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Abstract: This paper proposes modified mean-variance risk measures for long-term investment
portfolios. Two types of portfolios are considered: constant proportion portfolios and increasing
amount portfolios. They are widely used in finance for investing assets and developing derivative
securities. We compare the long-term behavior of a conventional mean-variance risk measure and a
modified one of the two types of portfolios, and we discuss the benefits of the modified measure.
Subsequently, an optimal long-term investment strategy is derived. We show that the modified
risk measure reflects the investor’s risk aversion on the optimal long-term investment strategy;
however, the conventional one does not. Several factor models are discussed as concrete examples:
the Black–Scholes model, Kim–Omberg model, Heston model, and 3/2 stochastic volatility model.

Keywords: continuous-time factor model; modified risk measures; mean-variance analysis; long-
term investment; optimal strategy

1. Introduction

Risk measure is an important topic in modern portfolio theory. There are numerous
risk measures for portfolios, one of them being the mean-variance risk measure. A conven-
tional formulation of the mean-variance risk measure is as follows:

Rt := γ
√

var[Πt]−E[Πt], (1)

where γ > 0 is the investor’s risk aversion parameter, and Πt is the portfolio value at time
t. A conventional mean-variance risk measure has two flaws when dealing with long-term
investment portfolios. One is that the growth rate of the conventional mean-variance risk
measure depends on only either the mean or variance, and the other is that the growth
rate does not depend on parameter γ. Therefore, we propose a modified risk measure to
overcome these flaws and discuss its benefits in comparison with the conventional measure.

Two types of portfolios are considered in this study: a constant proportion portfolio
(CPP) and an increasing amount portfolio (IAP). A CPP is a portfolio in which the ratio
of investments in safe assets and risky assets is fixed. The CPP is worthwhile to study
because they are widely used in finance. Many financial institutions and companies use
this type of strategy for investing assets and developing derivative securities. A Leveraged
Exchange Traded Fund (LETF) is a typical example of commercialized products based
on the CPP strategy. Indeed, a LETF is mathematically same with the CPP because their
portfolio structures are identical. It is natural to ask the following questions.

• What kind of risk measures should we use for long-term investment in CPPs?
• Given a risk measure, what is the optimal strategy for long-term investment in CPPs?

This paper answers these questions.
A similar work is conducted for IAPs. An IAP is a portfolio in which the amount

invested in the risky assets increases over time, and the increasing rate is equal to the short
rate. This type of portfolio might be less interesting than the CPPs; however, it is still useful
for investors with a restrictive short position amount. In financial markets, the amount
in the short position in the risky asset is occasionally restricted. When this amount is a
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constant multiplied by the money market account, the risk measure for the IAPs becomes
practically useful.

This paper mainly discusses modified risk measures for long-term CPPs and IAPs.
A conventional risk measure isRt, given in Equation (1) for the portfolio value Πt at time
t ≥ 0. In fact, −Rt is a more conventional form than Rt (for example, the Markowitz
portfolio theory); however,Rt is considered in this study for computational convenience.
As modified risk measures, we propose

Λt :=
(var[Πt])γ/2

E[Πt]

and
∆t = γVar[Πt/ert]−E[Πt/ert]

for CPPs and IAPs, respectively, where γ > 0 is the investor’s risk aversion parameter, and
r ≥ 0 is the short rate. For long-term investments, we focus on the large-time behavior of
these risk measures. More precisely, for CPPs, we compute

lim
t→∞

1
t

lnRt and lim
t→∞

1
t

ln Λt

and compare these two values. These limits give the growth rates of the conventional and
modified risk measures as t→ ∞. Similarly, for IAPs, two limit values

lim
t→∞

Rt

tert and lim
t→∞

∆t

t

are compared.
The conventional risk measure has two flaws when working with long-term portfolios.

The growth rate of the conventional risk measure depends on only either the mean or variance.
It depends on only the variance for CPPs and only on the mean for IAPs. In other words,
the conventional risk measure cannot offer a balance between the mean and variance of
long-term portfolios. On the contrary, the growth rate of the modified risk measure reflects
both the mean and variance. Another limitation is that the growth rate of the conventional risk
measure does not depend on parameter γ. Thus, the conventional risk of long-term portfolios
cannot reflect the investor’s risk aversion. We show that the modified risk measure can reflect
the investor’s risk aversion. More details are discussed in Sections 3 and 4.

Optimal investment strategies are also investigated. Investors construct portfolios of
financial assets depending on their levels of acceptable risk. In the mean-variance analysis,
the return and risk of a portfolio are expressed as the mean and variance, respectively.
We aim to identify a portfolio that minimizes the growth rate of the mean-variance risk
measures. More precisely, we will calculate a constant proportion for CPPs and a constant
amount for IAPs, to minimize the growth rate of the modified risk measure. Several factor
models are analyzed as concrete examples: the Black–Scholes model, Kim–Omberg model,
Heston model, and 3/2 stochastic volatility model.

As closely related topics, many authors have studied long-term CPPs. Leung and
Park [1] investigated the long-term growth rate of expected utility from holding a CPP. For a
given value process (Πt)t≥0 of CPP and a power utility function of the form U(x) = xp, 0 <
p < 1, the limit value

lim
t→∞

1
t

lnE[U(Πt)]

was computed for several Markovian market models. In addition, a constant ratio that
maximized the long-term growth rate was determined. Yao [2] analyzed the deviation
probability estimate for a CPP. The logarithmic limit of the tail probability was computed
using the large deviation principle. Moreover, the author presented optimal constant ratios
for long-term CPPs. Zhu [3] investigated optimal strategies for a long-term static investor.
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The author derived the optimal allocation of capital to maximize the long-term growth rate
of the expected utility of wealth. Three models for the underlying stock price processes
were covered: the Heston model, 3/2 model, and jump diffusion model.

Various studies have proposed better risk measures. Chen et al. [4] derived a class of
time-consistent multi-period risk measures under regime switching. They analyzed a multi-
stage portfolio selection model by using the time-consistent multi-period risk measure.
Emmer et al. [5] considered three risk measures: VaR, ES, and expectiles. They checked
whether these measures satisfied properties such as coherence, comonotonic additivity,
robustness, and elicitability. They concluded that the ES can be considered a good risk
measure, and there is no sufficient evidence to justify an all-inclusive replacement of ES by
expectiles in applications. Rachev et al. [6] investigated the properties that a risk measure
should satisfy to characterize the investor’s risk preferences. They analyzed the relationship
between distributional modeling and risk measures and described desirable features of an
ideal risk measure for a portfolio selection problem. Ruttiens [7] proposed the “accrued re-
turns variability,” which was measured from the actual dispersion of successive cumulated
returns relative to the corresponding successive cumulated returns produced by an accrued
performance of null volatility. This risk measure outperformed the traditional risk measure,
which was computed from the standard deviation of a series of past returns. Zakamouline
and Koekebakker [8] presented a risk measure that takes into account higher moments of
distribution. This measure is motivated by the investor’s preferences represented by utility
functions. They introduced the notion of relative preferences over absolute preferences and
explained the several advantages.

The remainder of this paper is structured as follows. Section 2 describes the underlying
market model considered in this study. Section 3 presents a modified risk measure for
CPPs and investigates an optimal constant proportion for long-term investments. Several
specific market models such as the Black–Scholes model, Kim–Omberg model, Heston
model, and 3/2 stochastic volatility model are analyzed. A similar work is conducted in
Section 4 for IAPs. Section 5 summarizes the paper. Technical details are presented in
the Appendices A–C.

2. Factor Models

The underlying market model considered in this study is a factor model, which
is defined as follows. A state process (Xt)t≥0 is a solution of the stochastic differential
equation (SDE)

dXt = k(Xt) dt + a(Xt) dWt

for continuous functions k, σ : R→ R. Assume that this SDE has a unique strong solution.
A money market account G and a risky asset S are modeled as

Gt = e
∫ t

0 r(Xs) ds , t ≥ 0

and
St = S0e

∫ t
0 (r(Xs)+µ(Xs)− 1

2 σ2(Xs)) ds+
∫ t

0 σ(Xs) dBs , t ≥ 0

for S0 > 0 and continuous functions r, µ, σ : R→ R. Here, the short rate is (r(Xt))t≥0, and
(Wt, Bt)t≥0 is a correlated Brownian motion with correlation −1 ≤ ρ ≤ 1. In the SDE form,

dGt/Gt = r(Xt) dt , G0 = 1 ,

dSt/St = (r(Xt) + µ(Xt)) dt + σ(Xt) dBt , S0 > 0 .
(2)

This type of factor models covers a broad range of market models used in finance. Two
kinds of portfolios are studied under this factor model: CPP (Section 3) and IAP (Section 4).
Details are examined in the following sections.
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3. Constant Proportion Portfolio

This section proposes a modified risk measure for CPPs and finds an optimal constant
ratio for long-term investments. First, we explain the concept of CPPs with its mathematical
formulation under the factor model. Second, both the conventional and modified mean-
variance risk measures are introduced. We also discuss why the modified method is better
than the conventional one. Finally, the analytic expressions of the two risk measures are
computed, and an optimal constant ratio is provided for several market models: Black–
Scholes model, Kim–Omberg model, Heston model, and 3/2 stochastic volatility model.

A CPP is a portfolio in which the ratio of investments in the money market account and
a risky asset is fixed. We denote the ratio invested in the risky asset as α ∈ R. The wealth
process (Πt)t≥0 of the CPP with ratio α is constructed as follows: At any time t ≥ 0, the
cash amount of αΠt (α times the CPP value) is invested in the risky asset and the amount
(1− α)Πt is invested at the risk-free rate. In the factor model, with the notations described
in Section 2, the wealth process (Πt)t≥0 with ratio α is described as

dΠt/Πt = (r(Xt) + αµ(Xt)) dt + ασ(Xt) dBt .

This implies the following:

Πt = Π0e
∫ t

0 (r(Xs)+αµ(Xs)− 1
2 α2σ2(Xs)) ds+

∫ t
0 ασ(Xs) dBs , t ≥ 0 .

We always assume that the initial wealth is positive, in other words, Π0 > 0, and this
implies that Πt > 0 for t ≥ 0 almost surely. If α > 0 (respectively, α < 0), then the CPP
takes a long position (respectively, a short position) in the risky asset, and if α = 0, then
the investment is only done in the money market account. Only the case with α > 0 is
analyzed in this study. This is because the case with α < 0 can be analyzed by analogy, and
the case with α = 0 is trivial.

A conventional mean-variance risk measure is

Rt := γ
√

var[Πt]−E[Πt]

for risk-averse parameter γ > 0. We compute the limit value

lim
t→∞

1
t

lnRt

if it exists and find α that minimizes this limit value. This minimizing value α gives
the lowest growth rate of Rt as t → ∞, and this gives the optimal constant ratio for
long-term investments.

This limit value can be calculated in a simpler way. We define

R̂t := γ
√
E[Π2

t ] .

If

lim
t→∞

E[Πt]√
E[Π2

t ]
= 0 (3)

then
lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln R̂t . (4)

It can be verified that Equation (3) holds for all factor models below. Because the right-
hand side of Equation (4) is simpler to compute than the left-hand side, R̂t is considered
instead ofRt in the following sections.

The conventional mean-variance risk measure has two flaws when dealing with long-
term investments. The principle of the mean-variance risk measure is to let an investor
choose a balance between maximizing the mean and minimizing the variance based on the
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investor’s risk aversion. However, as Equation (4) indicates, the long-term behavior of the
conventional risk measure is only determined by the variance and is therefore unaffected
by the mean value. Thus, the long-term limit of the conventional risk measure does not
reflect the underlying principle of the mean-variance risk measure.

Another flaw is that the growth rate of the conventional risk measure cannot capture
the investor’s risk aversion. From Equation (4), it is clear that

lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln
√
E[Π2

t ] .

This implies that the limit value is independent of the risk aversion parameter γ.
Therefore, the conventional risk measure cannot reflect the investor’s risk aversion for
long-term investment portfolios.

We now propose a modified mean-variance risk measure. Define

Λt :=
(var[Πt])γ/2

E[Πt]
, γ > 0 ,

which concerns the fraction between the variance powered by γ/2 and the mean. For long-
term investments, we calculate

lim
t→∞

1
t

ln Λt .

The limit value of this modified risk measure overcomes the two flaws of the conven-
tional one. This limit value can be calculated in a simpler way as follows. We define

Λ̂t :=
(E[Π2

t ])
γ/2

E[Πt]
.

If (3) holds, then

lim
t→∞

1
t

ln Λt = lim
t→∞

1
t

ln Λ̂t . (5)

Because the right-hand side is simpler to compute, we consider Λ̂t instead of Λt in
the following sections.

3.1. Black–Scholes Model

As a warm-up, we consider the CPP for the Black–Scholes model:

dSt/St = (r + µ) dt + σ dBt (6)

with r, µ ∈ R and σ > 0. The value of the CPP with ratio α is

Πt = Π0e(r+αµ− 1
2 α2σ2)t+ασBt , t ≥ 0 .

Proposition 1. Under the Black–Scholes model, for the CPP with ratio α > 0, we have

lim
t→∞

1
t

lnRt = r + αµ +
1
2

α2σ2 .

Proof. By direct calculation,
E[Πt] = Π0e(r+αµ)t

and
E[Π2

t ] = Π2
0e(2r+2αµ+α2σ2)t .

It is clear that Equation (3) is satisfied. Then,

R̂t = γ
√
E[Π2

t ] = γΠ0e(r+αµ+ 1
2 α2σ2)t, (7)
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and it follows that

lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln R̂t = r + αµ +
1
2

α2σ2 .

This gives the desired result.

Proposition 2. Under the Black–Scholes model, for the CPP with ratio α > 0, we have

lim
t→∞

1
t

ln Λt = (γ− 1)r + (γ− 1)αµ +
1
2

γα2σ2 .

Proof. From the proof of Proposition 1, we know

Λ̂t =
(E[Π2

t ])
γ/2

E[Πt]
= Πγ−1

0 e((γ−1)r+(γ−1)αµ+ 1
2 γα2σ2)t . (8)

Thus,

lim
t→∞

1
t

ln Λt = lim
t→∞

1
t

ln Λ̂t = (γ− 1)r + (γ− 1)αµ +
1
2

γα2σ2 . (9)

This completes the proof.

We find an optimal ratio α∗ that minimizes the growth rate of Λt as t→ ∞. Assume
that ratio α is allowed in a compact interval [L, R] for 0 < L < R. As a mapping of α,
the function

Λ(α) := lim
t→∞

1
t

ln Λt = (γ− 1)r + (γ− 1)αµ +
1
2

γα2σ2

is continuous on the compact interval [L, R]. Thus, the function achieves its minimum
value. Because Λ is a quadratic function of α, and α = (1−γ)µ

γσ2 is a critical point, we obtain
the following cases.

(i) If L ≤ (1−γ)µ
γσ2 ≤ R, then the optimal ratio is α∗ = (1−γ)µ

γσ2 and

Λ(α∗) = − (γ− 1)2µ2

2γσ2 .

(ii) If (1−γ)µ
γσ2 < L, then the optimal ratio is α∗ = L and

Λ(α∗) = (γ− 1)r + (γ− 1)µL +
1
2

γσ2L2 .

(iii) If (1−γ)µ
γσ2 > R, then the optimal ratio is α∗ = R and

Λ(α∗) = (γ− 1)r + (γ− 1)µR +
1
2

γσ2R2 .

Let us compare two risk measuresRt and Λt. We can also find an optimal ratio α∗ that
minimizes the growth rate of Rt as t → ∞ using Proposition 1. Because limt→∞

1
t lnRt

is independent of γ, the optimal α∗ is also independent of the investor’s risk aversion.
The computation is similar to the one above; thus, we omit it. In this sense, the modified
risk measure is better for long-term portfolios. It gives the optimal ratio α∗ depending on
the risk-averse parameter γ, but the conventional risk measure does not.
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3.2. Kim–Omberg Model

We consider CPPs under the Kim–Omberg model [9]. Assume that the state process
X satisfies

dXt = (θ − kXt) dt + a dWt , X0 ∈ R

for k, a > 0 and θ ∈ R. This SDE has an explicit solution:

Xt = X0e−kt +
θ

k
(1− e−kt) + ae−kt

∫ t

0
eks dWs , t ≥ 0 . (10)

The short rate is a constant r ∈ R, and the risky asset is

dSt/St = (r + µXt) dt + σ dBt

for µ ∈ R and σ > 0. This implies that the state process X is the risk premium divided by
µ. The wealth process of the CPP with ratio α is

Πt = Π0e(r−
1
2 α2σ2)t+αµ

∫ t
0 Xs ds+ασBt , t ≥ 0 .

Proposition 3. Under the Kim–Omberg model, we define

C1 =
a2µ2

k2 −
2ρaσµ

k
+

σ2

2
, C2 =

θµ

2k
, C3 = r .

Then, for the CPP with ratio α > 0,

lim
t→∞

1
t

lnRt = C1α2 − 2C2α + C3 .

Proof. We define a measure P̃ on Ft as

dP̃
dP = e−

1
2 α2σ2t+ασBt .

Then, (W̃s, B̃s)0≤s≤t = (Ws − αρσs, Bs − ασs)0≤s≤t is a Brownian motion with correla-
tion ρ under measure P̃.

The state process satisfies

dXs = (θ + αρaσ− kXs) ds + a dW̃s , 0 ≤ s ≤ t .

Observe that
EP[Πt] = Π0ertEP[eαµ

∫ t
0 Xs ds− 1

2 α2σ2t+ασBt ]

= Π0ertEP̃[eαµ
∫ t

0 Xs ds]

= Π0e(r+
α2a2µ2

2k2 − (θ+αρaσ)αµ
k )t f1(t)

(11)

where f1(t) converges to a positive constant as t→ ∞. For the last equality, we have used
Lemma A1. By a similar computation, we obtain

EP[Π2
t ] = Π2

0e(2r+ 2α2a2µ2

k2 − 2(θ+2αρaσ)αµ
k +α2σ2)t f2(t), (12)

where f2(t) converges to a positive constant as t → ∞. It is clear that Equation (3) is
satisfied. Then,

R̂t = γ
√
E[Π2

t ] = γΠ0e(r+
α2a2µ2

k2 − (θ+2αρaσ)αµ
k + α2σ2

2 )t
√

f2(t) . (13)
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It follows that

lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln R̂t = r +
α2a2µ2

k2 − (θ + 2αρaσ)αµ

k
+

α2σ2

2
= C1α2 − 2C2α + C3 .

This gives the desired result.

Proposition 4. Under the Kim–Omberg model, we define

C1 =
(γ− 1

2 )a2µ2

k2 − (2γ− 1)ρaσµ

k
+

γσ2

2
, C2 =

(γ− 1)θµ

2k
, C3 = γ(r− 1) .

Then, for the CPP with ratio α > 0,

lim
t→∞

1
t

ln Λt = C1α2 − 2C2α + C3 .

Proof. From the proof of Proposition 3, we obtain

Λ̂t =
(E[Π2

t ])
γ/2

E[Πt]
= Πγ−1

0 e(γ(r−1)+
(γ− 1

2 )α
2a2µ2

k2 − (γ−1)θαµ+(2γ−1)α2ρaσµ
k + γα2σ2

2 )t f
γ
2

2 (t)
f1(t)

. (14)

It follows that

lim
t→∞

1
t

ln Λt = lim
t→∞

1
t

ln Λ̂t

= γ(r− 1) +
(γ− 1

2 )α
2a2µ2

k2 − (γ− 1)θαµ + (2γ− 1)α2ρaσµ

k
+

γα2σ2

2
= C1α2 − 2C2α + C3 .

(15)

This completes the proof.

We find an optimal ratio α∗ that minimizes the growth rate of Λt as t→ ∞. Assume
that ratio α is allowed in a compact interval [L, R] for 0 < L < R. As a mapping of α,
the function

Λ(α) := lim
t→∞

1
t

ln Λt = C1α2 − 2C2α + C3

is continuous on the compact interval [L, R]. Thus, the function achieves its minimum value.

(i) If C1 > 0, then Λ is a convex quadratic function in α, and α = C2
C1

is a critical point.

If L ≤ C2
C1
≤ R, then the optimal ratio is α∗ = C2

C1
, and Λ(α∗) = −C2

2
C1

+ C3. If C2
C1

< L,

then the optimal ratio is α∗ = L, and Λ(α∗) = C1L2 − 2C2L + C3. If C2
C1

> R, then the
optimal ratio is α∗ = R, and Λ(α∗) = C1R2 − 2C2R + C3.

(ii) If C1 < 0, then Λ is a concave quadratic function of α, and α = C2
C1

is a critical point.

If C2
C1

< 1
2 (L + R), then the optimal ratio is α∗ = R. If C2

C1
> 1

2 (L + R), then the optimal

ratio is α∗ = L. If C2
C1

= 1
2 (L + R) then both α∗ = R and α∗ = L are optimal.

(iii) If C1 = 0, C2 > 0, then the optimal ratio is α∗ = R, and Λ(α∗) = −2C2R + C3.
If C1 = 0, C2 < 0, then the optimal ratio is α∗ = L, and Λ(α∗) = −2C2L + C3.
If C1 = 0, C2 = 0, then Λ(α) = C3 for all α.

We can also find an optimal ratio α∗ that minimizes the growth rate ofRt as t→ ∞.
Because the computation is similar to the one above, we omit it. We can observe that the
modified risk measure gives the optimal ratio α∗ depending on the risk-averse parameter
γ, but the conventional one does not.
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3.3. Heston Model

We consider CPPs under the Heston model [10]. Assume that the state process X satisfies

dXt = (θ − kXt) dt + a
√

Xt dWt , X0 > 0

for k, a > 0 and θ ≥ a2/2. The short rate is a constant r ∈ R, and the risky asset is

dSt/St = (r + µ) dt + σX1/2
t dBt

for µ ∈ R and σ > 0. This implies that the state process X is the squared volatility divided
by σ2. We assume that ratio α is allowed between L and R for 0 < L < R. The wealth
process of the CPP with ratio

α ∈ [L, R] (16)

is
Πt = Π0e(r+αµ)t− 1

2 α2σ2 ∫ t
0 Xs ds+ασ

∫ t
0
√

Xs dBs , t ≥ 0 .

We assume that
k ≥ (2|ρ|+

√
2)aσR . (17)

Proposition 5. Under the Heston model, we define

C1 = µ− ρθσ

a
, C2 = r +

θk
2a2 , C3 =

θ2σ2

2a2 (2ρ2 − 1), C4 =
ρkθ2σ

2a3 , C5 =
θ2k2

4a4 . (18)

Then, for the CPP with ratio α ∈ [L, R],

lim
t→∞

1
t

lnRt = C1α + C2 −
√

C3α2 − 2C4α + C5 .

Proof. It is clear that EP[Πt] = Π0e(r+αµ)t. We estimate EP[Π2
t ] using a method similar to

that presented in the proof of Proposition 3. Let us define a measure P̃ on Ft as

dP̃
dP = e−2α2σ2 ∫ t

0 Xs ds+2ασ
∫ t

0
√

Xs ds .

Then, (W̃s, B̃s)0≤s≤t = (Ws − 2αρσ
∫ s

0
√

Xu du, Bs − 2ασ
∫ s

0
√

Xu du)0≤s≤t is a Brown-
ian motion with correlation ρ under measure P̃. The state process satisfies

dXs = (θ − `Xs) ds + a
√

Xs dW̃s , 0 ≤ s ≤ t,

where ` := k− 2αρaσ > 0. Subsequently, we define

η :=
`

a2 −
√

`2

a4 −
2α2σ2

a2 .

Observe that the inside of the square root is non-negative and `, η > 0 by Equation (17).
It follows that

EP[Π2
t ] = Π2

0e2(r+αµ)tEP[e−α2σ2 ∫ t
0 Xs ds+2ασ

∫ t
0
√

Xs dBs ]

= Π2
0e2(r+αµ)tEP̃[eα2σ2 ∫ t

0 Xs ds]

= Π2
0e(2r+2αµ+θη)t f (t),

(19)

where f (t) converges to a positive constant as t→ ∞. For the last equality, we have used
Lemma A2. It is clear that Equation (3) is satisfied. Then,

R̂t = γ
√
E[Π2

t ] = γΠ0e(r+αµ+
θη
2 )t
√

f (t) . (20)
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It follows that

lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln R̂t = r + αµ +
θη

2
= C1α + C2 −

√
C3α2 − 2C4α + C5 .

This gives the desired result.

Proposition 6. Under the Heston model, we define

C1 = (γ− 1)µ− γρθσ

a
, C2 = (γ− 1)r +

γθk
2a2 ,

C3 =
γ2θ2σ2

2a2 (2ρ2 − 1), C4 =
γ2ρkθ2σ

2a3 , C5 =
γ2θ2k2

4a4 .
(21)

Then, for the CPP with ratio α ∈ [L, R],

lim
t→∞

1
t

ln Λt = C1α + C2 −
√

C3α2 − 2C4α + C5 .

Proof. From the proof of Proposition 5, we obtain

Λ̂t =
(E[Π2

t ])
γ/2

E[Πt]
= Πγ−1

0 e((γ−1)r+(γ−1)αµ+ 1
2 γθη)t f

γ
2 (t) . (22)

Thus,

lim
t→∞

1
t

ln Λt = lim
t→∞

1
t

ln Λ̂t = (γ− 1)r + (γ− 1)αµ +
1
2

γθη

= C1α + C2 −
√

C3α2 − 2C4α + C5 .
(23)

This completes the proof.

We now consider an optimal ratio α∗ for the long-term CPPs. To emphasize the
dependence of the long-term limit on α, we define

Λ(α) = lim
t→∞

1
t

ln Λt = C1α + C2 −
√

C3α2 − 2C4α + C5 . (24)

By direct calculation,

Λ′(α) = C1 −
C3α− C4√

C3α2 − 2C4α + C5
, Λ′′(α) =

C2
4 − C3C5

(C3α2 − 2C4α + C5)3/2 .

(i) If C2
4 − C3C5 > 0 and C3 < C2

1 , then function Λ is strictly convex, and Λ′(α) = 0 has
a unique solution

α = −C4

C3
+
|C1|
C3

√
C3C5 − C2

4
C3 − C2

1
.

If α lies in [L, R], then α∗ = α is the optimal ratio. If α > R, then α∗ = R is optimal,
and if α < L, then α∗ = L is optimal.

(ii) If C2
4 − C3C5 > 0 and C3 ≥ C2

1 , then function Λ is strictly convex, and Λ′(α) = 0 has
no solutions. Furthermore, if C1 > 0, Λ(α) is an increasing function; thus, the optimal
ratio is α∗ = L. If C1 ≤ 0, Λ(α) is a decreasing function; thus, the optimal ratio is
α∗ = R.

(iii) If C2
4 − C3C5 < 0 and C3 > C2

1 , function Λ is strictly concave, and Λ′(α) = 0 has a
unique solution α defined above. If α lies in [L, R] and Λ(L) ≥ Λ(R), then α∗ = R is
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optimal, and if α lies in [L, R] and Λ(L) ≤ Λ(R), then α∗ = L is optimal. If α > R,
then α∗ = L is optimal, and if α < L, then α∗ = R is optimal.

(iv) If C2
4 − C3C5 < 0 and C3 ≤ C2

1 , then function Λ is strictly concave, and Λ′(α) = 0 has
no solutions. Furthermore, if C1 > 0, Λ(α) is an increasing function; thus, the optimal
ratio is α∗ = L. If C1 < 0, Λ(α) is a decreasing function; thus, the optimal ratio is
α∗ = R.

(v) If C2
4 − C3C5 = 0, then C3 ≥ 0 (because C3 = C2

4/C5 and C5 > 0), and the function Λ
is equal to

Λ(α) = C1α + C2 −
√

C3

∣∣∣∣α− C4

C3

∣∣∣∣ .

If C1 −
√

C3 ≥ 0, then Λ is monotonically increasing; thus, α∗ = L is optimal. If C1 −√
C3 < 0 and C1 +

√
C3 ≤ 0, then Λ is monotone decreasing; thus, α∗ = R is optimal.

If C1 −
√

C3 < 0, C1 +
√

C3 > 0 and C4/C3 ≥ (L + R)/2, then α∗ = L is optimal.
If C1 −

√
C3 < 0, C1 +

√
C3 > 0 and C4/C3 ≤ (L + R)/2, then α∗ = R is optimal.

3.4. 3/2 Stochastic Volatility Model

We consider CPPs under the 3/2 stochastic volatility model [11]. Assume that the
state process X satisfies

dXt = (θ − kXt)Xt dt + aX3/2
t dWt , X0 > 0

for θ, k, a > 0. The short rate is a constant r ∈ R, and the risky asset is

dSt/St = (r + µ) dt + σX1/2
t dBt

for µ ∈ R and σ > 0. This implies that the state process X is the squared volatility divided
by σ2. We assume that ratio α is allowed between L and R for 0 < L < R. The wealth
process of the CPP with ratio

α ∈ [L, R] (25)

is
Πt = Π0e(r+αµ)t− 1

2 α2σ2 ∫ t
0 Xs ds+ασ

∫ t
0
√

Xs dBs , t ≥ 0.

Assume that

k ≥ a2

2
+ (2|ρ|+

√
2)aσR . (26)

Proposition 7. Under the 3/2 stochastic volatility model, we define

C1 = µ− ρθσ

a
, C2 = r +

θ

2

( k
a2 +

1
2

)
,

C3 =
θ2σ2

2a2 (2ρ2 − 1), C4 =
ρθ2σ

4

(2k
a3 +

1
a

)
, C5 =

θ2

4

( k
a2 +

1
2

)2
.

(27)

Then, for the CPP with ratio α ∈ [L, R],

lim
t→∞

1
t

lnRt = C1α + C2 −
√

C3α2 − 2C4α + C5 .

Proof. It is clear that EP[Πt] = Π0e(r+αµ)t. We estimate EP[Π2
t ] by analogy with the proof

of Proposition 3. Let us define a measure P̃ on Ft as

dP̃
dP = e−2α2σ2 ∫ t

0 Xs ds+2ασ
∫ t

0
√

Xs ds.



Mathematics 2021, 9, 111 12 of 23

Then, (W̃s, B̃s)0≤s≤t = (Ws − 2αρσ
∫ s

0
√

Xu du, Bs − 2ασ
∫ s

0
√

Xu du)0≤s≤t is a Brown-
ian motion with correlation ρ under measure P̃. The state process satisfies

dXs = (θ − `Xs)Xs ds + aX3/2
s dW̃s , 0 ≤ s ≤ t,

where ` := k− 2αρaσ. Furthermore, we define

η :=
`

a2 +
1
2
−
√( `

a2 +
1
2

)2
− 2α2σ2

a2 .

Observe that the inside of the square root is non-negative and `, η > 0 by Equation (26).
It follows that

EP[Π2
t ] = Π2

0e2(r+αµ)tEP[e−α2σ2 ∫ t
0 Xs ds+2ασ

∫ t
0
√

Xs dBs ]

= Π2
0e2(r+αµ)tEP̃[eα2σ2 ∫ t

0 Xs ds]

= Π2
0e(2r+2αµ+θη)t f (t),

(28)

where f (t) converges to a positive constant as t→ ∞. For the last equality, we have used
Lemma A3. It is clear that Equation (3) is satisfied. Then,

R̂t = γ
√
E[Π2

t ] = γΠ0e(r+αµ+
θη
2 )t
√

f (t) . (29)

It follows that

lim
t→∞

1
t

lnRt = lim
t→∞

1
t

ln R̂t = r + αµ +
θη

2
= C1α + C2 −

√
C3α2 − 2C4α + C5 .

This gives the desired result.

Proposition 8. Under the 3/2 stochastic volatility model, we define

C1 = (γ− 1)µ− γρθσ

a
, C2 = (γ− 1)r +

γθ

2

( k
a2 +

1
2

)
,

C3 =
γ2θ2σ2

2a2 (2ρ2 − 1), C4 =
γ2θ2ρσ

4

(2k
a3 +

1
a

)
, C5 =

γ2θ2

4

( k
a2 +

1
2

)2
.

(30)

Then, for the CPP with ratio α ∈ [L, R],

lim
t→∞

1
t

ln Λt = C1α + C2 −
√

C3α2 − 2C4α + C5 .

Proof. From the proof of Proposition 7, we obtain

Λ̂t =
(E[Π2

t ])
γ/2

E[Πt]
= Πγ−1

0 e((γ−1)r+(γ−1)αµ+ 1
2 γθη)t f

γ
2 (t) . (31)

Thus,

lim
t→∞

1
t

ln Λt = lim
t→∞

1
t

ln Λ̂t = (γ− 1)r + (γ− 1)αµ +
1
2

γθη

= C1α + C2 −
√

C3α2 − 2C4α + C5 .
(32)

This completes the proof.

The optimal ratio α∗ for the long-term CPPs can be computed in the same way as the
analysis of Equation (24). Thus, we omit the details here.
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4. Increasing Amount Portfolio

We consider an increasing amount portfolio (IAP) in which the amount invested in the
risky asset is increasing with time. More precisely, the amount at time t is αert for a constant
α ∈ R, where r ≥ 0 is the constant short rate. When α < 0, the amount is decreasing;
however, we simply say that this portfolio is an IAP for all α ∈ R for convenience. The value
of the IAP is

dΠt = (rΠt + αµ(Xt)ert) dt + ασ(Xt)ert dBt ,

and this gives

Πt = Π0ert + αert
∫ t

0
µ(Xs) ds + αert

∫ t

0
σ(Xs) dBs , t ≥ 0 . (33)

This section proposes a modified mean-variance risk measure for IAPs and investigates
an optimal amount for long-term investments.

We propose a modified mean-variance risk measure:

∆t = γVar[Πt/ert]−E[Πt/ert] .

As is well known, Πt/ert is the discounted portfolio value at time t. For long-term
investments, we focus on large-time behaviors ofRt and ∆t. Specifically, two limit values

lim
t→∞

Rt

tert and lim
t→∞

∆t

t

are computed for several factor models.
The conventional mean-variance risk measureRt has two flaws when working with

long-term IAPs. We will see that

E[Πt] ' tert and
√

var[Πt] '
√

tert .

Here, for two functions f and g, the notation f (t) ' g(t) means that limt→∞
f (t)
g(t) exists

and is finite. It follows that

lim
t→∞

Rt

tert = − lim
t→∞

E[Πt]

tert . (34)

Hence, the growth rate of the conventional risk measure is only determined by the
mean and cannot capture the variance. On the contrary, the growth rate of the modified
risk measure reflects both the mean and variance.

Another flaw is that the growth rate of the conventional risk measure cannot cap-
ture the investor’s risk aversion. This flaw is common for both CPPs and IAPs. From
Equation (34), it is clear that limt→∞

Rt
tert is independent of parameter γ. On the contrary,

we will see that the growth rate of the modified risk measure depends on parameter γ.
This implies that the modified risk measure captures the risk aversion parameter better
than the conventional risk measure for long-term IAPs.

4.1. Black–Scholes Model

First, we consider the Black–Scholes model presented in Equation (6). The value of
the increasing amount portfolio with α ∈ R is

Πt = Π0ert + αµtert + ασertBt , t ≥ 0,

by Equation (33).

Proposition 9. Under the Black–Scholes model, for the IAP with α ∈ R, we have

lim
t→∞

Rt

tert = −αµ , lim
t→∞

∆t

t
= γα2σ2 − αµ .
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Proof. By direct calculation,
E[Πt] = Π0ert + αµtert

and
Var[Πt] = α2σ2te2rt .

Thus,

Rt = γ
√

Var[Πt]−E[Πt] = γ|α|σ
√

tert − (Π0ert + αµtert)

and
∆t = γVar[Πt/ert]−E[Πt/ert] = γα2σ2t− (Π0 + αµt) .

This gives us the desired result.

Let us consider the optimal amount α∗ for long-term IAPs. To emphasize the depen-
dence of the growth rate on α, we define

∆(α) = lim
t→∞

∆t

t
= C1α2 − 2C2α, (35)

where
C1 = γσ2 , C2 =

µ

2
.

Because ∆ is a quadratic function of α and ∆′′ = 2C1 > 0, the function ∆ achieves its

minimum at α∗ = C2
C1

, and the minimum value is ∆(α∗) = −C2
2

C1
.

4.2. Kim–Omberg Model

We recall the Kim–Omberg model presented in Section 3.2. The IAP value is

Πt = Π0ert + αµert
∫ t

0
Xs ds + ασertBt , t ≥ 0,

by Equation (33).

Proposition 10. Under the Kim–Omberg model, for the IAP with α ∈ R, we have

lim
t→∞

Rt

tert = −αµθ

k
, lim

t→∞

∆t

t
= γα2

(µ2a2

k2 +
2ρµaσ

k
+ σ2

)
− αµθ

k
.

Proof. We compute E[Πt] and Var[Πt]. From Equation (10),

E[Xs] = X0e−kt +
θ

k
(1− e−kt) ,

and this gives

E[Πt] = Π0ert + αµert
∫ t

0
E[Xs] ds = Π0ert +

αµ

k
ert
(

X0(1− e−kt) + θ
(

t− 1
k
(1− e−kt)

))
. (36)

We define Yt = Xt −E[Xt] = ae−kt ∫ t
0 eks dWs. Then,

Var[Πt] = α2e2rtVar
[
µ
∫ t

0
Xs ds + σBt

]
= α2e2rtE

[(
µ
∫ t

0
Ys ds + σBt

)2]
= α2e2rt

(
µ2E

[( ∫ t

0
Ys ds

)2]
+ 2µσE

[
Bt

∫ t

0
Ys ds

]
+ σ2E[B2

t ]
)

.
(37)

We calculate the two expectations

E
[( ∫ t

0
Ys ds

)2]
and E

[
Bt

∫ t

0
Ys ds

]
.
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For 0 ≤ s ≤ u,

E[YsYu] = a2e−k(s+u)E
[ ∫ s

0
ekv dWv

∫ u

0
ekv dWv

]
= a2e−k(s+u)

∫ s

0
e2kv dv

=
a2

2k
(e−k(u−s) − e−k(u+s)) .

(38)

Then,

E
[( ∫ t

0
Ys ds

)2]
= E

[ ∫ t

0

∫ t

0
YsYu ds du

]
= 2

∫ t

0

∫ u

0
E[YsYu] ds du

=
a2

k

∫ t

0

∫ u

0
(e−k(u−s) − e−k(u+s)) ds du

=
a2

k2

(
t− 2

k
(1− e−kt) +

1
2k

(1− e−2kt)
)

.

(39)

Given that (W, B) is a correlated Brownian motion with correlation ρ, we know that

E[BsXs] = ae−ksE
[

Bs

∫ s

0
eku dWu

]
= aρe−ksE

[
Ws

∫ s

0
eku dWu

]
=

aρ

k
(1− e−ks) .

(40)

Thus,

E
[

Bt

∫ t

0
Xs ds

]
= E

[ ∫ t

0
BtXs ds

]
=
∫ t

0
E[BtXs] ds

=
∫ t

0
E[BsXs] ds =

aρ

k

∫ t

0
(1− e−ks) ds

=
aρ

k

(
t− 1

k
(1− e−kt)

)
.

(41)

Therefore, Equation (37) becomes

Var[Πt] = α2e2rt
(µ2a2

k2

(
t− 2

k
(1− e−kt) +

1
2k

(1− e−2kt)
)
+

2ρµaσ

k

(
t− 1

k
(1− e−kt)

)
+ σ2t

)
. (42)

Moreover, direct calculation gives us

lim
t→∞

Rt

tert = −αµθ

k
, lim

t→∞

∆t

t
= γα2

(µ2a2

k2 +
2ρµaσ

k
+ σ2

)
− αµθ

k
.

This completes the proof.

We now consider the optimal amount α∗ for long-term IAPs. Let

∆(α) = lim
t→∞

∆t

t
= C1α2 − 2C2α, (43)

where

C1 = γ
(µ2a2

k2 +
2ρµaσ

k
+ σ2

)
, C2 =

µθ

2k
.

Because ∆ is a quadratic function of α and ∆′′ = 2C1 > 0, the function ∆ achieves its

minimum at α∗ = C2
C1

, and the minimum value is ∆(α∗) = −C2
2

C1
.
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4.3. Heston Model

We recall the Heston model presented in Section 3.3. The IAP value is

Πt = Π0ert + αµtert + ασert
∫ t

0

√
Xs dBs , t ≥ 0 .

Proposition 11. Under the Heston model, for the IAP with α ∈ R, we have

lim
t→∞

Rt

tert = −αµ , lim
t→∞

∆t

t
=

γα2θσ2

k
− αµ .

Proof. We first estimate the behavior of E[Xs] as s→ ∞. The process X is a Cox-Ingersoll-
Ross (CIR) process, and it has an invariant density function

dπ(x) =
βα

Γ(α)
xα−1e−βx dx,

where α = 2θ
a2 and β = 2k

a2 . As s→ ∞,

E[Xs]→
∫ ∞

0
x dπ(x) =

βα

Γ(α)

∫ ∞

0
xαe−βx dx

=
1

Γ(α)β

∫ ∞

0
xαe−x dx

=
1

Γ(α)β
Γ(α + 1) =

α

β
=

θ

k
.

(44)

Thus, we have ∫ t

0
E[Xs] ds = t f (t),

where f (t) converges to θ
k as t→ ∞.

By direct calculation,
E[Πt] = Π0ert + αµtert

and

Var[Πt] = α2σ2e2rtE
[( ∫ t

0

√
Xs dBs

)2]
= α2σ2e2rtE

[ ∫ t

0
Xs ds

]
= α2σ2e2rt

∫ t

0
E[Xs] ds = α2σ2te2rt f (t) .

(45)

Therefore,

Rt = γ
√

Var[Πt]−E[Πt] = γ|α|σ
√

tert
√

f (t)− (Π0ert + αµtert)

and
∆t = γVar[Πt/ert]−E[Πt/ert] = γα2σ2t f (t)− (Π0 + αµt) .

This implies that

lim
t→∞

Rt

tert = −αµ ,

lim
t→∞

∆t

t
= lim

t→∞
(γα2σ2 f (t)− αµ) =

γα2θσ2

k
− αµ .

(46)

This gives the desired result.
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We now consider the optimal amount α∗ for long-term IAPs. Let

∆(α) = lim
t→∞

∆t

t
= C1α2 − 2C2α, (47)

where

C1 =
γθσ2

k
, C2 =

µ

2
.

Because ∆ is a quadratic function of α and ∆′′ = 2C1 > 0, the function ∆ achieves its

minimum at α∗ = C2
C1

, and the minimum value is ∆(α∗) = −C2
2

C1
.

4.4. 3/2 Stochastic Volatility Model

We recall the 3/2 stochastic volatility model presented in Section 3.4. The IAP value is

Πt = Π0ert + αµtert + ασert
∫ t

0

√
Xs dBs , t ≥ 0 .

Proposition 12. Under the 3/2 stochastic volatility model, for the IAP with α ∈ R, we have

lim
t→∞

Rt

tert = −αµ , lim
t→∞

∆t

t
=

2γα2θσ2

2k + a2 − αµ .

Proof. We first estimate the behavior of E[Xs] as s → ∞. Let Y = 1/X. Then, Y is a CIR
process, and it has an invariant density function

dµ∞(y) =
βα

Γ(α)
yα−1e−βy dy,

where α = 2k
a2 + 2 and β = 2θ

a2 . As s→ ∞,

E[Xs] = E[1/Ys]→
∫ ∞

0

1
y

dµ∞(y) =
βα

Γ(α)

∫ ∞

0
yα−2e−βy dy

=
β

Γ(α)

∫ ∞

0
yα−2e−y dy

=
β

Γ(α)
Γ(α− 1) =

β

α− 1
=

2θ

2k + a2 .

(48)

Thus, we have ∫ t

0
E[Xs] ds = t f (t),

where f (t) converges to 2θ
2k+a2 as t→ ∞.

By direct calculation,
E[Πt] = Π0ert + αµtert

and

Var[Πt] = α2σ2e2rtE
[( ∫ t

0

√
Xs dBs

)2]
= α2σ2e2rtE

[ ∫ t

0
Xs ds

]
= α2σ2e2rt

∫ t

0
E[Xs] ds = α2σ2te2rt f (t) .

(49)

Therefore,

Rt = γ
√

Var[Πt]−E[Πt] = γ|α|σ
√

tert
√

f (t)− (Π0ert + αµtert)
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and
∆t = γVar[Πt/ert]−E[Πt/ert] = γα2σ2t f (t)− (Π0 + αµt) .

This implies that

lim
t→∞

Rt

tert = −αµ ,

lim
t→∞

∆t

t
= lim

t→∞
(γα2σ2 f (t)− αµ) =

2γα2θσ2

2k + a2 − αµ .
(50)

This gives the desired result.

Finally, we consider the optimal amount α∗ for long-term IAPs. Let

∆(α) = lim
t→∞

∆t

t
= C1α2 − 2C2α, (51)

where

C1 =
2γθσ2

2k + a2 , C2 =
µ

2
.

Because ∆ is a quadratic function of α and ∆′′ = 2C1 > 0, the function ∆ achieves its

minimum at α∗ = C2
C1

, and the minimum value is ∆(α∗) = −C2
2

C1
.

5. Conclusions

This study proposed modified mean-variance risk measures for long-term investment
portfolios. Two types of portfolios were considered: CPP and IAP. In contrast to the
conventional mean-variance risk measure

Rt := γ
√

var[Πt]−E[Πt] ,

we provided modified risk measures

Λt :=
(var[Πt])γ/2

E[Πt]

for CPPs and
∆t = γVar[Πt/ert]−E[Πt/ert]

for IAPs, where γ > 0 is the risk aversion parameter.
The long-term growth rates of the conventional and modified risk measures of the

two types of portfolios were calculated. For CPPs, two values

lim
t→∞

1
t

lnRt and lim
t→∞

1
t

ln Λt

were computed. For IAPs,

lim
t→∞

Rt

tert and lim
t→∞

∆t

t
were computed. Several benefits of the modified risk measures were discussed. The growth
rate of the modified risk measure depends on both the mean and variance of the portfolio;
however, that of the conventional risk measure does not. In addition, the growth rate of
the modified risk measure reflects the investor’s risk aversion, whereas the conventional
risk measure does not.

Our analysis was used for finding optimal long-term investment strategies. Based on
the long-term growth rate, we calculated a constant proportion for CPPs and a constant
amount for IAPs, which minimizes the growth rate of the modified risk measure. Several
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factor models were covered as concrete examples: the Black–Scholes model, Kim–Omberg
model, Heston model, and 3/2 stochastic volatility model.

The author would suggest the following topic for future research. In Economics
and Finance, a risk measure usually comes from the preferences of an investor, which
can be represented by a utility function. The relevant moments and parameters that
affect the investor portfolio choice can be obtained from the utility function. It would be
meaningful to argue which utility function gives rise to the modified risk measure and how
it differs from other commonly used utility functions that gave rise to the conventional
risk measures.
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Appendix A. Ornstein–Uhlenbeck (OU) Process

Appendices A–C describe several lemmas used in the proof of Propositions 3, 5, and 7,
respectively. One of the main ideas of these lemmas is the Hansen–Scheinkman decomposi-
tion, and similar computations have been conducted at [12–14]. However, the formulations
used in this study differ from the above literature. Thus, we present full computations in
the proofs of these lemmas for the completeness of this paper.

The following lemma is used in the proof of Proposition 3. Here, we denote an
underlying measure and a Brownian motion by P̃ and W̃, respectively, instead of P and W.
This is to ensure notational consistency with the proof of Proposition 3.

Several studies (for example, Proposition 2.6.2.1 in [15]) have been conducted regard-
ing the expectation in Equation (A1) for p < 0. However, for p ∈ R, no useful expressions
could be found for our analysis. We therefore derive an asymptotic expression of expecta-
tion as t→ ∞.

Lemma A1. Let X be a solution of the SDE

dXt = (δ− kXt) dt + a dW̃t , X0 ∈ R ,

where k, a > 0, δ ∈ R, and W̃ is a Brownian motion under a measure P̃. Then, for p ∈ R,

EP̃[e−p
∫ t

0 Xs ds] = f1(t)e−
p
k X0 e−λt, (A1)

where f1(t) converges to a positive constant as t→ ∞.

Proof. Let L be the infinitesimal generator of the process X with killing rate p · . Then,

(Lφ)(x) =
1
2

a2φ′′(x) + (δ− kx)φ′(x)− pxφ(x) .

By direct calculation, we obtain that

(λ, φ(x)) =
(
− a2 p2

2k2 +
δp
k

, e−
p
k x
)
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satisfies Lφ = −λφ. Therefore,

Ms :=
φ(Xs)

φ(X0)
e−p

∫ s
0 Xu du+λs = e−

p
k (Xs−X0)−p

∫ s
0 Xu du+λs , 0 ≤ s ≤ t ,

is a P̃-local martingale. It can be easily verified that this process is a P̃-martingale by using
Theorem 5.1.8 of [16]. We define a measure P̂ on Ft as

dP̂
dP̃

= Mt . (A2)

Then, the process

Ŵs = W̃s +
pa
k

s , 0 ≤ s ≤ t

is a P̂-Brownian motion, and X satisfies

dXt =
(

δ− pa2

k
− kXt

)
dt + a dŴt .

It follows that

EP̃[e−p
∫ t

0 Xs ds] = EP̃[Mte
p
k Xt ]e−

p
k X0 e−λt = EP̂[e

p
k Xt ]e−

p
k X0 e−λt = f1(t)e−

p
k X0 e−λt, (A3)

where
f1(t) = EP̂[e

p
k Xt ] . (A4)

Now, we show that f1(t) converges to a positive constant as t→ ∞. Observe that the
density function of Xt can be expressed as

z(x; t) :=
1

Σt
√

2π
e
− 1

2
(x−mt)

2

Σ2
t ,

where mT := X0e−kt + 1
k (δ −

pa2

k )(1− e−kt) is the mean and Σ2
T := a2

2k (1− e−2kt) is the
variance. Then,

f1(t) = EP̂[e
p
k Xt ] =

∫
R

e
p
k xz(x; t) dx →

∫
R

e
p
k xπ(x) dx

as t→ ∞, where

π(x) :=
1√

πa2/k
e−

(x−(δ−pa2/k)/k)2

a2/k .

This completes the proof.

Appendix B. CIR Process

The following lemma is used in the proof of Proposition 5. Here, we denote an
underlying measure and a Brownian motion by P̃ and W̃, respectively, instead of P and W.
This is for the notational consistency with the proof of Proposition 5.

Lemma A2. Let X be a solution of the SDE

dXt = (θ − `Xt) dt + a
√

Xt dW̃t , X0 > 0 ,

where `, a > 0, θ ≥ a2/2, and W̃ is a Brownian motion under a measure P̃. Then, for p ≥ − `2

2a2 ,

EP̃[e−p
∫ t

0 Xs ds] = f (t)eηX0 e−λt,
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where

η :=
`

a2 −
√

`2

a4 +
2p
a2 , λ := −θη,

and f (t) converges to a positive constant as t→ ∞.

Proof. Let L be the infinitesimal generator of the process X with killing rate p · . Then,

(Lφ)(x) =
1
2

a2xφ′′(x) + (θ − `x)φ′(x)− pxφ(x) .

By direct calculation, we obtain that

(λ, φ(x)) := (−θη, eηx)

satisfies Lφ = −λφ. Therefore,

Ms :=
φ(Xs)

φ(X0)
e−p

∫ s
0 Xu du+λs = eη(Xs−X0)−p

∫ s
0 Xu du+λs , 0 ≤ s ≤ t ,

is a P̃-local martingale. Using Theorem 5.1.8 of [16], it can be easily verified that this process
is a P̃-martingale. We define a measure P̂ on Ft as

dP̂
dP̃

= Mt . (A5)

Then, the process

Ŵs = W̃s − aη
∫ s

0

√
Xu du , 0 ≤ s ≤ t ,

is a P̂-Brownian motion, and X satisfies

dXt = (θ −mXt) dt + a
√

Xt dŴt , X0 > 0 ,

where m =
√
`2 + 2pa2. It follows that

EP̃[e−p
∫ t

0 Xs ds] = EP̃[Mte−ηXt ]eηX0 e−λt = EP̂[e−ηXt ]eηX0 e−λt = f (t)eηX0 e−λt, (A6)

where
f (t) = EP̂[e−ηXt ] . (A7)

Now, we show that f (t) converges to a positive constant as t→ ∞. From Corollary 6.3.4.4
in [15], we have

f (t) = EP̂[e−ηXt ] =
( 1

1 + ηc(t)

)2θ/a2

e−
η

ηc(t)+1 e−mtx , (A8)

where c(t) := a2

2m (1− e−mt). The proof is given for η > 0, but the same proof holds for
η > −2m/a2. It is evident that

f (t)→
( 1

1 + a2η
2m

)2θ/a2

(A9)

as t→ ∞.
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Appendix C. 3/2 Model

The following lemma is used in the proof of Proposition 7. Here, we denote an
underlying measure and a Brownian motion by P̃ and W̃, respectively, for the notational
consistency with the proof of Proposition 7.

Lemma A3. Let X be a solution of the SDE

dXt = (θ − `Xt)Xt dt + aX3/2
t dW̃t , X0 > 0 ,

where θ, `, a > 0, and W̃ is a Brownian motion under a measure P̃. Then, for p ≥ − `2

2a2 ,

EP̃[e−p
∫ t

0 Xs ds] = f (t)Xη
0 e−λt,

where

η :=
`

a2 +
1
2
−
√( `

a2 +
1
2
)2

+
2p
a2 , λ := −θη,

and f (t) converges to a positive constant as t→ ∞.

Proof. Let L be the infinitesimal generator of the process X with killing rate p·. Then,

(Lφ)(x) =
1
2

a2x3φ′′(x) + (θ − `x)xφ′(x)− pxφ(x) .

By direct calculation, we obtain that

(λ, φ(x)) := (−θη, xη)

satisfies Lφ = −λφ. Therefore,

Ms :=
φ(Xs)

φ(X0)
e−p

∫ s
0 Xu du+λs =

(Xs

X0

)η
e−p

∫ s
0 Xu du+λs , 0 ≤ s ≤ t ,

is a P̃-local martingale. It can be easily verified that this process is a P̃-martingale by using
Theorem 5.1.8 of [16]. We define a measure P̂ on Ft as

dP̂
dP̃

= Mt . (A10)

Then, the process

Ŵs = W̃s − aη
∫ s

0

√
Xu du , 0 ≤ s ≤ t ,

is a P̂-Brownian motion, and X follows

dXt = (θ −mXt)Xt dt + aX3/2
t dŴt , X0 > 0 ,

where m = `− a2η. It is easy to check that m > 0 using Equation (26). It follows that

EP̃[e−p
∫ t

0 Xs ds] = EP̃[MtX
−η
t ]Xη

0 e−λt = EP̂[X−η
t ]Xη

0 e−λt = f (t)Xη
0 e−λt, (A11)

where
f (t) = EP̂[X−η

t ] . (A12)

Now, let us show that f (t) converges to a positive constant as t→ ∞. To this end, let
Y = 1/X. Then, Y is a CIR process satisfying

dYt = (µ− θYt) dt− a
√

Yt dŴt , Y0 = 1/X0 ,
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where µ := m + a2. Since there is a constant c > 0 such that yη ≤ ce
θ

a2 y for all y > 0,
we have

EP̂[Yη
t ] ≤ cEP̂[e

θ
a2 Yt ] . (A13)

From Equations (A8) and (A9),

EP̂[e
θ

a2 Yt ]→ 2
2µ

a2

as t→ ∞. This implies that

f (t) = EP̂[X−η
t ] = EP̂[Yη

t ]→
∫ ∞

0
yηπ(y) dy

as t→ ∞, where

π(y) =
βα

Γ(α)
yα−1e−βy , α =

2µ

a2 , β =
2θ

a2 ,

is the invariant density function of Y under P̂. This gives us the desired result.
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