + ‖v‖2 = 2 and we derive

‖λx + µty‖2 + ‖µx− λty‖2

(λ2 + µ2)(1 + t2)
=
‖λu + µv‖2 + ‖µu− λv‖2

2(λ2 + µ2)
6

K
2(λ2 + µ2)

,

which gives LYJ(λ, µ, X) 6 K
2(λ2+µ2)

.

The next Theorem we need is a classic one, given by Jordan and von Neumann as
follows when the norm is derived from an inner product.

Theorem 1 ([21]). Let (X, ‖ · ‖) be a real normed linear space. Then ‖ · ‖ derives from an inner
product if and only if the parallelogram law holds, i.e.,

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X.

Theorem 1 has some other versions where the sign of equality is replaced by the sign
of inequality.

Theorem 2 ([22]). Let (X, ‖ · ‖) be a real normed linear space. Then ‖ · ‖ derives from an inner
product if and only if

‖x + y‖2 + ‖x− y‖2 ∼ 2‖x‖2 + 2‖y‖2

for all x, y ∈ X, where ∼ stands either for 6 or >.

In article [23] the authors introduce Euler-Lagrange norms and consider Euler–Lagrange
type identity as follows

‖λx + µy‖2 + ‖µx− λy‖2 = (λ2 + µ2)(‖x‖2 + ‖y‖2)

for any non-negative real numbers λ, µ and any x, y ∈ X.
We now state the result of their subsequent articles (the relevant result is explained

in [15]), which plays a vital role in our proof.

Theorem 3 ([15]). A normed space (X, ‖ · ‖) is an inner product space if and only if

‖λx + µy‖2 + ‖µx− λy‖2 = (λ2 + µ2)(‖x‖2 + ‖y‖2)

for any non-negative real numbers λ, µ and any x, y ∈ X.
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We now introduce the following Proposition inspired by Theorem 3, which is in the
another type of Theorem 3.

Proposition 3. A normed space (X, ‖ · ‖) is an inner product space if and only if

‖λx + µy‖2 + ‖µx− λy‖2 6 (λ2 + µ2)(‖x‖2 + ‖y‖2)

for any non-negative real numbers λ, µ and any x, y ∈ X.

Proof. Assume that X is an inner product space and using Theorem 3 we see that

‖λx + µy‖2 + ‖µx− λy‖2 = (λ2 + µ2)(‖x‖2 + ‖y‖2),

which implies that

‖λx + µy‖2 + ‖µx− λy‖2 6 (λ2 + µ2)(‖x‖2 + ‖y‖2)

for any non-negative real numbers λ, µ and any x, y ∈ X.
Conversely, it follows from setting λ = µ = 1 that

‖x− y‖2 + ‖x + y‖2 6 2(‖x‖2 + ‖y‖2),

which together with Theorem 2 shows that X is an inner product space.

Remark 1. Based on Theorem 2, Proposition 3 also occurs for inverse inequality.

Theorem 4. Let X be a Banach space. Then LYJ(λ, µ, X) = 1 if and only if X is a Hilbert space.

Proof. Suppose LYJ(λ, µ, X) = 1, then we have

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
6 1

and hence
‖λx + µy‖2 + ‖µx− λy‖2 6 (λ2 + µ2)(‖x‖2 + ‖y‖2)

for any non-negative real numbers λ, µ and any x, y ∈ X. Thus, directly from Proposition 3,
X is a Hilbert space.

For the converse, assume that X is a Hilbert space, from Theorem 3 then we have

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
= 1

for any non-negative real numbers λ, µ and any x, y ∈ X. Then LYJ(λ, µ, X) = 1.

Let (X, ‖ · ‖) be a real or complex normed space. Suppose that the norm ‖ · ‖ is
equivalent to a norm ‖ · ‖i coming from an inner product. More precisely, for ε > 0 we have

1
1 + ε

‖x‖i 6 ‖x‖ 6 (1 + ε)‖x‖i, x ∈ X.

In article [24], the author shows that if ‖ · ‖i is an equivalent norm coming from
an inner product, then the original norm ‖ · ‖ satisfies an approximate parallelogram
law. Following this idea, we can also establish the same results, replace approximate
parallelogram law with approximate Euler-Lagrange type identity law.

Since ‖ · ‖i is an equivalent norm then

‖λx + µy‖2 + ‖µx− λy‖2 6 (1 + ε)2(‖λx + µy‖2
i + ‖µx− λy‖2

i ), x, y ∈ X
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and

1
(λ2 + µ2)(‖x‖2 + ‖y‖2)

6 (1 + ε)2 1
(λ2 + µ2)(‖x‖2

i + ‖y‖2
i )

, x, y ∈ X, (x, y) 6= (0, 0).

Moreover, the norm ‖ · ‖i satisfies the Euler-Lagrange type identity law, then we have

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
6 (1 + ε)4 ‖λx + µy‖2

i + ‖µx− λy‖2
i

(λ2 + µ2)(‖x‖2
i + ‖y‖2

i )
= (1 + ε)4

for (x, y) 6= (0, 0).
On the other hand, we can also conclude that

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
>

1
(1 + ε)4

for (x, y) 6= (0, 0). Thus we obtain

1
(1 + ε)4 6

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
6 (1 + ε)4, x, y ∈ X, (x, y) 6= (0, 0).

Taking δ := (1 + ε)4 − 1, we can write in the form

1
1 + δ

6
‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)
6 1 + δ, x, y ∈ X, (x, y) 6= (0, 0)

or, equivalently,∣∣∣∣‖λx+µy‖2 + ‖µx−λy‖2− (λ2 +µ2)(‖x‖2 + ‖y‖2)

∣∣∣∣ 6 δ(λ2 +µ2)(‖x‖2 + ‖y‖2), x, y ∈ X.

Proposition 4. If a real or complex normed space X is equivalent to an inner product space, i.e., if

1
1 + ε

‖x‖i 6 ‖x‖ 6 (1 + ε)‖x‖i, x ∈ X

holds, then the norm satisfies the approximate Euler-Lagrange type identity law with δ = (1 +
ε)4 − 1.

Proof. It can be directly concluded from the above discussion.

Theorem 5. A Banach space X with LYJ(λ, µ, X) < (3λ−µ)2+(λ+µ)2

2(λ2+µ2)
for some λ, µ > 0 is

uniformly non-square.

Proof. Without loss of generality, let λ 6 µ. Suppose X is not uniformly non-square.
∀0 < δ < λ2, ∃x, y ∈ SX , such that both ‖x + y‖ and ‖x− y‖ > 2− δ

4λ2 .
Step 1. Let t1 = µ

λ , then

‖x + t1y‖ = ‖(x + y) + (t1 − 1)y‖
> ‖x + y‖ − ‖(t1 − 1)y‖

> 2− δ

4λ2 − (t1 − 1)

= 3− t1 −
δ

4λ2 .
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So we have
‖λx + µy‖ > 3λ− µ− δ

4λ
.

Step 2. Let t2 = λ
µ , then

‖x− t2y‖ = ‖(x− y) + (1− t2)y‖
> ‖x− y‖ − ‖(1− t2)y‖

> 2− δ

4λ2 − (1− t2)

= 1 + t2 −
δ

4λ2 .

Thus
‖µx− λy‖ > λ + µ− δµ

4λ2 .

So it is easily to check

‖λx + µy‖2 + ‖µx− λy‖2 > (3λ− µ− δ

4λ
)2 + (λ + µ− δµ

4λ2 )
2.

Since δ can be arbitrarily small, then

LYJ(λ, µ, X) >
(3λ− µ)2 + (λ + µ)2

2(λ2 + µ2)
.

This completes the proof.

A Banach space X is said to be finitely representable in E provided for any λ > 1 and
each finite-dimensional subspace X1 of X, there is an isomorphism T of X1 into E for which

λ−1 6 ‖Tx‖ 6 λ‖x‖ f or all x ∈ X1.

E is said to be super-reflexive ([25]) if no non-reflexive Banach space is finitely representable
in E.

The following lemma is rather well-known, playing a key role in the geometry of
Banach Spaces, which is in the same vein as to original results in [18].

Lemma 1 ([26]). Any uniformly non-square Banach space is super-reflexive.

Corollary 1. If LYJ(λ, µ, X) < 2 then X is super-reflexive Banach space.

Proof. It follows from Theorem 5 and let λ = µ = 1, as stated.

Remark 2. Corollary 1 can also be understand in a different way. Since LYJ(λ, µ, X) < 2, then
for any x, y ∈ SX , the following inequality is true

min{‖λx + µy‖, ‖µx− λy‖} 6
(

1
2
(‖λx + µy‖2 + ‖µx− λy‖2)

) 1
2

6
(

1
2

LYJ(λ, µ, X)(λ2 + µ2)(‖x‖2 + ‖y‖2)

) 1
2

.

Thus we obtain

min
{∥∥∥∥ λ√

λ2 + µ2
x +

µ√
λ2 + µ2

y
∥∥∥∥,
∥∥∥∥ µ√

λ2 + µ2
x− λ√

λ2 + µ2
y
∥∥∥∥} 6

√
2

2
LYJ(λ, µ, X)

1
2 (‖x‖2 + ‖y‖2)

1
2

=
√

2(1− ε),
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where ε = 1−
(

LYJ(λ,µ,X)
2

) 1
2

. It follows from setting λ = µ = 1 that

min{‖x + y‖, ‖x− y‖} 6 2(1− ε),

which together with Lemma 1 shows that X is super-reflexive.

In the next portion, we will see that the constant LYJ(λ, µ, X) and the weak normal
structure has a nice relationship. Brodskii et al. [27] introduced some geometric concepts
for the first time in 1948 as:

Definition 1. Let K be a non-singleton subset of a Banach space X, if K is closed, bounded as
well as convex then X holds the normal structure, whenever r(K) < diam(K) for every K, where
r(K) and diam(K) are respectively symbolized for diameter as well as for Chebyshev radius, and
consequently defined mathematically as is

diam(K) := sup{‖x− y‖ : x, y ∈ K}

and
r(K) := inf{sup{‖x− y‖ : y ∈ K} : x ∈ K}.

The importance of normal structure has vital applications in the field of fixed point
theory with non-expansive mappings [28]. Moreover, a Banach space X is said to have
weak normal structure if for each weakly compact convex set K in X that contains more
than one point has normal structure. Furthermore, if space X is a reflexive Banach with
normal structure, then it has the property of fixed point for nonexpansive mappings.

We begin by starting a lemma which will be our main tool.

Lemma 2 ([2]). Let X be a Banach space without weak normal structure, then for any 0 < δ < 1,
there exist x1, x2, x3 in SX satisfying

(i) x2 − x3 = ax1 with |a− 1| < δ;
(ii) |‖x1 − x2‖ − 1|, |‖x3 − (−x1)‖ − 1| < δ; and
(iii) ‖ x1+x2

2 ‖, ‖ x3+(−x1)
2 ‖ > 1− δ.

The geometric significance of this lemma can be interpreted as follows: if X does
not have weak normal structure, then there exists an inscribed hexagon in SX with length
of each side arbitrarily closed to 1, and with at least four sides with an arbitrarily small
distance to SX .

Theorem 6. A Banach space X with LYJ(λ, µ, X) < (λ+µ)2+(2µ−λ)2

2(λ2+µ2)
for some λ, µ > 0 has weak

normal structure.

Proof. Suppose X does not have weak normal structure. For each δ > 0, let x1, x2 and x3
in SX satisfying the conditions in Lemma 2. Without loss of generality, let λ > µ.

Step 1. Let t = µ
λ . Then

‖x1 + tx2‖ = ‖(x1 + x2)− (1− t)x2‖
> ‖x1 + x2‖ − ‖(1− t)x2‖
> 2− 2δ− (1− t)

= 1 + t− 2δ.

We get
‖λx1 + µx2‖ = λ‖x1 + tx2‖

> λ + µ− 2δλ.
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Step 2. Let t = µ
λ . Then

‖x2 − tx1‖ = ‖x2 + tx2 − tx2 − tx1‖
= ‖x2 + t(ax1 + x3)− tx2 − tx1‖
= ‖t(x3 − x1) + (1− t)x2 + tax1‖
> (2− 2δ)t− 1 + t(1− a)

> (2− 2δ)t− δ− 1.

We get
‖µx1 − λx2‖ = λ‖x2 − tx1‖

> λ((2− 2δ)t− δ− 1).

Since δ can be arbitrarily small, we deduce that

LYJ(λ, µ, X) >
(λ + µ)2 + (2µ− λ)2

2(λ2 + µ2)
.

4. Relations with Other Geometric Constants

In article [29], the authors show the following equivalent definition of CNJ(X). Now,
we use it to get a relation between LYJ(λ, µ, X) and CNJ(X).

Definition 2 ([29]). Let X be a Banach space. Then

CNJ(X) = sup
{
‖x + y‖2 + ‖x− y‖2

4
: ‖x‖2 + ‖y‖2 = 2

}
.

Proposition 5. Let X be a Banach space. Then,

LYJ(λ, µ, X) 6
2λ2

λ2 + µ2 CNJ(X) +
2
√

2λ|λ− µ|
λ2 + µ2

√
CNJ(X) +

|λ− µ|2
λ2 + µ2 .

Proof. By use the above equivalent definition of CNJ(X) and apply Hölder inequality, we
conclude that the following estimate

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

6
(λ(‖x + y‖) + |λ− µ|‖y‖)2 + (λ(‖x− y‖) + |λ− µ|‖x‖)2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

=
λ2(‖x + y‖2 + ‖x− y‖2) + |λ− µ|2(‖x‖2 + ‖y‖2) + 2λ|λ− µ|(‖x + y‖‖y‖+ ‖x− y‖‖x‖)

(λ2 + µ2)(‖x‖2 + ‖y‖2)

6
λ2(‖x + y‖2 + ‖x− y‖2) + |λ− µ|2(‖x‖2 + ‖y‖2) + 2λ|λ− µ|

√
‖x‖2 + ‖y‖2

√
‖x + y‖2 + ‖x− y‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

6
2λ2

λ2 + µ2 CNJ(X) +
2
√

2λ|λ− µ|
λ2 + µ2

√
CNJ(X) +

|λ− µ|2
λ2 + µ2 ,

which implies that the right inequality.

Example 1. Let λ = 1, µ = 2, then

LYJ(1, 2, X) = sup
{
‖x + 2y‖2 + ‖2x− y‖2

5(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}
.
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Thus from Proposition 5 we have

LYJ(1, 2, X) 6
2
5

CNJ(X) +
2
√

2
5

√
CNJ(X) +

1
5

.

If X is not non-square, then CNJ(X) = 2 and hence LYJ(1, 2, X) 6 9
5 . Furthermore, since X

is not non-square, it follows that there exists x, y ∈ SX such that

‖x + y‖ = 2, ‖x− y‖ = 2.

This means that there exists x, y ∈ SX such that

3 > ‖x + 2y‖
= ‖2x + 2y− x‖
> 2‖x + y‖ − ‖x‖
= 3

and
3 > ‖2x− y‖
= ‖2x− 2y + y‖
> 2‖x− y‖ − ‖y‖
= 3.

So it is easily to check there exists x, y ∈ SX such that

‖x + 2y‖ = ‖2x− y‖ = 3,

which implies that

LYJ(1, 2, X) =
9
5

.

Lemma 3 ([30]). Let X be a Banach space and J(X) the James constant of X. Then

‖x + y‖2 + ‖x− y‖2 ≤ 4 + J(X)2,

for any x, y ∈ X such that ‖x‖2 + ‖y‖2 = 2.

Corollary 2. Let X be a Banach space. Then,

LYJ(λ, µ, X) 6
λ2

2λ2 + 2µ2 (4 + J(X)2) +

√
2λ|λ− µ|
λ2 + µ2

√
4 + J(X)2 +

|λ− µ|2
λ2 + µ2 .

Proof. By using the same proof as Proposition 5 and combining Lemma 3 that we can
easily get the result, so we omit the proof.

Remark 3. In article [30], the author gives a proof of CNJ(X) ≤ 1 + J(X)2

4 . From Corollary 2, we
can give a new proof by letting λ = µ = 1.

Example 2. If X is uniformly non-square, then

LYJ(λ, µ, X) <


9λ2−6λµ+µ2

λ2+µ2 if λ > µ;
(λ+µ)2

λ2+µ2 if λ < µ;
2 if λ = µ.
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From the well-known fact, if X is uniformly non-square, then J(X) < 2. By elementary
calcuation, we can easily get the thesis.

Example 3. Consider X be R2 be equipped with the norm defined by

‖(x1, x2)‖ = max
{
|x1|, |x2|,

|x1|+ |x2|√
2

}
.

It is known that J(X) =
√

2 (see [6]). Then we have

LYJ(λ, µ, X) 6


(4+2

√
3)λ2−(2

√
3+2)λµ+µ2

λ2+µ2 if λ > µ;
(4−2

√
3)λ2+(2

√
3−2)λµ+µ2

λ2+µ2 if λ < µ;
3
2 if λ = µ.

The constant CZ(X) was introduced by G. Zbăganu [31]:

CZ(X) = sup
{
‖x + y‖‖x− y‖
‖x‖2 + ‖y‖2 : x, y ∈ X, not both zero

}
.

Next, combining CNJ(X) we give a relationship to LYJ(λ, µ, X).

Proposition 6. Let X be a Banach space. Then,

LYJ(λ, µ, X) 6 CNJ(X) +
(λ + µ)|λ− µ|

λ2 + µ2 CZ(X).

Proof. Using the equality fact that

λx + µy =
(λ + µ)

2
(x + y) +

λ− µ

2
(x− y)

and

µx− λy =
(µ− λ)

2
(x + y) +

µ + λ

2
(x− y),

we obtain

‖λx + µy‖2 + ‖µx− λy‖2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

=

(∥∥∥∥ λ+µ
2 (x + y) + λ−µ

2 (x− y)
∥∥∥∥)2

+

(∥∥∥∥ µ−λ
2 (x + y) + µ+λ

2 (x− y)
∥∥∥∥2)

(λ2 + µ2)(‖x‖2 + ‖y‖2)

6

(∥∥∥∥ λ+µ
2 (x + y)

∥∥∥∥+ ∥∥∥∥ λ−µ
2 (x− y)

∥∥∥∥)2

+

(∥∥∥∥ µ−λ
2 (x + y)

∥∥∥∥+ ∥∥∥∥ µ+λ
2 (x− y)

∥∥∥∥)2

(λ2 + µ2)(‖x‖2 + ‖y‖2)

=

∥∥∥∥ (λ+µ)
2 (x + y)

∥∥∥∥2

+

∥∥∥∥ λ−µ
2 (x− y)

∥∥∥∥2

+

∥∥∥∥ µ−λ
2 (x + y)

∥∥∥∥2

+

∥∥∥∥ µ+λ
2 (x− y)

∥∥∥∥2

+ (λ + µ)|λ− µ|‖x + y‖‖x− y‖

(λ2 + µ2)(‖x‖2 + ‖y‖2)

=
1
2 (λ

2 + µ2)(‖x + y‖2 + ‖x− y‖2) + (λ + µ)|λ− µ|‖x + y‖‖x− y‖
(λ2 + µ2)(‖x‖2 + ‖y‖2)

6 CNJ(X) +
(λ + µ)|λ− µ|

λ2 + µ2 CZ(X).

This completes the proof.
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Example 4. Consider X be R2 be equipped with the norm defined by

‖(x1, x2)‖ = max
{
|x1|+ (

√
2− 1)|x2|, |x2|+ (

√
2− 1)|x1|

}
.

It is known that CNJ(X) = CZ(X) = 4− 2
√

2 (see [6]). Without loss of generality, let
λ 6= µ. Thus from Proposition 6 we have

LYJ(λ, µ, X) 6 (4− 2
√

2)
(

2 max{λ2, µ2}
λ2 + µ2

)
.

5. Conclusions

Inspired by the new characterization of inner product spaces, we introduce a geometric
constant LYJ(λ, µ, X) for a Banach space X. The results in this paper extend the existing
ones in the literature mentioned in the Introduction. It’s easy to see that von Neumann-
Jordan constant CNJ(X) is the special case where λ = µ, and what conditions λ and µ
satisfy, the particular constant that we get also becomes a powerful tool for studying Banach
Spaces? Besides the geometric constants mentioned in the paper, what other important
geometric constants are closely related to LYJ(λ, µ, X)? In the future, we will use the
proposed constant to solve problems in Banach spaces.
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