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Abstract: A honeycomb is a kind of excellent lightweight structure and a honeycomb sandwich plate
with zero Poisson’s ratio (ZPR) core is used widely in morphing structures. In this paper, a sandwich
plate composed of a honeycomb core with zero Poisson’s ratio is analyzed for free vibrations and
flutter under supersonic airflows. The equivalent elastic parametric formulas of the honeycomb
core for zero Poisson’s ratio are proposed. The models are compared for their natural frequencies
by theoretical and finite element methods respectively, which verifies the validity of the equivalent
elastic parametric formulas and the model for the honeycomb sandwich plate with zero Poisson’s
ratio. The influence of the geometric parameters of the honeycomb plate on the vibration frequencies
is obtained. Three kinds of honeycomb cores, namely, regular hexagon, auxetic and hybrid with zero
Poisson’s ratio, are compared through natural frequencies of the sandwich plate. It is found that the
frequency of the zero Poisson’s ratio honeycomb sandwich plate is the second one when the other
parameters are the same. The flutter of the honeycomb plate is analyzed by using the first order
piston theory under supersonic flows. The critical flutter velocity of the plate is obtained, and the
influence of geometric parameters of the honeycomb plate on the critical flutter velocities is obtained.

Keywords: honeycomb sandwich plate; zero Poisson’s ratio; vibration; flutter

1. Introduction

Honeycomb structures have received extensive applications in engineering and daily
life, such as aerospace, building, vehicle, and packaging, etc., as they have outstanding
mechanical properties such as lightweight, low weight-to-stiffness ratios, good energy
absorption characteristics, etc. Moreover, the geometry of the unit cells of honeycombs
can be tailored easily to result in desired deformed shapes under loading which allow for
abnormal or expected behaviors in macroscale. Hence, increasing numbers of studies have
focused on honeycomb structures. The energy absorption of the honeycomb sandwich
structure was increased by adding an absorbent agent to the Nomex honeycomb wall that
was filled with polymer tube [1]. Rapaka et al. [2] studied the dynamic compressive behav-
iors of hexagonal honeycombs under shocks. Rahman and Koohbor [3] studied the energy
absorption performances of density gradient honeycombs. Zhang et al. [4,5] investigated
the dynamic crushing responses of honeycombs with negative Poisson’s ratio. Jin et al. [6]
investigated the vibration suppression of the square honeycomb sandwich structure.

Honeycomb sandwich structures with zero Poisson’s ratio have the outstanding
advantages of that deformation in one direction that does not affect other directions.
Therefore, they are widely used in flexible skin for morphing structures such as morphing
aircraft and wings. The in-plane mechanical properties of the honeycomb layer is very
important for analysis of honeycomb sandwich structures. Olympio and Gandhi [7]
proposed a sandwich skin for morphing aircraft, comprised of cellular honeycomb core
with zero Poisson’s ratio and studied mechanical properties of the honeycomb. Chen
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et al. [8] investigated in-plane mechanical properties of zero-Poisson cell structures by
using analytical, numerical and experimental methods simultaneously. Bubert et al. [9]
gave the equivalent elastic parameters of an accordion-like flexible honeycomb used as
morphing aircraft skin. Zou et al. [10] proposed a zero Poisson’s ratio mixed cruciform
honeycomb and studied the in-plane elastic constants, through theoretical calculation,
numerical simulation and experiments. Liu et al. [11] proposed a trapezoidal honeycomb
with close-to-zero Poisson’s ratio and the effects of geometric parameters on the elastic
properties of the structure were studied. Huang et al. [12,13] proposed a close-to-zero
Poisson’s ratio honeycomb with trapezoidal beams and investigated the multi-stiffness
topology optimization of the zero Poisson’s ratio honeycomb.

Xu et al. [14,15] proposed hybrid AuxHex honeycomb consisting of auxetic and
traditional honeycomb cells and studied the in-plane mechanical properties and energy
absorption capability. Wu et al. [16] presented the plateau stresses and energy absorption
capacity of a cross circular honeycombs with zero Poisson’s ratio under in-plane impact
loads. Wang et al. [17] gave effective elastic constants of a hierarchical composite square-
honeycomb core and studied free vibrations of the sandwich panel. Zhang et al. [18]
investigated the equivalent macroscopic stiffness of honeycomb-corrugation hybrid cores
and vibrations of the sandwich beams. These abovementioned references on the equivalent
constants of the cores and vibrations of the honeycomb structures will provide guidance
for this article.

It is known that avoiding flutter is one of the most important issues for aircraft design.
Many research works are focused on the flutter responses of plates and shells because of
recent wide use of advanced materials, and plentiful achievements have been obtained.
Wang et al. [19] studied the flutter stability of a simply supported two-dimensional flat
panel exposed to the supersonic airflow by using the first order piston theory aerodynamic
loading. Guimarães et al. [20] investigated flutter of the supersonic adjacent composite
panel through the first-order piston theory and compared the finite element model with
Rayleigh-Ritz model. Song et al. [21] studied the panel flutter in supersonic airflow and
passive control of the flutter bound. Mahmoudkhani [22] considered the supersonic panel
flutter of functionally graded cylindrical shells under thermal loadings by using the first-
order aerodynamic piston theory. Dhital et al. [23] discussed the panel flutter whose model
was based on the piston theory, where the aerodynamic forces were equivalent to the
concentrated forces. Torabi et al. [24] analyzed free flexural vibration and supersonic flutter
of trapezoidal honeycomb sandwich plates and aerodynamic pressure was estimated via
the piston theory. Saidi et al. [25] probed the vibration and stability of functionally graded
reinforced porous plates under supersonic flow. Zhang et al. [26,27] investigated nonlinear
dynamics of plates under subsonic air flows. Hao et al. [28,29] gave supersonic flutter
analysis of FGM shells through the first-order piston theory.

In this paper, free vibrations and flutter under supersonic airflows of a honeycomb
sandwich plate with zero Poisson’s ratio are analyzed. The theoretical model of the
sandwich plate is obtained by using the Hamilton principle, higher order shear deformation
theory and von Karman large geometric deformation theory in Section 2. The equivalent
elastic parameters for the honeycomb core layer are computed in Section 3. The finite
element model is given in Section 4. The first ten natural frequencies of the plate are
obtained from both theory and finite element method. The consistency of the results from
the two are compared which verify the correctness of the equivalent elastic parameters and
the model obtained. The influence of the parameters on the natural frequency of the plate
is obtained including the Poisson’s ratio. In Section 5, flutters of the plate under supersonic
airflows by using the first-order piston theory are analyzed and the change of the critical
flutter point with the cell parameters of the zero Poisson’s ratio honeycomb is obtained.
In brief, the novelty of the paper is that: The equivalent elastic parameters for the ZPR
honeycomb core are computed and their correctness is verified. When the Poisson’s ratio
of the honeycomb core is positive, zero and negative, respectively, the natural frequencies
of the plates are compared. The ZPR honeycomb plate is used widely for aircraft skin,
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therefore, flutter of the ZPR honeycomb plate is studied and the critical flutter point of the
plate is obtained in this paper.

The main symbols used in this paper are as follows: u, v and w are displacements in x,
y and z directions, respectively. φx is rotation angle of the middle plane along x direction. a,
b and h are length, width and thickness of the plate. ε and γ are strains. E, G, ρ and ν are
Young’s modulus, shear modulus, density and Poisson’s ratio, the subscript ‘s’ represents
the material. δ without subscript represents variational operation. l1, l2, t and θ are size
and angle of the honeycomb cell. n and m are mode order of the plate.

2. Equations of Motion

The model of the honeycomb sandwich plate with zero Poisson’s ratio under a four-
sided simply supported boundary is shown in Figure 1. The sandwich plate is composed
of the honeycomb core with zero Poisson’s ratio and two face sheets. The x-y axis of
coordinate system in Figure 1 is located on the middle plane of the plate. u, v and w
represent the displacement components in x, y and z directions, respectively. The lengths
of the plate in x and y directions are a and b respectively. The surface on one side of z>0 is
called as upper skin, and the surface on the other side of z<0 is called as lower skin and
the skin is made of isotropic materials. The material of the honeycomb plate is aluminum,
whose modulus is Es, density is ρs, Poisson’s ratio is vs, and shear modulus is Gs.
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Figure 1. The model of honeycomb sandwich plate with ZPR core.

According to Reddy’s higher order shear deformation theory, the displacements of u,
v and w can be expressed as:

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)− 4
3h2 z3

(
φx +

∂ω0

∂x

)
, (1a)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)− 4
3h2 z3

(
φy +

∂ω0

∂y

)
, (1b)

w(x, y, z, t) = w0(x, y, t), (1c)

where h is the thickness of the plate, u0, v0, w0, φx and φy are displacements and rotation
angles of the middle plane. According to the von Karman large geometric deformation
theory on the plate, the strain-displacement relations can be obtained as follows, where the
strains are: εi(i = xx, yy), γi(i = xy, yz, zx).

εxx = ∂u
∂x + 1

2

(
∂w
∂x

)2
, εyy = ∂v

∂y + 1
2

(
∂w
∂y

)2
, γxz =

1
2

(
∂u
∂z + ∂w

∂x

)
,

γyz =
1
2

(
∂v
∂z +

∂w
∂y

)
,γxy = ∂u

∂y + ∂v
∂x + ∂w

∂x
∂w
∂y , εzz =

∂w
∂z .

(2)

It can be obtained the following from Equations (1) and (2).
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εxx
εyy
γxy

 =


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

+ z


ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

+ z3


ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

,
{

γyz
γxz

}
=

{
γ
(0)
yz

γ
(0)
xz

}
+ z2

{
γ
(2)
yz

γ
(2)
xz

}
(3)

The honeycomb sandwich plate with zero Poisson ratio is orthotropic and the consti-
tutive equation can be written as:


σxx
σyy
σyz
σxz
σxy



(k)

=



Q(k)
11 Q(k)

12 0 0 0
Q(k)

21 Q(k)
22 0 0 0

0 0 Q(k)
44 0 0

0 0 0 Q(k)
55 0

0 0 0 0 Q(k)
66




εxx
εyy
γyz
γxz
γxy

, (4)

where Q(k)
11 =

E(k)
1

1−ν
(k)
12 ν

(k)
21

, Q(k)
12 =

E(k)
1 ν

(k)
12

1−ν
(k)
12 ν

(k)
21

, Q(k)
22 =

E(k)
2

1−ν
(k)
12 ν

(k)
21

, Q66 = G12, Q44 = G23,

Q55 = G13, Q21 = Q12, and E(k)
1 , E(k)

2 , G(k)
12 , G(k)

13 , G(k)
23 , ν

(k)
12 , ν

(k)
21 are elastic modulus,

shear modulus and Poisson’s ratio, respectively, and k = 1, 3 represent the upper and lower
skin, k = 2 is the core layer.

The governing equations are established by using the Hamilton principle, and the
expression of Hamilton principle is as follows:∫ t2

t1

(δU − δK)dt +
∫ t2

t1

δWdt = 0, (5)

where δU is the virtual potential energy, δK is the virtual kinetic energy, and δW is the
virtual work done by external forces. The virtual kinetic energy and virtual potential
energy can be casted in the following equations:

δK =
∫

Ω0
[
(

I0
.
u0 + I1

.
φx − c1 I3

.
ϕx

)
δ

.
u0 +

(
I1

.
u0 + I2

.
φx − c1 I4

.
ϕx

)
δ

.
φx

−c1

(
I3

.
u0 + I4

.
φx − c1 I6

.
ϕx

)
δ

.
ϕx +

(
I0

.
v0 + I1

.
φy − c1 I3

.
ϕy

)
δ

.
v0 +

(
I1

.
v0 + I2

.
φy − c1 I4

.
ϕy

)
δ

.
φy

−c1

(
I3

.
v0 + I4

.
φy − c1 I6

.
ϕy

)
δ

.
ϕy − I0

.
w0δ

.
w0]dxdy,

(6)

where
.
ϕx =

.
φx +

∂w0

∂x
,

.
ϕy =

.
φy +

∂w0

∂y
, (7)

δU =
∫

Ω0
[Nxxδε

(0)
xx + Mxxδε

(1)
xx − c1Pxxδε

(3)
xx + Nyyδε

(0)
yy + Myyδε

(1)
yy

−c1Pyyδε
(3)
yy + Nxyδγ

(0)
xy + Mxyδγ

(1)
xy − c1Pxyδγ

(3)
xy + Qxδγ

(0)
xz

−c2Rxδγ
(0)
xz + Qyδγ

(0)
yz − c2Ryδγ

(0)
yz ]dxdy,

(8)

δW =
∫

Ω0

Fδw0dxdy −
∫

Ω0

γδ
.

w0dxdy. (9)

Ω0 represents the middle plane of the honeycomb sandwich plate, γ is the damping
coefficient and 

Nαβ

Mαβ

Pαβ

 =
∫ h

2
− h

2
σαβ


1
z
z3

dz,{
Qα

Rα

}
=
∫ h

2
− h

2
σαz

{
1
z2

}
dz Ii =

∫ h
2
− h

2
ρs(z)

idz, (i = 0, 1, 2, · · ·, 6),

(10)

where α and β represent x and y, respectively.
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Substituting Equations (6), (8) and (9) into Equation (5), the nonlinear dynamic equa-
tion of the honeycomb sandwich plate can be written:

∂Nxx

∂x
+

∂Nxy

∂y
= I0

..
u0 + J1

..
φx − c1 I3

∂
..
w0

∂x
, (11a)

∂Nxy

∂x
+

∂Nyy

∂y
= I0

..
v0 + J1

..
φy − c1 I3

∂
..
w0

∂y
, (11b)

∂Qx
∂x +

∂Qy
∂y + ∂

∂x

(
Nxx

∂w0
∂x + Nxy

∂w0
∂y

)
+ ∂

∂y

(
Nxy

∂w0
∂x + Nyy

∂w0
∂y

)
+ c1

(
∂2Pxx
∂x2 + 2 ∂2Pxy

∂x∂y +
∂2Pyy
∂y2

)
= I0

..
w0 − c2

1 I6

(
∂2 ..

w0
∂x2 + ∂2 ..

w0
∂y2

)
+ c1

[
I3

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
+ J4

(
∂

..
φx
∂x +

∂
..
φy
∂y

)]
,

(11c)

∂Mxx

∂x
+

∂Mxy

∂y
− Qx = J1

..
u0 + K2

..
φx − c1 J4

∂
..
w0

∂x
, (11d)

∂Mxy

∂x
+

∂Myy

∂y
− Qy = J1

..
v0 + K2

..
φy − c1 J4

∂
..
w0

∂y
, (11e)

where Mαβ = Mαβ − c1Pαβ, (α, β = 1, 2, 6), Qα = Qα − c2Rα, (α = 4, 5), Ji = Ii − c1 Ii+2,
K2 = I2 − 2c1 I4 + c2

1 I6 c1 = 4
3h2 , c2 = 3c1.

The relationship of internal force and strain is of the following form:


Nxx
Nyy
Nxy

 =


A11 A12 0
A21 A22 0
0 0 A66




ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

, (12a)


Mxx
Myy
Mxy

 =


D11 D12 0
D21 D22 0

0 0 D66




ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

+


F11 F12 0
F21 F22 0
0 0 F66




ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

, (12b)


Pxx
Pyy
Pxy

 =


F11 F12 0
F21 F22 0
0 0 F66




ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

+


H11 H12 0
H21 H22 0

0 0 H66




ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

, (12c)

{
Qy
Qx

}
=

{
A44 0
0 A55

}{
γ
(0)
yz

γ
(0)
xz

}
+

{
D44 0

0 D55

}{
γ
(2)
yz

γ
(2)
xz

}
, (12d)

{
Ry
Rx

}
=

{
D44 0

0 D55

}{
γ
(0)
yz

γ
(0)
xz

}
+

{
F44 0
0 F55

}{
γ
(2)
yz

γ
(2)
xz

}
, (12e)

where the stiffness matrices of the plates are expressed as follows:(
Aij, Dij, Fij, Hij

)
=
∫ h/2
−h/2 Qij

(
1, z2, z4, z6)dz, (i, j = 1, 2, 6),(

Aij, Dij, Fij
)
=
∫ h/2
−h/2 Qij

(
1, z2, z4)dz, (i, j = 4, 5),

(13)

By substituting Equation (12) into Equation (11), the nonlinear dynamic equation
of honeycomb sandwich plate with zero Poisson’s ratio in the form of displacement can
be obtained.

3. Calculation of Equivalent Elastic Parameters

The honeycomb cells of zero Poisson’s ratio are composed of regular hexagonal
mixed with concave hexagonal honeycombs as shown in Figure 2. These kinds of mixed
honeycombs exhibit zero Poisson’s ratio due to the positive Poisson’s ratio effect of the
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hexagonal honeycomb and the negative Poisson’s ratio effect of the concave hexagonal
honeycomb [30].

Figure 2. Honeycomb cell with zero Poisson’s ratio.

In the literature [14], the in-plane mechanical properties of hybrid AuxHex honeycomb
are derived and analytical formulas of the relative density and Young’s modulus are given.
For simplification, it is considered that the inclined wall and straight wall of the hybrid
honeycombs have the same length and thickness and same angles as shown in Figure 2.

Relative density is an important performance index for honeycomb materials which is
referred to the ratio of the density of porous materials to that of the corresponding solid
materials. As shown in Figure 2, the relative density of the honeycomb with zero Poisson’s
ratio is as follows:

ρ =
ρ∗

ρs
=

8l1t + 5l2t
6l1l2 cos θ

, (14)

where ρ∗ and ρs densities of honeycombs and the materials, respectively. The Young’s
modulus of the honeycombs is given as follows:

Ex =
σ1

εx
x
=

Est3 cos θ

l2l2
1sin2θ

, Ey =
σ2

ε
y
y
=

2Est3l2
l4
1 cos3 θ

, (15)

where the superscript x or y of the strain ε indicates the corresponding strain when loading
in x or y direction, respectively. σ1 and σ2 are stresses as shown in Figure 3.

The Poisson’s ratio is computed as follows. When loading in the x-axis, as seen in
Figure 3a, the strain of wall AB in the y-direction is:

εx
hy =

2δh cos θ

2l2 + 2l1 sin θ
=

σ1

Es

l3
1 sin θ cos θ

t3 , (16)

where δh is the deformation of wall AB, as observed in the literature [14]. The strain of the
wall CD in y-direction is:

εx
ay = − 2δa cos θ

2l2 − 2l1 sin θ
= −σ1

Es

l3
1 sin θ cos θ

t3 , (17)

where δa is deformation of the wall CD. Compared with Equations (16) and (17), the strains
of regular and concave hexagon in the y direction, as shown in Figure 3a, are equal and
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opposite, that is, the strain in the y-direction is εx
y = 0. Therefore, the Poisson’s ratio in the

x-direction is:

νxy = −
εx

y

εx
x
= 0, (18)
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When loading in y-axis as in Figure 3b, the strain of wall AB in the x-direction is:

ε
y
hx =

δhsinθ

l1 cos θ
=

σ2l3
1cosθsinθ

Est3 (19)

The strain of wall CD in the x-direction is:

ε
y
ax = − δasinθ

l1 cos θ
= −

σ2l3
1cosθsinθ

Est3 (20)

where δh and δa are deformations of walls AB and CD in Figure 3b, that is, the strain in the
x-direction is:

ε
y
x =

ε
y
hx + ε

y
ax

2
= 0 (21)

Therefore, the Poisson’s ratio in y-direction is:

νyx = − ε
y
x

ε
y
y
= 0 (22)

Therefore, it is proved that the Poisson’s ratio of honeycombs as shown in Figure 2 is
zero when the angles of regular hexagonal and concave hexagonal honeycombs are same.

Next, the shear modulus is given. It is based on that the strain energy of the zero Pois-
son’s ratio cell by shear loads is equal to the sum of the strain energy of a regular hexagonal
and a concave hexagonal honeycomb cell, the shear modulus Gxy can be obtained [30]:

Gxy =
2αGhxyGaxy

(α + sin θ)Ghxy + (α − sin θ)Gaxy
, (23)

where Ghxy and Gaxy are shear modulus of regular hexagonal and concave hexagonal

honeycomb, and α = l2
l1

. The shear modulus of the other two directions are obtained by
principle of minimum energy [30,31].

Gzx = Gs
β cos θ

α
, (24a)
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Gsβ
(α + sin θ)2

α(1 + 2α) cos θ
≤ Gyz ≤ Gsβ

α + 2sin2θ

2α cos θ
, (24b)

where Gs is shear modulus of materials and β = t
l1

, it can be obtained by calculation from
Equation (24b) that the difference between upper and lower of Gyz is small, which has less
effect on the vibrational frequency of the honeycomb.

Substitute the equivalent elastic parameters given above into Equation (4), where the
subscripts x and y in Equations (15)–(24) are replaced by 1 and 2 in Equation (4). Then
solve the zero Poisson’s ratio honeycomb sandwich plate (11) by the Navier method and
compare the results with the finite element model in next section.

4. Vibrational Frequencies of ZPR Honeycomb Plate

The first ten (n = 1, 2 · · · , 10) natural frequencies of the honeycomb sandwich plate
with zero Poisson’s ratio are obtained by using the Navier method and through the fi-
nite element model simultaneously. The finite element models are obtained by using
ABAQUS/Standard. A solid model is adopted, and each cell wall of honeycombs is solved
by a four-node linear tetrahedral element grid. The boundary conditions in the modal
analysis settled as simply supported on four sides, and the ABAQUS/standard subspace
iteration method is used to solve the natural frequency of the system.

The parameters of the honeycomb plate are chosen as same in the two methods as:
The length of the plate is a = 311 mm, the width is b = 311 mm, the thickness of the plate h =
10 mm, the thickness of the core layer hc = 9 mm, the parameters of honeycomb cell l1 = 10
mm, t = 1 mm, l2 = 12 mm, θ = π/6 as shown in Figure 2. The plate is made of aluminum,
the Young’s modulus is Es = 69 GPa, the density ρs = 2700 kg/m3, the Poisson’s ratio νs =
0.3, the shear modulus Gs = 27 GPa.

Table 1 shows the first ten natural frequencies of the honeycomb sandwich plate with
zero Poisson’s ratio by using the Navier method and the finite element method. The errors
between the two methods are given. From the comparison results in Table 1 it can be found
that the maximum error from Section 3 and the finite element method is 1.02%, and the
maximum error between the literature [14] and the finite element method is 1.55%. The
maximum calculation error is smaller in this paper. The reason is that the concave hexagon
only was calculated when loading in the y direction the literature [14], that is the wall
CD in Figure 3b. Furthermore, it is inconvenient to calculate the Poisson’s ratio, while
the difference between the two is not so big, which indicates that the concave hexagonal
honeycombs play a main role when loading in the y direction. However, the regular
hexagonal honeycombs in the hybrid honeycombs have great influence on the Poisson’s
ratio of the honeycomb structures. Table 1 also shows the validity of the equivalent elastic
parameters for the honeycomb core layer and the theoretical model of the plate.

Table 1. The first ten natural frequencies of the honeycomb sandwich plate with ZPR.

n FEM This Paper Error Ref. [14] Error

1 550.27 546.43 0.70% 547.27 0.54%
2 1358.0 1344.01 1.02% 1347.44 0.78%
3 1360.9 1349.11 0.86% 1349.84 0.81%
4 2114.6 2123.63 −0.42% 2126.64 −0.57%
5 2642.5 2621.39 0.79% 2628.63 0.52%
6 2654.5 2641.72 0.48% 2642.37 0.46%
7 3334.8 3366.87 −0.96% 3384.45 −1.49%
8 3350.9 3381.82 −0.92% 3373.42 −0.67%
9 4299.8 4312.93 −0.30% 4366.38 −1.55%

10 4353.6 4365.81 −0.28% 4324.51 0.67%

Table 2 shows the first ten order natural frequencies of the plate with the hexagonal
honeycomb core and concave hexagonal honeycomb core respectively, with the same
parameters chosen as those in Table 1. Figure 4 compares the three kinds of plates with
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the Poisson’s ratios of the honeycomb cores that are positive, zero and negative. It can be
obtained from Figure 4 that, with the other parameters are all same, the frequencies of the
auxetic honeycomb sandwich plate are low, the frequencies of the regular hexagon cores
are high and the hybrids’ (ZPR) are middle. The difference between the hexagon and the
hybrids is small while the auxetic is much lower.

Table 2. The frequencies of the plate with regular hexagonal and concave hexagonal cores.

n
Hexagonal Honeycomb Auxetic Honeycomb

FEM Theoretical FEM Theoretical

1 562.41 561.48 467.76 453.47
2 1384.7 1379.67 1163.5 1107.25
3 1403.3 1423.76 1184.5 1158.23
4 2182.7 2173.02 1835.4 1775.68
5 2710.6 2699.06 2304.5 2172.77
6 2755.9 2814.52 2366.7 2311.28
7 3450.0 3424.70 2932.7 2803.57
8 3496.9 3498.36 2976.2 2892.68
9 4459.6 4432.39 3840.3 3600.79
10 4689.9 4645.49 3973.6 3867.33
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Figure 4. Comparison of the frequencies of three honeycomb sandwich plate.

When the core thickness changes, the thickness of the sandwich plate invariant and
other parameters are chosen as the same as that of Table 1, and Table 3 shows the first ten
order frequencies. It can be obtained from Table 3 that when the thickness of the core layer
increases and the thickness of the plate is invariant, the thickness of the skin decreases, and
the natural frequency of the zero Poisson’s ratio honeycomb sandwich plate decreases.
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Table 3. Frequencies of ZPR honeycomb plate with core thickness ratio change.

n hc/h = 0.8 hc/h = 0.85 hc/h = 0.9 hc/h = 0.95

1 617.79 594.253 547.27 446.52
2 1513.17 1459.26 1347.44 1107.69
3 1508.57 1455.44 1349.84 1107.66
4 2366.57 2288.43 2126.64 1756.13
5 2908.48 2837.38 2628.63 2188.04
6 2930.31 2817.76 2642.37 2184.33
7 3712.80 3619.52 3384.45 2814.48
8 3729.46 3604.22 3373.42 2818.07
9 4718.41 4650.07 4366.38 3641.42
10 4778.78 4593.51 4324.51 3656.91

Table 4 shows that the frequencies with the length of honeycomb wall l2 change, while
the other parameters remain unchanged. It can be seen that the smaller the cell wall length,
that is the tighter the cell arrangement, the lower the frequency of the plate is.

Table 4. Frequencies of ZPR honeycomb plate with l2 change.

n l2 = 12 mm l2 = 15 mm l2 = 20 mm

1 547.27 562.33 579.62
2 1347.44 1382.69 1418.19
3 1349.84 1385.26 1429.00
4 2126.64 2179.11 2236.40
5 2628.63 2695.28 2746.12
6 2642.37 2702.48 2788.19
7 3384.45 3453.04 3520.05
8 3373.42 3457.65 3550.66
9 4366.38 4430.81 4478.51
10 4324.51 4445.05 4585.30

With the cell angle θ changed to 15◦, 30◦, 45◦, and 60◦, while the other parameters are
the same as that of above, Table 5 shows the frequencies for the first ten order modes. It is
indicated that the natural frequency of the plate decreases with angle θ increases.

Table 5. Frequencies of ZPR honeycomb plate with angle θ change.

n θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦

1 605.06 579.62 538.14 472.27
2 1487.16 1418.19 1309.53 1134.05
3 1482.24 1429.00 1336.45 1188.85
4 2328.62 2236.40 2078.65 1818.49
5 2889.36 2746.12 2521.17 2156.99
6 2872.36 2788.19 2629.03 2362.50
7 3680.81 3520.05 3329.36 2801.11
8 3668.92 3550.66 3250.10 2949.38
9 4726.80 4478.51 4085.16 3449.49
10 4686.85 4585.30 4364.08 3959.42

Table 6 shows that the frequencies of the honeycomb sandwich with zero Poisson’s
ratio decrease when the thickness of the honeycomb wall increase.
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Table 6. Frequencies with thickness of honeycomb wall change.

n t t t t

1 546.43 488.75 448.70 420.77
2 1344.01 1211.28 1115.74 1049.86
3 1349.11 1211.53 1119.13 1057.31
4 2123.63 1914.56 1764.74 1658.71
5 2621.39 2382.99 2209.22 2087.67
6 2641.72 2387.43 2214.02 2103.45
7 3366.87 3060.01 2833.65 2669.13
8 3381.82 3064.55 2835.19 2677.72
9 4312.93 3956.04 3695.20 3504.64
10 4365.81 3976.10 3696.12 3524.73

Table 7 shows that the frequencies of the honeycomb sandwich with zero Poisson’s
ratio decrease when the length–width of the plate increase.

Table 7. Frequencies with length–width change.

n b/a = 1 b/a = 1.5 b/a = 2 b/a = 2.5 b/a = 3

1 546.43 396.43 343.46 318.92 305.59
2 1344.01 757.08 547.27 449.61 396.43
3 1349.11 1203.57 883.66 666.17 547.27
4 2123.63 1347.44 1152.21 966.43 757.08
5 2621.39 1553.36 1347.44 1128.40 1024.41
6 2641.72 2126.64 1349.84 1255.14 1115.46
7 3366.87 2151.97 1676.20 1347.44 1203.57
8 3381.82 2502.77 1931.76 1465.16 1347.44
9 4312.93 2836.67 2126.64 1756.54 1349.84

10 4365.81 2909.19 2453.74 2126.64 1553.36

In this section, the model of the honeycomb sandwich plate with zero Poisson’s ratio
is obtained through both the theoretical method and finite element method, which proves
the accuracy of the equivalent elastic parameters of the honeycomb core layer and the
validity of the model. The influence of the geometric parameters of the plate on the natural
frequencies is studied.

5. Flutter Analysis under Aerodynamic Forces

The zero-Poisson’s-ratio honeycomb sandwich plate has potential applications in
wing skins because it has no Poisson’s ratio effect during the deformation process. Large
deformations introduce considerable aeroelastic effects. Moreover, the aeroelastic instability
of the plate is a prominent problem that can be devastating to the structures. Therefore,
it is very necessary to study the flutter problem of the zero-Poisson’s-ratio honeycomb
sandwich plate. When the plate is under supersonic airflow, based on the first-order piston
theory, the aerodynamic pressure load is expressed as:

DP = − 2P∞√
M2

a − 1

(
M2

a − 2
M2

a − 1
1

Maa∞

∂w
∂t

+
∂w
∂x

)
, (25)

where P∞ = 1
2 ρ∞U2

∞ is flow pressure, U∞ is air velocity at infinity, a∞, Ma and ρ∞ are sound
airspeed, Mach number and air density respectively. Substitute aerodynamic pressure
load (25) into the external force work expression in Equation (9). Meanwhile, Take the
modal functions (26) that satisfy the four-sided simply supported boundary and substitute
them into Equation (11) by using the Galerkin method.

u0 =
M

∑
m=1

N

∑
n=1

umn(t) cos
(mπx

a

)
sin
(nπy

b

)
, (26a)
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v0 =
M

∑
m=1

N

∑
n=1

vmn(t) sin
(mπx

a

)
cos
(nπy

b

)
, (26b)

w0 =
M

∑
m=1

N

∑
n=1

wmn(t) sin
(mπx

a

)
cos
(nπy

b

)
, (26c)

φx =
M

∑
m=1

N

∑
n=1

φxmn(t) cos
(mπx

a

)
sin
(nπy

b

)
, (26d)

φy =
M

∑
m=1

N

∑
n=1

φymn(t) sin
(mπx

a

)
cos
(nπy

b

)
, (26e)

where umn, vmn, wmn, φxmn and φymn are the amplitudes of each mode. Neglect the inertial
terms of u0, v0, φx and φy in Equation (11) and substitute into Equation (11c), it can be
obtained the equation of motion for the honeycomb sandwich plate with zero Poisson’s
ratio under aerodynamic pressure load as Equation (27).

..
wmn(t) + (µkmn + µamn)

.
wmn(t) + (Ckmn + Camn)wmn(t) + V(wmn(t)) = 0, (27)

where the subscripts “k” and “a” in µ and C represent coefficients of structural and aero-
dynamic terms, V represents nonlinear terms. Assuming that the airflow enters along the
x-axis, vertical to the y direction. It is known that the higher-order modes perpendicular to
the airflow direction are difficult to be excited under the condition of the simply supported
boundary, therefore, it is taken the first mode in the y direction, that is N = 1.

Suppose Equation (27) has solutions of the form:

wm = Ameλt,

where λ = λr + iλi, λr = Real(λ) is damping ratio, λi is imaginary part ωm =
√

λ2
i .

The plate is made of aluminum and the parameters are chosen as follows: the length
and width are a = b = 1 m, the thickness h = 10 mm, the thickness of the core layer hc = 9 mm,
the thickness of honeycomb wall t = 1.5 mm, the angle θ = 30◦. M∞ = 3, a∞ =213.36 m/s.
Figure 5 shows the change of the real part λr and frequencies with the flow pressure P∞,
when M = 2, 4, 6, respectively.

It can be seen from Figure 5 that with the flow pressure increase, the first-order
frequency of the system gradually increases and the second-order frequency decreases,
and the two gradually get closer and closer. Simultaneously, the vibrations of the first two
modes of the zero Poisson’s ratio honeycomb sandwich plate are coupled with each other
and the system gradually absorbs energy from the airflow. When the two frequencies are
the same and at the same time the real part of the eigenvalue curve crosses the zero-line,
flutter occurs. The corresponding flow pressure is called critical flow pressure. While due
to the existence of structural and aerodynamic damping, the critical flow pressure from
the real part curve by the left column of Figure 5 is slightly larger than the value when the
corresponding frequencies are combined by the right column of Figure 5. It can be seen
from Figure 5a–c that the critical flow pressures are 989 kPa, 1341 kPa and 1341 kPa when
M = 2, 4 and 6 respectively. That is to say, the results are almost same when M = 4 and 6,
Therefore, take M = 6 to ensure the correctness of the results.
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Figure 6 gives the waveform and phase diagrams of the plate under different airflows.
Figure 6a is the stable motions of the ZPR honeycomb sandwich plate when the airflow is
less than the critical flow pressure. When the airflow is equal to critical flow pressure in
Figure 6b, the plate shows periodic motions, which is called limit cycle. Figure 6c expresses
divergent motions when the airflow is larger than the critical flow pressure. The phase
diagram is an outward spiral as shown in the right side of Figure 6c.

Change the parameters of the zero Poisson’s ratio honeycomb sandwich plate and
study the influence of these parameters on the flutter characteristics of the plate. Table 8
shows the critical dynamic flow pressure and the corresponding core thickness ratio. The
thickness of the plate h = 10 mm, t = 1 mm, other parameters are same as that of Figure 5. As
the core thickness ratio increases, that is, the total thickness of the plate remains unchanged,
when the thickness of the core layer increases and the thickness of the skins decreases, the
critical dynamic flow pressure for flutter of the plate gradually decreases.

Table 8. Flow pressures with core thickness ration change.

Core thickness ratios hc/h 0.7 0.75 0.8 0.85 0.9 0.95

Flow pressure P∞ (kpa) 3321 2911 2441 1921 1351 701

Changing the thickness of honeycomb wall, with the same other parameters as those
of Figure 5, the corresponding critical dynamic flow pressures are shown as in Table 9. It
can be obtained from Table 9 that as the wall thickness of the honeycomb cell increases, the
critical dynamic flow pressure of flutter first decreases and then increases. When the wall
thickness of the honeycomb cell is 1.5 mm, the critical dynamic pressure is the smallest.
The influence of wall thickness t is smaller than that of core thickness ratio.
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Table 9. Flow pressures with wall thickness change.

Wall thickness t 0.5 mm 1 mm 1.5 mm 2 mm 2.5 mm 3 mm

Flow pressure P∞ (kpa) 1381 1351 1341 1351 1381 1441

With the angle θ changed and other parameters the same as those of Figure 5, the
critical dynamic flow pressures are shown as in Table 10. When the angle increases, the
critical dynamic flow pressure decreases slightly.

Table 10. Flow pressures with angle θ change.

Angle θ 15◦ 30◦ 45◦ 60◦

Flow pressure P∞ (kpa) 1381 1351 1311 1281

Changing the aspect ratio of the plate and with the other parameters the same as
that of Figure 5, the critical dynamic flow pressures are shown as in Table 11. It can be
obtained from Table 11 that as the length–width ratio b/a increases, the critical dynamic
flow pressure for flutter decreases. It is concluded that the critical dynamic flow pressure
of the square plate is larger than that of the rectangular plate under the boundary condition
of four sides simply supported.
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Table 11. Flow pressures with length–width ratio change.

length–width ratio b/a 1 1.5 2 2.5 3

Flow pressure P∞ (kpa) 1351 1061 981 941 921

By comparing the flutter characteristics of the honeycomb sandwich plate with zero
Poisson’s ratio under different parameters, it can be found that the core thickness ratio has
great influence on the critical flutter pressure, and the honeycomb cell wall thickness and
cell inclination have a small influence on the critical flutter pressure and the square plate
has better stability in supersonic airflow under four sides simply supported boundary.

6. Conclusions

The vibrations and flutter of a honeycomb sandwich plate with zero Poisson’s ratio
are investigated. The equivalent elastic parameters of the hexagonal ZPR honeycomb core
are derived and then the dynamical model of the plate is established. The main conclusions
are as follows:

1. The validity of the equivalent parameters for the ZPR honeycomb core layer and the
sandwich plate model is verified by finite element. The concave hexagonal shape plays
a leading role in the hybrid AuxHex honeycomb when force is applied in y direction.

2. The natural frequencies of the sandwich plate are compared when the Poisson’s
ratios of the core layer are positive, negative and zero, respectively, with the other
parameters of the plate remaining the same. The frequencies of the ZPR plate are in
the middle and the auxetic plates are the smallest.

3. The change of the natural frequencies of the sandwich plate with the variety of core
thickness ratio and length–width ratio of the plate are obtained, with the variety of
the honeycomb cells including the length of walls, the angle of walls and the thickness
of walls, respectively.

4. The critical dynamic pressure of flutter of the honeycomb sandwich plate is calculated.
The critical dynamic pressures decrease when the core thickness ratio and length-
width ratio increase, respectively. The critical dynamic pressure decreases first and
then increases when the thickness of wall increases.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z. and Z.Y.; software, Z.Y.; validation,
J.Z., Z.Y. and L.X.; formal analysis, J.Z. and L.X.; investigation, J.Z. and Z.Y.; resources, J.Z. and L.X.;
data curation, Z.Y. and L.X.; writing—original draft preparation, J.Z. and Z.Y.; writing—review and
editing, J.Z. and L.X.; supervision, J.Z.; funding acquisition, L.X. and J.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the support of National Natural Science Foundation
of China No. 12072041, No. 11732005, Hebei Provincial Natural Science Foundation of China No.
A2019202342.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yan, L.L.; Zhu, K.Y.; Chen, N.; Zheng, X.T.; Quaresimin, M. Energy-absorption characteristics of tube-reinforced absorbent

honeycomb sandwich structure. Compos. Struct. 2021, 255, 112946. [CrossRef]
2. Rapaka, S.D.; Pandey, M.; Annabattula, R.K. Dynamic compressive behaviour of auxetic and non-auxetic hexagonal honeycombs

with entrapped gas. Int. J. Impact Eng. 2020, 146, 103718. [CrossRef]
3. Rahman, O.; Koohbor, B. Optimization of energy absorption performance of polymer honeycombs by density gradation.

Composites Part C: Open Access 2020, 3, 100052. [CrossRef]

http://doi.org/10.1016/j.compstruct.2020.112946
http://doi.org/10.1016/j.ijimpeng.2020.103718
http://doi.org/10.1016/j.jcomc.2020.100052


Mathematics 2021, 9, 2528 16 of 16

4. Zhang, X.C.; An, C.C.; Shen, Z.F.; Wu, H.X.; Yang, W.G.; Bai, J.P. Dynamic crushing responses of bio-inspired re-entrant auxetic
honeycombs under in-plane impact loading. Mater. Today Commun. 2020, 23, 100918. [CrossRef]

5. Zhang, X.C.; An, L.Q.; Ding, H.M.; Zhu, X.Y.; El-Rich, M. The influence of cell micro-structure on the in-plane dynamic crushing
of honeycombs with negative Poisson’s ratio. J. Sandw. Struct. Mater. 2015, 17, 26–55. [CrossRef]

6. Jin, Y.; Shi, Y.G.; Yu, C.; Wei, G.T.; Hua, B.; Wu, L.Z. A multifunctional honeycomb meta-structure for vibration suppression. Int. J.
Mech. Sci. 2020, 188, 105964. [CrossRef]

7. Olympio, K.R.; Gandhi, F. Flexible Skins for Morphing Aircraft Using Cellular Honeycomb Cores. J. Intell. Mater. Syst. Struct.
2010, 21, 1719–1735. [CrossRef]

8. Chen, J.J.; Shen, X.; Li, J.F. Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing. Aerosp. Sci. Technol.
2015, 45, 228–241. [CrossRef]

9. Bubert, E.B.; Woods, K.S.; Lee, K.; Kothera, C.S. Design and fabrication of a passive 1D morphing aircraft skin. J. Intell. Mater.
Syst. Struct. 2010, 21, 1699–1717. [CrossRef]

10. Zou, T.T.; Zhou, L. Mechanical property analysis and experimental demonstration of zero Poisson’s ratio mixed cruciform
honeycomb. Mater. Res. Express 2017, 4, 045702. [CrossRef]

11. Liu, W.D.; Li, H.L.; Zhang, J.; Li, H.D. Elastic properties of a novel cellular structure with trapezoidal beams. Aerosp. Sci. Technol.
2018, 75, 315–328. [CrossRef]

12. Huang, J.; Gong, X.B.; Zhang, Q.H.; Scarpa, F.; Liu, Y.J.; Leng, J.S. In-plane mechanics of a novel zero poisson’s ratio honeycomb
core. Compos. Part B 2016, 89, 67–76. [CrossRef]

13. Huang, J.; Zhang, Q.H.; Scarpab, F.; Liu, Y.J.; Leng, J.S. Multi-stiffness topology optimization of zero poisson’s ratio cellular
structures. Compos. Part B 2018, 140, 35–43. [CrossRef]

14. Xu, M.C.; Xu, Z.R.; Zhang, Z.; Lei, H.S.; Bai, Y.C.; Fang, D.N. Mechanical properties and energy absorption capability of AuxHex
structure under in-plane compression: Theoretical and experimental studies. Int. J. Mech. Sci. 2019, 159, 43–57. [CrossRef]

15. Xu, M.C.; Liu, D.B.; Wang, P.D.; Zhang, Z.; Jia, H.R.; Lei, H.S.; Fang, D.N. In-plane compression behavior of hybrid honeycomb
metastructures: Theoretical and experimental studies. Aerosp. Sci. Technol. 2020, 106, 106081. [CrossRef]

16. Wu, H.X.; Zhang, X.C.; Liu, Y. In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson’s ratio.
Thin-Walled Struct. 2020, 151, 106767. [CrossRef]

17. Wang, Y.J.; Zhang, Z.J.; Xue, X.M.; Zhang, L. Free vibration analysis of composite sandwich panels with hierarchical honeycomb
sandwich core. Thin-Walled Struct. 2019, 145, 106425. [CrossRef]

18. Zhang, Z.J.; Han, B.; Zhang, Q.C.; Jin, F. Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores.
Compos. Struct. 2017, 171, 335–344. [CrossRef]

19. Wang, X.C.; Yang, Z.C.; Chen, Z.L.; Gu, Y.S.; Wang, W.Q.; Zhao, Y.; Wang, Y.M. Study on coupled modes panel flutter stability
using an energy method. J. Sound Vib. 2020, 468, 115051. [CrossRef]

20. Guimarães, T.A.M.; Marques, F.D.; Ferreira, A.J.M. On the modeling of nonlinear supersonic flutter of multibay composite panels.
Compos. Struct. 2020, 232, 111522. [CrossRef]

21. Song, Z.G.; Chen, Y.Y.; Li, Z.Y.; Sha, J.C.; Li, F.M. Axially functionally graded beams and panels in supersonic airflow and their
excellent capability for passive flutter suppression. Aerosp. Sci. Technol. 2019, 92, 668–675. [CrossRef]

22. Mahmoudkhani, S. Aerothermoelastic analysis of imperfect FG cylindrical shells in supersonic flow. Compos. Struct. 2019, 225,
111160. [CrossRef]

23. Dhital, K.; Han, J.H. Panel flutter emulation using a few concentrated forces. Int. J. Aeronaut. Space Sci. 2018, 19, 80–88. [CrossRef]
24. Torabi, K.; Afshari, H.; Aboutalebi, F.H. Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J.

Sandw. Struct. Mater. 2017, 21, 109963621772874. [CrossRef]
25. Saidi, A.R.; Bahaadini, R.; Majidi-Mozafari, K. On vibration and stability analysis of porous plates reinforced by graphene

platelets under aerodynamical loading. Compos. Part B 2019, 164, 778–799. [CrossRef]
26. Zhang, W.; Chen, L.L.; Guo, X.Y.; Sun, L. Nonlinear dynamical behaviors of deploying wings in subsonic air flow. J. Fluids Struct.

2017, 74, 340–355. [CrossRef]
27. Ma, L.; Yao, M.H.; Zhang, W.; Cao, D.X. Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic

airflow. Appl. Math. Mech. Engl. Ed. 2020, 41, 1861–1880. [CrossRef]
28. Hao, Y.X.; Niu, Y.; Zhang, W.; Li, S.B.; Yao, M.H.; Wang, A.W. Supersonic flutter analysis of FGM shallow conical panel accounting

for thermal effects. Meccanica 2018, 53, 95–109. [CrossRef]
29. Yang, S.W.; Zhang, W.; Hao, Y.X.; Niu, Y. Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane

force along meridian near internal resonances. Thin-Walled Struct. 2019, 142, 369–391. [CrossRef]
30. Olympio, K.R.; Gandhi, F. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. J. Intell.

Mater. Syst. Struct. 2010, 21, 1737–1753. [CrossRef]
31. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997.

http://doi.org/10.1016/j.mtcomm.2020.100918
http://doi.org/10.1177/1099636214554180
http://doi.org/10.1016/j.ijmecsci.2020.105964
http://doi.org/10.1177/1045389X09350331
http://doi.org/10.1016/j.ast.2015.05.011
http://doi.org/10.1177/1045389X10378777
http://doi.org/10.1088/2053-1591/aa675c
http://doi.org/10.1016/j.ast.2018.01.020
http://doi.org/10.1016/j.compositesb.2015.11.032
http://doi.org/10.1016/j.compositesb.2017.12.014
http://doi.org/10.1016/j.ijmecsci.2019.05.044
http://doi.org/10.1016/j.ast.2020.106081
http://doi.org/10.1016/j.tws.2020.106767
http://doi.org/10.1016/j.tws.2019.106425
http://doi.org/10.1016/j.compstruct.2017.03.045
http://doi.org/10.1016/j.jsv.2019.115051
http://doi.org/10.1016/j.compstruct.2019.111522
http://doi.org/10.1016/j.ast.2019.06.042
http://doi.org/10.1016/j.compstruct.2019.111160
http://doi.org/10.1007/s42405-018-0009-3
http://doi.org/10.1177/1099636217728746
http://doi.org/10.1016/j.compositesb.2019.01.074
http://doi.org/10.1016/j.jfluidstructs.2017.04.006
http://doi.org/10.1007/s10483-020-2668-8
http://doi.org/10.1007/s11012-017-0715-0
http://doi.org/10.1016/j.tws.2019.04.024
http://doi.org/10.1177/1045389X09355664

	Introduction 
	Equations of Motion 
	Calculation of Equivalent Elastic Parameters 
	Vibrational Frequencies of ZPR Honeycomb Plate 
	Flutter Analysis under Aerodynamic Forces 
	Conclusions 
	References

