
mathematics

Article

Definition Extraction from Generic and Mathematical Domains
with Deep Ensemble Learning

Natalia Vanetik *,† and Marina Litvak *,†

����������
�������

Citation: Vanetik, N.; Litvak, M.

Definition Extraction from Generic

and Mathematical Domains with

Deep Ensemble Learning.

Mathematics 2021, 9, 2502. https://

doi.org/10.3390/math9192502

Academic Editors: Cornelia Caragea

and Florentina Hristea

Received: 1 September 2021

Accepted: 1 October 2021

Published: 6 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Software Engineering Department, Shamoon College of Engineering, Bialik 56, Beer Sheva 8434231, Israel
* Correspondence: natalyav@sce.ac.il (N.V.); marinal@ac.sce.ac.il (M.L.)
† These authors contributed equally to this work.

Abstract: Definitions are extremely important for efficient learning of new materials. In particular,
mathematical definitions are necessary for understanding mathematics-related areas. Automated
extraction of definitions could be very useful for automated indexing educational materials, building
taxonomies of relevant concepts, and more. For definitions that are contained within a single sentence,
this problem can be viewed as a binary classification of sentences into definitions and non-definitions.
In this paper, we focus on automatic detection of one-sentence definitions in mathematical and general
texts. We experiment with different classification models arranged in an ensemble and applied to a
sentence representation containing syntactic and semantic information, to classify sentences. Our
ensemble model is applied to the data adjusted with oversampling. Our experiments demonstrate the
superiority of our approach over state-of-the-art methods in both general and mathematical domains.

Keywords: definition extraction; deep learning; ensemble; mathematical domain

1. Introduction

Definitions play a very important role in scientific and educational literature because
they define the major concepts that are operated inside the text. Despite mathematical
and generic definitions being pretty similar in their linguistic style (see the example of
two definitions below: the first, defining ASCII, is general, while the second defines
mathematical object), supervised identification of mathematical definitions benefits from a
training on a mathematical domain, as we previously showed in [1].

Definition 1. American Standard Code for Information Interchange, also called ASCII, is a
character encoding based on English alphabet.

Definition 2. The magnitude of a number, also called its absolute value, is its distance from zero.

Naturally, we expect to find mathematical definitions in mathematical articles, which
frequently use formulas and notations in both definitions and surrounding text. The
number of words in mathematical text is smaller than in standard text due to the formulas
that are used to express the former. The mere presence of formulas is not a good indicator
of a definition sentence because the surrounding sentences may also use notations and
formulas. As an example of such text, Definition 3, below, contains a definition from
Wolfram MathWorld. Only the first sentence in this text is considered a definition sentence,
even though other sentences also contain mathematical notations.

Definition 3. A finite field is a field with a finite field order (i.e., number of elements), also called
a Galois field. The order of a finite field is always a prime or a power of a prime. For each prime
power, there exists exactly one (with the usual caveat that "exactly one" means "exactly one up to
an isomorphism") finite field GF(pn), often written as Fpn in current usage.

Mathematics 2021, 9, 2502. https://doi.org/10.3390/math9192502 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4939-1415
https://orcid.org/0000-0003-3044-3681
https://doi.org/10.3390/math9192502
https://doi.org/10.3390/math9192502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192502
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192502?type=check_update&version=2

Mathematics 2021, 9, 2502 2 of 18

Definition extraction (DE) is a challenging and popular task today, as shown by a recent
research call at SemEval-2020 shows (https://competitions.codalab.org/competitions/20900,
accessed on 1 September 2021).

Multiple current methods for automatic DE view it as a binary classification task, where
a sentence is classified as a definition or a non-definition. A supervised learning process is
usually applied for this task, employing feature engineering for sentence representation.
However, all recently published works study generic definitions, without evaluation of
their methods on mathematical texts.

In this paper, we describe a supervised learning method for automatic DE from both
generic and mathematical texts. Our method applies ensemble learning to adjusted-by-
oversampling data, where 12 deep neural network-based models are trained on a dataset
with labeled definitions and then applied on test sentences. The final label of a sentence is
decided by the ensemble voting.

Our method is evaluated on four different corpora; three for generic DE and one is an
annotated corpus of mathematical definitions.

The main contributions of this paper are (1) the introduction of a new corpus of
mathematical texts with annotated sentences and (2) an evaluation of an ensemble learning
model for the DE task, (3) an evaluation of the introduced ensemble learning model on a
general and mathematical domains, including (4) cross-domain experiments. We performed
extensive experiments with different ensemble models on four datasets, including the
introduced one. Our experiments demonstrate the superiority of our model for the three
out of four datasets, belonging to two different domains. The paper is organized as follows.
Section 2 contains a survey of up-to-date related work. Section 3 describes our approach.
Section 4 provides the evaluation results and their analysis. Finally, Section 5 contains
our conclusions.

2. Related Work

Definition extraction has been a popular topic in NLP research for more than a
decade [2], and it remains a challenging and popular task today as a recent research call
at SemEval-2020 show. Prior work in the field of DE can be divided into three main
categories: (1) rule-based methods, (2) machine-learning methods relying on manual
feature engineering, and (3) methods that use deep learning techniques.

Early works about DE from text documents belong to the first category. These works rely
mainly on manually crafted rules based on linguistic parameters. Klavans and Muresan [3]
presented the DEFINDER, a rule-based system that mines consumer-oriented full text
articles to extract definitions and the terms they define; the system is evaluated on
definitions from on-line dictionaries such as the UMLS Metathesaurus [4]. Xu et al. [2]
used various linguistic tools to extract kernel facts for the definitional question-answering
task in Text REtrieval Conference (TREC) 2003. Malaise et al. [5] used semantic relations to
mine defining expressions in domain-specific corpora, thus detecting semantic relations
between the main terms in definitions. This work is evaluated on corpora from fields of
anthropology and dietetics. Saggion and Gaizauskas [6], Saggion [7] employed analysis of
on-line sources to find lists of relevant secondary terms that frequently occur together with
the definiendum in definition-bearing passages. Storrer and Wellinghoff [8] proposed a
system that automatically detects and annotates definitions for technical terms in German
text corpora. Their approach focuses on verbs that typically appear in definitions by
specifying search patterns based on the valency frames of definitor verbs. Borg et al. [9]
extracted definitions from nontechnical texts using genetic programming to learn the typical
linguistic forms of definitions and then using a genetic algorithm to learn the relative
importance of these forms. Most of these methods suffer from both low recall and precision
(below 70%), because definition sentences occur in highly variable and noisy syntactic
structures.

The second category of DE algorithms relies on semi-supervised and supervised
machine learning that use semantic and other features to extract definitions. This approach

https://competitions.codalab.org/competitions/20900

Mathematics 2021, 9, 2502 3 of 18

generates DE rules automatically but relies on feature engineering to do so. Fahmi and
Bouma [10] presented an approach to learning concept definitions from fully parsed text
with a maximum entropy classifier incorporating various syntactic features; they tested
this approach on a subcorpus of the Dutch version of Wikipedia. In [11], a pattern-based
glossary candidate detector, which is capable of extracting definitions in eight languages,
was presented. Westerhout [12] described a combined approach that first filters corpus
with a definition-oriented grammar, and then applies machine learning to improve the
results obtained with the grammar. The proposed algorithm was evaluated on a collection
of Dutch texts about computing and e-learning. Navigli and Velardi [13] used Word-Class
Lattices (WCLs), a generalization of word lattices, to model textual definitions. The authors
introduced a new dataset called WCL that was used for the experiments. They achieved a
75.23% F1 score on this dataset. Reiplinger et al. [14] compared lexico-syntactic pattern
bootstrapping and deep analysis. The manual rating experiment suggested that the concept
of definition quality in a specialized domain is largely subjective, with a 0.65 agreement
score between raters. The DefMiner system, proposed in [15], used Conditional Random
Fields (CRF) to predict the function of a word and to determine whether this word is a
part of a definition. The system was evaluated on a W00 dataset [15], which is a manually
annotated subset of ACL Anthology Reference Corpus (ACL ARC) ontology. Boella
and Di Caro [16] proposed a technique that only uses syntactic dependencies between
terms extracted with a syntactic parser and then transforms syntactic contexts to abstract
representations to use a Support Vector Machine (SVM). Anke et al. [17] proposed a weakly
supervised bootstrapping approach for identifying textual definitions with higher linguistic
variability. Anke and Saggion [18] presented a supervised approach to DE in which only
syntactic features derived from dependency relations are used.

Algorithms in the third category use Deep Learning (DL) techniques for DE, often
incorporating syntactic features into the network structure. Li et al. [19] used Long
Short-Term Memory (LSTM) and word vectors to identify definitions and then tested this
approach on the English and Chinese texts. Their method achieved a 91.2% F-measure on
the WCL dataset. Anke and Schockaert [20] combined Convolutional Neural Network
(CNN) and LSTM, based on syntactic features and word vector representation of sentences.
Their experiments showed the best F1 score (94.2%) on the WCL dataset for CNN and the
best F1 score (57.4%) on the W00 dataset for the CNN and Bidirectional LSTM (BLSTM)
combination, both with syntactically enriched sentence representation. Word embedding,
when used as the input representation, have been shown to boost the performance in
many NLP tasks, due to its ability to encode semantics. We believe that a choice to use
word vectors as input representation in many DE works was motivated by its success in
NLP-related classification tasks.

We use the approach of [20] as a starting point and as a baseline for our method. We
further extend this work by (1) additional syntactic knowledge in a sentence representation
model, (2) testing additional network architectures, (3) combining 12 configurations (that
were the result of different input representations and architectures) in a joint ensemble
model, and (4) evaluation of the proposed methodology on a new dataset of mathematical
texts. As previously shown in our and others’ works [1,20], dependency parsing can add
valuable features to the sentence representation in the DE task, including mathematical DE.
The same works showed that a standard convolutional layer can be sufficiently applied to
automatically extract the most significant features from the extended representation model,
which improves accuracy for the classification task. Word embedding matrices enhanced
with dependency information naturally call for CNN due to their size and CNN’s ability
to decrease dimensionality swiftly. On the other hand, sentences are sequences for which
LSTM is naturally suitable. In [1], we explored how the order of the CNN and LSTM layers
and the input representation affect the results. To do that, we evaluated and compared
between 12 configurations (see Section 3.3). As result, we obtained a conclusion that CNN
and its combination with LSTM, applied on a syntactically enriched input representation,

Mathematics 2021, 9, 2502 4 of 18

outperform other configurations. However, as we show in our experimental evaluation
(see Section 4), all the models individually are inferior to the ensemble approach.

Following recent research demonstrating the superiority of pretrained language
models on many NLP tasks, including DE [21,22], we apply fine-tuned BERT [23,24] on our
data and compare its results with the results of the proposed method.

3. Method

This section describes out method, including representation of input sentences,
individual composition models, and their combination through ensemble learning.

3.1. Sentence Representation

First, we generate a sentence matrix from word vectors of its words as follows. Every
word w is represented by its k = 300-dimensional word vector ~w [25], and all sentences are
assumed as having the same length n, using zero padding where necessary; as a result, we
obtain a sentence matrix denoted by Sn×k.

Then, we generate the following three syntactically enriched representations:

1. (m)—an extension of matrix Sn×k with the dependency information, where a depend-
ency is represented by the average of word vectors of the two words participating in
it as:

m = Sn×k ◦ [~ri j
avg

]i j

2. (ml)—an extension of (m) with one-hot encoding of dependency labels between pairs
of words [20]; formally, it includes the average of word vectors of dependency words,
and dependency label representations as follows:

ml = Sn×k ◦ [~ri j
avg
◦ depij]i j

3. (mld)—it is composed of the full dependency information, including concatenation
of word vectors for dependency words, dependency label, and dependency depth. In
contrast to the first two representations, (mld) does not contain the matrix Sn×k itself,
but only the dependency information as follows:

mld = [~wi ◦ ~w j ◦ depij ◦ depthij]i j

The dependency representations in the input configurations described above, are
depicted in Figure 1. All input vectors are zero-pad to compensate for vector size
differences. In all representations we use fastText vectors pretrained on English webcrawl
and Wikipedia [26], based on our observation in [1] about superiority of fastText vectors
over other pretrained word vectors.

vector ~ri j
avg := 1

2 (~wi + ~w j)(m)

300

vector ~ri j
avg := 1

2 (~wi + ~w j) depi j(ml)

300 46

word vector ~wi word vector ~w j depi j depthi j(mld)

300 300 46 1

Figure 1. Dependency representation for input configurations (m), (ml) and (mld).

Mathematics 2021, 9, 2502 5 of 18

3.2. Composition NN Models

We use the approach of Anke and Schockaert [20] as a starting point and as a baseline
for our method. We further extend this work by additional syntactic knowledge in a
sentence representation model, and by additional changes in network architectures, based
on [1]. We experiment with two layers: convolutional layer which can help to automatically
extract the most significant features before performing the classification task (given big
matrices representing sentences with word vectors and syntax features) and Bidirectional
LSTM layer which is very suitable for sentences as sequences. We use four neural models:

1. Pure 2-dimensional CNN model,
2. Pure Bidirectional LSTM model,
3. Mixed model with a CNN layer followed by a Bidirectional LSTM layer, denoted by

CNN_LSTM (see Figure 2),
4. Mixed model with a Bidirectional LSTM layer followed by a CNN layer, denoted by

LSTM_CNN (see Figure 3).

Every one of those models is used in conjunction with the three sentence representations
described in Section 3.1, giving us total of 12 models.

sentence
matrix

convolutional
layer

maxpooling

dropout

BiLSTM

fully connected
flattened layer

output neuron with
sigmoid activation

Figure 2. CNN_LSTM network architecture.

sentence
matrix

BiLSTM convolutional
layer

maxpooling

dropout fully connected
flattened layer

output neuron with
sigmoid activation

Figure 3. LSTM_CNN network architecture.

The intuition behind using mixed models is supported by known benefits of their
composition layers—CNN can automatically extract features, while LSTM is a classification
model that is context-aware. The experiment, performed in [1], was aimed to examine which
order of layers is beneficial for the DE task—first to extract features from the original input
and then feed them to the context-aware classifier, or first to calculate hidden states with
context-aware LSTM gates and then feed them into CNN classifier for feature extraction
before the classification layer. The results demonstrated the superiority of models with a
CNN layer, which can be explained by the ability of CNN to learn features and reduce the
number of free parameters in a high-dimensional sentence representation, allowing the
network to be more accurate with fewer parameters. Due to a high-dimensional input in
our task (also in context-aware representation, produced by LSTM gates), this characteristic
of CNN appears to be very helpful.

Mathematics 2021, 9, 2502 6 of 18

3.3. Ensemble Pipeline

Given two basic models, two different combinations of CNN and LSTM layers, and three
variations of the sentence representation, we finally obtain 12 different models which are
trained and then applied separately on the test sentences. We have applied oversampling
with a ’minority’ setting to a dataset (It is worth noting that a general practice of changing
class weights in all the models did not result in accuracy improvement in our experiments.).
To produce a final label for each test sentence, ensemble voting was applied. Figure 4 depicts
the pipeline of our approach. We tried different supervised models for ensemble voting,
which we describe in the Experiments section. The dataset (denoted as data X in Figure 4)
was split in the following manner: 70% and 5% of the dataset was used for training and
validation of the individual models, respectively. Then, the trained individual models
were applied on 25% of the X data (denoted as Y in Figure 4), while the entire Y data were
further split as follows: 5% of the X data (or 20% of Y) were used as a training set and 20%
of X (equals to 80% of Y) as a test set for the ensemble model.

Train set,
70% of the X data

Validation set,
5% of the X data

NN model #1

NN model #12

...

train

validate

Ensemble train
and test set (Y),
25% of the X data

predict

predict

Ensemble test set,
20% of the X data
(80% of Y)

Ensemble train set,
5% of the X data
(20% of Y)

12 model labels

Ensemble classifier

evaluate

Figure 4. Pipeline of our approach for ensemble learning.

To see the advantage of our ensemble approach, we also evaluated every one of the
12 neural models individually on the data after oversampling. The pipeline of individual
model evaluation is depicted in Figure 5.

Train set,
75% of the data

Validation set,
5% of the data

Neural model

train

validate

Test set,
20% of the data

evaluate on

Figure 5. Evaluation pipeline for individual NN models.

4. Experiments

Our experiments aim at testing our hypothesis about superiority of the ensemble of
all 12 composition models over single models and SOTA baselines.

Based on the feature analysis described in Section 4.8, we decided to employ all 12
configurations as composition models and, based on the observations from our previous
work [1], we use pretrained fastText (further denoted by FT) word embedding in all of them.

Tests were performed on a cloud server with 32 GB of RAM, 150 GB of PAGE memory,
an Intel Core I7-7500U 2.70 GHz CPU, and two NVIDIA GK210GL GPUs.

4.1. Tools

The models were implemented with help of the following tools: (1) Stanford CoreNLP
wrapper [27] for Python (tokenization, sentence boundary detection, and dependency
parsing), (2) Keras [28] with Tensorflow [29] as a back-end (NN models), (3) fastText vectors

Mathematics 2021, 9, 2502 7 of 18

pretrained on English webcrawl and Wikipedia [26], (4) Scikit-Learn [30] (evaluation with
F1, recall, and precision metrics), (5) fine-tunable BERT python package [24] available at
https://github.com/strongio/keras-elmo (accessed on 1 September 2021), and (6) WEKA
software [31]. All neural models were trained with batch size 32 and 10 epochs.

4.2. Datasets

In our work we use the following four datasets–DEFT, W00, WCL, and WFMALL–that
are described below. The dataset domain, number of sentences for each class, majority vote
values, total number of words, and number of words with non-zero fastText (denoted by
FT) word vectors are given in Table 1.

Table 1. Dataset statistics.

Dataset Domain Definitions Non-
Definitions Majority Words Covered

by FT

WCL General 1871 2847 0.603 21,297 16,645
DEFT General 562 1156 0.673 7644 7350
W00 General 731 1454 0.665 8261 7003

WFMALL Math 1934 4206 0.685 13,138 8238

4.2.1. The WCL Dataset

The World-Class Lattices (WCL) dataset [32] was introduced in [33]. It is constructed
from manually annotated Wikipedia articles in English. We used the WCL v1.2 version
that contains 4719 annotated sentences, 1871 of which are proper definitions and 2847
are distractor sentences that have similar structures with proper definitions, but are not
actually definitions. This dataset focuses on generic definitions in various areas. A sample
definition sentence from this dataset is

American Standard Code for Information Interchange (TARGET) is a character encod-
ing based on English alphabet.

and a sample distractor is

The premise of the program revolves around TARGET, Parker an 18-year-old country
girl who moves back and forth between her country family, who lives on a bayou
houseboat, and the wealthy Brents, who own a plantation and pancake business.

WCL contains the following annotations: (1) the DEFINIENDUM field (DF), referring
to the word being defined and its modifiers, (2) the DEFINITOR field (VF), referring to the
verb phrase used to introduce a definition, (3) the DEFINIENS field (GF) which includes
the genus phrase, and (4) the REST field (RF), which indicates all additional sentence
parts. According to the dataset description, existence of the first three fields indicates that a
sentence is a definition.

4.2.2. The DEFT Dataset

The DEFT corpus, proposed in [34], consists of annotated content from two different
data sources: various 2017 SEC contract filings from the publicly available US Securities
and Exchange Commission EDGAR (SEC) database, and sentences from the https://cnx.org/
open source textbooks (accessed on 1 September 2021). The partial corpus is available for
download from GitHub at https://github.com/adobe-research/deft_corpus (accessed on 1
September 2021). We have used this part of the DEFT corpus in our experiments; it contains
562 definition sentences and 1156 non-definition sentences. A sample definition sentence
from this dataset is

A hallucination is a perceptual experience that occurs in the absence of external stimulation.

and a sample non-definition sentence is

https://github.com/strongio/keras-elmo
https://github.com/strongio/keras-elmo
https://cnx.org/
https://github.com/adobe-research/deft_corpus

Mathematics 2021, 9, 2502 8 of 18

In monocots, petals usually number three or multiples of three; in dicots, the number of
petals is four or five, or multiples of four and five.

4.2.3. The W00 Dataset

The W00 dataset [35], introduced in [15], was compiled from ACL ARC ontology [36]
and contains 2185 manually annotated sentences, with 731 definitions and 1454 non-
definitions; the style of the distractors is different from the one used in the WCL dataset. A
sample definition sentence from this dataset is

Our system, SNS (pronounced “essence”), retrieves documents to an unrestricted user
query and summarizes a subset of them as selected by the user.

and a sample distractor is

The senses with the highest confidence scores are the senses that contribute the most to
the function for the set.

Annotation of the W00 dataset is token-based, with each token in a sentence identified
by a single label that indicates whether a token is a part of a term (T), a definition (D),
or neither (O). According to the original annotation, a sentence is considered not to be a
definition if all its tokens are marked as O. Sentence that contains tokens marked as T or D
is considered to be a definition.

4.2.4. The WFMALL Dataset

The WFMALL dataset is an extension of the WFM dataset [37], introduced by us
in [1]. It was created by us after collecting and processing all 2352 articles from Wolfram
Mathworld [38]. The final dataset contains 6140 sentences, of which 1934 are definitions
and 4206 are non-definitions. Sentences were extracted automatically and then manually
separated into two categories: definitions and statements (non-definitions). All annotators
(five in total) have at least BSc degree and learned academic mathematical courses (research
group members, including three research students). The data were semi-automatically
segmented to sentences with Stanford CoreNLP package and then manually assessed. All
malformed sentences (as result of wrong segmentation) were fixed, 116 very short sentences
(with less than 3 words) were removed. All sentences related to Wolfram Language (
https://en.wikipedia.org/wiki/Wolfram_Language, accessed on 1 September 2021) were
removed because they relate to a programming language and describe how mathematical
objects are expressed in this language, and not how they are defined. Sentences with
formulas only, without text, were also removed. The final dataset was split to nine portions,
saved as Unicode text files. Three annotators worked on each portion. First, two annotators
labeled sentences independently. Then, all sentences that were given different labels were
finally annotated by the third annotator (controller) (We decided that a label with majority
vote will be selected. Therefore, the third annotator (controller) labeled only the sentences
with contradict labels.). The final label was set by majority vote. The Kappa agreement
between annotators was 0.651, which is considered substantial agreement.

This dataset is freely available for download from GitHub (https://drive.google.
com/drive/folders/1052akYuxgc2kbHH8tkMw4ikBFafIW0tK?usp=sharing, accessed on 1
September 2021). A sample definition sentence from this dataset is

The (7, 3, 2)-von Dyck group, also sometimes termed the (2, 3, 7)-von Dyck group, is
defined as the von Dyck group with parameters (7, 3, 2).

and a sample non-definition is

Any 2-Engel group must be a group of nilpotency class 3.

4.3. Evaluation Setup

Datasets were oversampled with the ’minority’ setting, and split to the NN training
set (70%), the NN validation set (5%), and the NN test set (25%). Then the labels of all
12 models on the NN test set were used to form the ensemble dataset, which was further
split into the ensemble training set (5% of the original data size) and the ensemble test set

https://en.wikipedia.org/wiki/Wolfram_Language
https://en.wikipedia.org/wiki/Wolfram_Language
https://drive.google.com/drive/folders/1052akYuxgc2kbHH8tkMw4ikBFafIW0tK?usp=sharing
https://drive.google.com/drive/folders/1052akYuxgc2kbHH8tkMw4ikBFafIW0tK?usp=sharing

Mathematics 2021, 9, 2502 9 of 18

(20% of the original data size). In this setting, we have a test set size identical to those of
baselines that used 75% training, 5% validation, and 20% test set split.

For the consistency of the experiment, it was important to us to keep the same training
and validation sets for individual models, whether as stand-alone or as composition
models in an ensemble. Additionally, all evaluated and compared models, including
ensemble, were evaluated on the same test set. Because ensemble models were trained
using traditional machine-learning algorithms, no validation set was needed for them.

4.4. Text Preprocessing

Regarding all four datasets described above, we applied the same text preprocessing
steps in the following manner:

• Sentence splitting was derived explicitly from the datasets, without applying any
additional procedure, in the following manner: DEFT, WCL, and W00 datasets
came pre-split, and sentence splitting for the new WFMALL dataset was performed
semi-automatically by our team (using Stanford CoreNLP SBD, followed by manual
correction, due to many formulas in the text).

• Tokenization and dependency parsing were performed on all sentences with the help
of the Stanford CoreNLP package [39].

• For the W00 datasets used in [20] for DE, we replaced parsing by SpaCy [40] with the
Stanford CoreNLP parser.

• We applied fastText [41] vectors pretrained on English webcrawl and Wikipedia
(available at [26]).

4.5. Baselines

We compared our results with five baselines:

• DefMiner [15], which uses Conditional Random Fields to detect definition words;
• BERT [23],[24], fine-tuned on the training subset of every dataset for the task of

sentence classification;
• CNN_LSTMml, proposed in [20];
• CNN_LSTMm, which is the top-ranked composition model on the adjusted WFMALL

dataset.
• CNN_LSTMmld, which is the top-ranked composition model on the adjusted W00

dataset.

We applied two supervised models for the ensemble voting: Linear Regression (LR)
and Random Forest (RF). The results reported here are the average over 10 runs, with
random reshuffling applied to the dataset each time (We did not apply a standard 10-fold
cross validation due to a non-standard proportion between a training and a test dataset.
Additionally, 10-fold cross validation was not applied on individual models, as it is not
a standard evaluation technique for deep NNs.). We also applied the majority voting,
denoted as Ensemble majority (Our code will be released once the paper is accepted).

4.6. Results for the Mathematical Domain

Table 2 contains the evaluation results (accuracy) for all systems on the WFMALL
dataset, with bold font indicating the best scores. It can be seen that (1) oversampling
improves performance of NN baselines and (2) all ensemble models outperform the baseline
systems and all the individual NN models.

Mathematics 2021, 9, 2502 10 of 18

Table 2. Final results for the WFMALL dataset.

Baseline Oversample Accuracy

Fine-tuned BERT no 0.760
Fine-tuned BERT yes 0.750
CNN_LSTMm no 0.860
CNN_LSTMml no 0.864
CNN_LSTMmld no 0.867
DefMiner N\A 0.704

Model Oversample Accuracy

CNNm yes 0.909
CNNml yes 0.913
CNNmld yes 0.884
CNN_LSTMm yes 0.922
CNN_LSTMml yes 0.917
CNN_LSTMmld yes 0.922
LSTMm yes 0.884
LSTMml yes 0.906
LSTMmld yes 0.916
LSTM_CNNm yes 0.901
LSTM_CNNml yes 0.891
LSTM_CNNmld yes 0.909

Ensemble majority yes 0.925
Ensemble LR yes 0.937
Ensemble RF yes 0.943

4.7. Results for the General Domain

To see that our approach may be used for general definitions as well, we have chosen
the WCL dataset [15], the W00 dataset [15] and the DEFT dataset [34]. The DefMiner
system (used here as one of the baselines) is the system that was first applied to W00, and
to this day it produced the best results on it; several systems that were suggested in the
literature [1,20,42], were unable to outperform the DefMiner system on W00.

Tables 3–5 contain the evaluation results (accuracy) for all systems on the W00, the
DEFT, and the WCL datasets, respectively; the best results are marked in bold. The tables
show that (1) oversampling significantly improves performance of NN baselines, resulting
in superiority over DefMiner on W00, and (2) the ensemble models (at least one of them)
significantly outperform all individual neural models and baselines, including DefMiner
and fine-tuned BERT.

The WCL dataset is considered to be an ’easy’ dataset with several proposed systems [20,34]
reporting accuracy of over 0.98 on this dataset; however, none of the methods suggested in
these works achieve similar results on more challenging datasets such as DEFT and W00.

Table 3. Final results for the W00 dataset.

Baseline Oversample Accuracy

Fine-tuned BERT no 0.670
Fine-tuned BERT yes 0.620
CNN_LSTMm no 0.709
CNN_LSTMml no 0.716
CNN_LSTMmld no 0.705
DefMiner N\A 0.819

Mathematics 2021, 9, 2502 11 of 18

Table 3. Cont.

Model Oversample Accuracy

CNNm yes 0.828
CNNml yes 0.825
CNNmld yes 0.825
CNN_LSTMm yes 0.817
CNN_LSTMml yes 0.799
CNN_LSTMmld yes 0.839
LSTMm yes 0.785
LSTMml yes 0.783
LSTMmld yes 0.812
LSTM_CNNm yes 0.772
LSTM_CNNml yes 0.791
LSTM_CNNmld yes 0.783

Ensemble majority yes 0.879
Ensemble LR yes 0.850
Ensemble RF yes 0.854

Table 4. Final results for the DEFT dataset.

Baseline Oversample Accuracy

Fine-tuned BERT no 0.670
Fine-tuned BERT yes 0.670
CNN_LSTMm no 0.719
CNN_LSTMml no 0.732
CNN_LSTMmld no 0.717
DefMiner N\A 0.710

Model Oversample Accuracy

CNNm yes 0.826
CNNml yes 0.819
CNNmld yes 0.853
CNN_LSTMm yes 0.850
CNN_LSTMml yes 0.839
CNN_LSTMmld yes 0.832
LSTMm yes 0.801
LSTMml yes 0.786
LSTMmld yes 0.824
LSTM_CNNm yes 0.789
LSTM_CNNml yes 0.824
LSTM_CNNmld yes 0.822

Ensemble majority yes 0.867
Ensemble LR yes 0.850
Ensemble RF yes 0.846

Table 5. Final results for the WCL dataset.

Baseline Oversample Accuracy

Fine-tuned BERT no 0.94
Fine-tuned BERT yes 0.95
CNN_LSTMm no 0.948
CNN_LSTMml no 0.947
CNN_LSTMmld no 0.945
DefMiner N\A 0.797

Mathematics 2021, 9, 2502 12 of 18

Table 5. Cont.

Model Oversample Accuracy

CNNm yes 0.955
CNNml yes 0.965
CNNmld yes 0.958
CNN_LSTMm yes 0.964
CNN_LSTMml yes 0.965
CNN_LSTMmld yes 0.956
LSTMm yes 0.950
LSTMml yes 0.950
LSTMmld yes 0.959
LSTM_CNNm yes 0.953
LSTM_CNNml yes 0.950
LSTM_CNNmld yes 0.957

Ensemble majority yes 0.972
Ensemble LR yes 0.963
Ensemble RF yes 0.972

4.8. Cross-Domain Results

We also conducted a cross-domain analysis using the best individual neural models and
ensemble models for every dataset in the mathematical and the general domains (Table 6); the
best scores are marked in bold.

The individual models were trained on data set X and tested on dataset Y, with X
coming from one domain and Y from another, as depicted in Figure 6. In this case, we
selected the individual neural model that was the most successful for the training dataset.

Train set,
75% of the X data

Validation set,
5% of the X data

Neural model

train

validate

Test set,
20% of the Y data

evaluate on

Figure 6. Pipeline of cross-domain evaluation of individual NN models for X (training) → Y
(test) datasets.

For the ensemble evaluation, we trained all 12 models and the ensemble classifier using
the same pipeline as in Section 3.3 on the training set (denoted as Dataset X in Figure 7). Then,
these 12 models produce the labels for both 5% of the Dataset X (20% from its test set that
is used for training ensemble weights) and 20% of the Dataset Y (its entire test set). The
ensemble model is trained on 5% of the Dataset X and applied on 20% of the Dataset Y,
using labels produced by 12 trained individual models.

To make this process fully compatible to an in-domain testing procedure (depicted in
Figures 4 and 5), we used the same dataset splits both for evaluation of individual models
(see Figure 6) and for evaluation of ensemble models (see Figure 7).

Mathematics 2021, 9, 2502 13 of 18

Train set,
70% of the X data

Validation set,
5% of the X data

NN model #1

NN model #12

...

train

validate

Ensemble train set
5% of the X data

predict

predict
Ensemble model

Ensemble test set,
20% of the Y data

train

evaluate

Figure 7. Pipeline of ensemble cross-domain evaluation for X (training)→ Y (test) datasets.

Table 6. Cross-domain tests.

Training→Test Model Resampling Accuracy

WCL→WFMALL CNN_LSTMml yes 0.754
Ensemble LR yes 0.633
Ensemble RF yes 0.661
Ensemble majority yes 0.656

W00→WFMALL CNN_LSTMmld yes 0.575
Ensemble LR yes 0.638
Ensemble RF yes 0.651
Ensemble majority yes 0.664

DEFT→WFMALL CNNml yes 0.761
Ensemble LR yes 0.581
Ensemble RF yes 0.592
Ensemble majority yes 0.620

WFMALL→WCL CNN_LSTMm yes 0.832
Ensemble LR yes 0.608
Ensemble RF yes 0.590
Ensemble majority yes 0.601

WFMALL→W00 CNN_LSTMm yes 0.700
Ensemble LR yes 0.666
Ensemble RF yes 0.691
Ensemble majority yes 0.709

WFMALL→DEFT CNN_LSTMm yes 0.738
Ensemble LR yes 0.605
Ensemble RF yes 0.634
Ensemble majority yes 0.659

As we can see from Table 6, all cases where the training set comes from one domain
and the test set is from another domain produce the significantly lower accuracy than that
reported in Tables 2–5. This is a testament to the fact that general definition domain and
mathematical domain are quite different.

4.9. Parameter Selection and Evaluation

Our work aimed to evaluate the effect of syntactic information for the task of definition
extraction. The prior work [20] in this field has demonstrated that relying on the word
information alone (such as word embedding) does not produce good results. Furthermore,
classification accuracy depends heavily on the dataset—higher accuracy scores are achieved
on the WCL dataset [32] by methods in [20] and [1] because both the word embeddings used
for the task and the data originate in Wikipedia. On other datasets such as DEFT, W00, and
our WFMALL accuracy scores of individual models (see Tables 2–5) are significantly lower.

To combat this situation, we experimented with different neural models and their
parameters, such as the number of layers, type of layers, learning rate, and so on. However,
the classification accuracy was only slightly affected by the change in these parameters—for

Mathematics 2021, 9, 2502 14 of 18

instance, increasing the number of training epochs above 15 did not improve the scores at
all. The final parameters we used for our neural models appear in Table 7.

Table 7. NN parameters for the individual models.

Parameter Value (s)

learning rate 0.01 (default)
number of layers and neurons one convolutional layer for the CNN and CNN_LSTM,

one bidirectional LSTM layer for LSTM and LSTM_CNN
activation sigmoid for the last layer, ReLU for the other layers

loss binary_crossentropy
regularization 0.01 for all regularization parameters

optimizer Adam
dropout 0.5

Furthermore, we incorporated syntactic information into our models using input
representations depicted in Figure 1. However, we observed that individual models rank
differently on different datasets, and there is no clear advantage in using one specific
syntactic representation because such a selection does not translate well across datasets.
Therefore, we decided to use the ensemble model to compensate for variation in the data,
and to use resampling to balance the data.

To analyze the importance and necessity of composition models in our ensemble, we
performed feature selection by evaluating the information gain of labels produced by each
model. The results are shown in Table 8 for the four datasets; the highest ranking attributes
are shown in bold. As can be seen, with one exception per dataset, all models with the first
or only CNN layer are ranked higher than other models. As such, we can conclude that
models that use CNN as their first layer are more successful and have higher influence
on the ensemble scores, but their exact influence also depends on a dataset. However,
feature backward elimination showed that all 12 models are necessary and produce the
best accuracy in ensemble. Eliminating individual models one by one from the ensemble
produced less accurate ensemble models.

Table 8. Information gain rankings for individual models within the ensemble model.

Model WFMALL W00 DEFT WCL

CNNm 0.585 0.349 0.349 0.735
CNNml 0.594 0.341 0.341 0.781
CNNmld 0.529 0.423 0.423 0.748
CNN_LSTMm 0.625 0.393 0.393 0.780
CNN_LSTMml 0.606 0.368 0.368 0.782
CNN_LSTMmld 0.609 0.362 0.362 0.741
LSTMm 0.507 0.296 0.269 0.714
LSTMml 0.557 0.269 0.296 0.718
LSTMmld 0.584 0.328 0.328 0.755
LSTM_CNNm 0.549 0.285 0.285 0.726
LSTM_CNNml 0.538 0.346 0.346 0.715
LSTM_CNNmld 0.576 0.338 0.338 0.746

4.10. Error Analysis

We tried to understand which sentences represented difficult cases for our models.
During annotation process, we found that multiple sentences were assigned different labels
by different annotators. Finally, the label for such sentences was decided by majority voting,
but all annotators agreed that the decision was not unambiguous. Based on our observation
and manual analysis, we believe that most of the false positive and false negative cases
were created by such sentences. We categorized these sentences to the following cases:

1. Sentences describing properties of a mathematical object. Example (annotated (gold
standard label = “definition”) as definition):

Mathematics 2021, 9, 2502 15 of 18

An extremum may be local (a.k.a. a relative extremum); an extremum in a given
region which is not the overall maximum or minimum) or global.

We did not instruct our annotators regarding labeling this sentence type and let them
make decisions based on their knowledge and intuition. As result, this sentence type
received different labels from different annotators.

2. Sentences providing alternative naming of a known (and previously defined) math-
ematical object. Example (annotated as non-definition):

Exponential growth is common in physical processes such as population growth
in the absence of predators or resource restrictions (where a slightly more general
form is known as the law of growth).

We received the same decisions and the same outcomes in our dataset with this
sentence type as with type (1).

3. Formulations—sentences that define some mathematical object by a formula (in
contrast to a verbal definition, that explains the object’s meaning). Example (annotated
as non-definition):

l Formulas expressing trigonometric functions of an angle 2x in terms of functions
of an angle x, sin(2x) = [FORMULA].

If both definition and formulation sentences for the same object were provided, our
annotators usually assigned them different labels. However, rarely a mathematical
object can be only defined by a formula. Additionally, sometimes it can be defined by
both, but the verbal definition is not provided in an analyzed article. In such cases,
annotators assigned the “definition” label to the formulation sentence.

4. Sentences that are parts of a multi-sentence definition. Example (annotated as
non-definition):

This polyhedron is known as the dual, or reciprocal.

We instructed our annotators not to assign “definition” label to sentences that do not
contain comprehensive information about a defined object. However, some sentences
were still annotated as “definition”, especially when they appear in a sequence.

5. Descriptions—sentences that describe mathematical objects but do not define them
unequivocally. Example (annotated as non-definition):

A dragon curve is a recursive non-intersecting curve whose name derives from its
resemblance to a certain mythical creature.

Although this sentence resembles a legitimate definition (grammatically), it was
labeled as non-definition because its claim does not hold in both directions (not every
recursive non-intersecting curve is a dragon curve). Because none of our annotators
was expert in all mathematical domains, it was difficult for them to assign the correct
label in all similar cases.

As result of subjective annotation (which occurs frequently in all IR-related areas),
none of the ML models trained on our training data were very precise with the ambiguous
cases such as those described above. Below are several examples of sentences misclassified
as definitions (false positives (with gold standard label “non-definition” but classified as
“definition”)), from each type described in the list above:

1. Property description:

Every pentagonal number is 1/3 of a triangular number.

2. Alternative naming:

However, being in “one-to-one correspondence” is synonymous with being a bijec-
tion.

3. Formulations and notations:

The binomial distribution is therefore given by Pp(n|N) =[FORMULA].
For a binary relation R, one often writes aRb to mean that (a, b) is in R×R.

Mathematics 2021, 9, 2502 16 of 18

4. Partial definition:

A center X is the triangle centroid of its own pedal triangle iff it is the symmedian point.

This sentence was annotated as non-definition, because it does not define the symme-
dian point.

5. Description:

The cyclide is a quartic surface, and the lines of curvature on a cyclide are all straight
lines or circular arcs.

Most misclassified definitions (false negatives) can be described by an atypical grammatical
structure. Examples of such sentences can be seen below:

Once one countable set S is given, any other set which can be put into a one-to-one cor-
respondence with S is also countable.
The word cissoid means “ivy-shaped”.
A bijective map between two metric spaces that preserves distances,
i.e., d(f(x), f(y)) = d(x, y), where f is the map and d(a, b) is the distance function.

We propose to deal with some of the identified error sources as follows. Partial
definitions can probably be discarded by applying part-of-speech tagging and pronouns
detection. Coreference resolution (CR) can be used for identification of the referred
mathematical entity in a text. Additionally, the partial definitions problem should be
resolved by reduction of the DE task to multi-sentence DE. Formulations and notations
can probably be discarded by measuring the ratio between mathematical symbolism and
regular text in a sentence. Sentences providing alternative naming for mathematical objects
can be discarded if we are able to detect the truth definition and then select it from multiple
candidates. It can also be probably resolved with the help of such types of CR as split
antecedents and coreferring noun phrases.

4.11. Discussion

As can be seen from all four experiments, ensemble outperforms individual models,
despite latter being trained on more data. This outcome definitely supports the superiority
of the ensemble approach for both domains.

It is worth noting that BERT did not perform well on our task. We explain it by
the difference between the general domain of its training and our application domain of
definitions and the lack of syntactic information in its input representation.

The scores of individual models approve again that syntactic information embedded
into a sentence representation usually delivers better performance in both domains.

As our cross-domain evaluation results show, general definition domain and mathem-
atical domain are quite different and, therefore, transfer cross-domain learning performs
significantly worse than traditional single-domain learning.

5. Conclusions

In this paper, we introduce a new approach for DE, using ensemble from deep neural
networks. Because it is a supervised approach, we adjust the class distribution of our
datasets with oversampling. We evaluate this approach on datasets from general and
mathematical domains. Our experiments on four datasets demonstrate superiority of
ensemble voting over multiple state-of-the-art methods.

In the future, we intend to adapt our methodology for multi-sentence definition extraction.

Author Contributions: Conceptualization, N.V. and M.L.; methodology, N.V. and M.L.; software,
N.V.; validation, N.V. and M.L.; formal analysis, investigation, resources, N.V. and M.L.; writing—
original draft preparation, N.V. and M.L.; writing—review and editing, N.V. and M.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The WFMALL dataset is freely available for download from https:
//github.com/NataliaVanetik1/wfmall, accessed on 1 September 2021.

https://github.com/NataliaVanetik1/wfmall
https://github.com/NataliaVanetik1/wfmall

Mathematics 2021, 9, 2502 17 of 18

Acknowledgments: The authors express their deep gratitude to Guy Shilon and Lior Reznik for their
help with server configuration.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript, in the order of their appearance:

DE Definition Extraction
NLP Natural Language Processing
WCL World-Class Lattice
DL Deep Learning
CRF Conditional Random Fields
CNN Convolutional Neural Network
LSTM Long Short-Term memory
BLSTM Bidirectional LSTM
SOTA State of the Art
NN Neural Network
FT fastText word vectors
LR Logistic Regression
RF Random Forest

References
1. Vanetik, N.; Litvak, M.; Shevchuk, S.; Reznik, L. Automated discovery of mathematical definitions in text. In Proceedings of the

12th Language Resources and Evaluation Conference, Marseille, France, 13–15 May 2020; pp. 2086–2094.
2. Xu, J.; Licuanan, A.; Weischedel, R.M. TREC 2003 QA at BBN: Answering Definitional Questions; TREC: Gaithersburg, MD, USA,

2003; pp. 98–106.
3. Klavans, J.L.; Muresan, S. Evaluation of the DEFINDER system for fully automatic glossary construction. In Proceedings of the

AMIA Symposium, American Medical Informatics Association, Washington, DC, USA, 3–7 November 2001; p. 324.
4. Schuyler, P.L.; Hole, W.T.; Tuttle, M.S.; Sherertz, D.D. The UMLS Metathesaurus: Representing different views of biomedical

concepts. Bull. Med. Libr. Assoc. 1993, 81, 217. [PubMed]
5. Malaisé, V.; Zweigenbaum, P.; Bachimont, B. Detecting semantic relations between terms in definitions. In Proceedings of

CompuTerm 2004: 3rd International Workshop on Computational Terminology, Geneva, Switzerland, 29 August 2004.
6. Saggion, H.; Gaizauskas, R.J. Mining On-line Sources for Definition Knowledge. In Proceedings of the International FLAIRS

Conference, Miami Beach, FL, USA, 12–14 May 2004; pp. 61–66.
7. Saggion, H. Identifying Definitions in Text Collections for Question Answering. In Proceedings of the International Conference

on Language Resources and Evaluation, LREC, Lisbon, Portugal, 26–28 May 2004.
8. Storrer, A.; Wellinghoff, S. Automated detection and annotation of term definitions in German text corpora. In Proceedings of the

International Conference on Language Resources and Evaluation, LREC, Genoa, Italy, 24–26 May 2006; Volume 2006.
9. Borg, C.; Rosner, M.; Pace, G. Evolutionary algorithms for definition extraction. In Proceedings of the 1st Workshop on Definition

Extraction. Association for Computational Linguistics, Borovets, Bulgaria, 18 September 2009; pp. 26–32.
10. Fahmi, I.; Bouma, G. Learning to identify definitions using syntactic features. In Proceedings of the Workshop on Learning

Structured Information in Natural Language Applications, Trento, Italy, 3 April 2006.
11. Westerhout, E.; Monachesi, P.; Westerhout, E. Combining pattern-based and machine learning methods to detect definitions for

elearning purposes. In Proceedings of the RANLP 2007 Workshop “Natural Language Processing and Knowledge Representation
for eLearning Environments”, Borovets, Bulgaria, 27–29 September 2007.

12. Westerhout, E. Definition extraction using linguistic and structural features. In Proceedings of the 1st Workshop on Definition
Extraction. Association for Computational Linguistics, Borovets, Bulgaria, 18 September 2009; pp. 61–67.

13. Navigli, R.; Velardi, P. Learning word-class lattices for definition and hypernym extraction. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Uppsala, Sweden, 11–16
July 2010; pp. 1318–1327.

14. Reiplinger, M.; Schäfer, U.; Wolska, M. Extracting glossary sentences from scholarly articles: A comparative evaluation of pattern
bootstrapping and deep analysis. In Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries.
Association for Computational Linguistics, Jeju Island, Korea, 10 July 2012; pp. 55–65.

15. Jin, Y.; Kan, M.Y.; Ng, J.P.; He, X. Mining scientific terms and their definitions: A study of the ACL anthology. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 780–790.

16. Boella, G.; Di Caro, L. Extracting definitions and hypernym relations relying on syntactic dependencies and support vector
machines. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
Sofia, Bulgaria, 4–9 August 2013; Volume 2, pp. 532–537.

http://www.ncbi.nlm.nih.gov/pubmed/8472007

Mathematics 2021, 9, 2502 18 of 18

17. Anke, L.E.; Saggion, H.; Ronzano, F. Weakly supervised definition extraction. In Proceedings of the International Conference
Recent Advances in Natural Language Processing, Hissar, Bulgaria, 5–11 September 2015; pp. 176–185.

18. Anke, L.E.; Saggion, H. Applying dependency relations to definition extraction. In Proceedings of the International Conference
on Applications of Natural Language to Data Bases/Information Systems, Montpellier, France, 18–20 June 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 63–74.

19. Li, S.; Xu, B.; Chung, T.L. Definition Extraction with LSTM Recurrent Neural Networks. In Chinese Computational Linguistics and
Natural Language Processing Based on Naturally Annotated Big Data; Springer: Berlin/Heidelberg, Germany, 2016; pp. 177–189.

20. Anke, L.E.; Schockaert, S. Syntactically Aware Neural Architectures for Definition Extraction. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), New Orleans, LA, USA, 2–4 June 2018; Volume 2, pp. 378–385.

21. Avram, A.M.; Cercel, D.C.; Chiru, C. UPB at SemEval-2020 Task 6: Pretrained Language Models for Definition Extraction. In
Proceedings of the Fourteenth Workshop on Semantic Evaluation, Barcelona, Spain, 12–13 December 2020; pp. 737–745.

22. Xie, S.; Ma, J.; Yang, H.; Lianxin, J.; Yang, M.; Shen, J. UNIXLONG at SemEval-2020 Task 6: A Joint Model for Definition Extraction.
In Proceedings of the Fourteenth Workshop on Semantic Evaluation, Barcelona, Spain, 12–13 December 2020; pp. 730–736.

23. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

24. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
In Proceedings of the NAACL, New Orleans, LA, USA, 1–6 June 2018.

25. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Harrahs and Harveys, Lake Tahoe,
CA, USA, 5–10 December 2013; pp. 3111–3119.

26. Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. FastText Word Vectors. Available online: https://fasttext.cc/docs/en/

crawl-vectors.html (accessed on 1 January 2018).
27. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. Python Interface to CoreNLP Using a Bidirectional

Server-Client Interface. Available online: https://github.com/stanfordnlp/python-stanford-corenlp (accessed on 1 January 2019).
28. Chollet, F. Keras. Available online: https://keras.io (accessed on 1 January 2015).
29. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org. (accessed on 1 January 2015).
30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et

al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
31. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM

Sigkdd Explor. Newsl. 2009, 11, 10–18. [CrossRef]
32. Navigli, R.; Velardi, P.; Ruiz-Martínez, J.M. WCL Definitions Dataset. Available online: http://lcl.uniroma1.it/wcl/ (accessed on 1

September 2020).
33. Navigli, R.; Velardi, P.; Ruiz-Martínez, J.M. An Annotated Dataset for Extracting Definitions and Hypernyms from the Web. In

Proceedings of the International Conference on Language Resources and Evaluation, LREC, Valetta, Malta, 19–21 May 2010.
34. Spala, S.; Miller, N.A.; Yang, Y.; Dernoncourt, F.; Dockhorn, C. DEFT: A corpus for definition extraction in free-and semi-structured

text. In Proceedings of the 13th Linguistic Annotation Workshop, Florence, Italy, 1 August 2019; pp. 124–131.
35. Jin, Y.; Kan, M.Y.; Ng, J.P.; He, X. W00 Definitions Dataset. Available online: https://bitbucket.org/luisespinosa/neural_de/src/

afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master (accessed on 1 January 2013).
36. Bird, S.; Dale, R.; Dorr, B.J.; Gibson, B.R.; Joseph, M.T.; Kan, M.; Lee, D.; Powley, B.; Radev, D.R.; Tan, Y.F. The ACL Anthology

Reference Corpus: A Reference Dataset for Bibliographic Research in Computational Linguistics. In Proceedings of the
International Conference on Language Resources and Evaluation, LREC, Marrakech, Morocco, 26 May–1 June 2008.

37. Vanetik, N.; Litvak, M.; Shevchuk, S.; Reznik, L. WFM Dataset of Mathematical Definitions. Available online: https:
//github.com/uplink007/FinalProject/tree/master/data/wolfram (accessed on 1 January 2019).

38. Weisstein, E. Wolfram Mathworld. Available online: https://www.wolframalpha.com/ (accessed on 1 January 2019).
39. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural language processing

toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
Baltimore, MD, USA, 23–25 June 2014; pp. 55–60.

40. Honnibal, M.; Johnson, M. An Improved Non-monotonic Transition System for Dependency Parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics, Lisbon, Portugal,
17–21 September 2015; pp. 1373–1378.

41. Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. Learning Word Vectors for 157 Languages. In Proceedings of the
International Conference on Language Resources and Evaluation LREC, Miyazaki, Japan, 7–12 May 2018.

42. Veyseh, A.; Dernoncourt, F.; Dou, D.; Nguyen, T. A joint model for definition extraction with syntactic connection and semantic
consistency. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 9098–9105.

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/stanfordnlp/python-stanford-corenlp
https://keras.io
tensorflow.org.
http://doi.org/10.1145/1656274.1656278
http://lcl.uniroma1.it/wcl/
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://github.com/uplink007/FinalProject/tree/master/data/wolfram
https://github.com/uplink007/FinalProject/tree/master/data/wolfram
https://www.wolframalpha.com/

	Introduction
	Related Work
	Method
	Sentence Representation
	Composition NN Models
	Ensemble Pipeline

	Experiments
	Tools
	Datasets
	The WCL Dataset
	The DEFT Dataset
	The W00 Dataset
	The WFMALL Dataset

	Evaluation Setup
	Text Preprocessing
	Baselines
	Results for the Mathematical Domain
	Results for the General Domain
	Cross-Domain Results
	Parameter Selection and Evaluation
	Error Analysis
	Discussion

	Conclusions
	References

